JPH06121930A - 水素化処理反応触媒の調製法と水素化処理方法 - Google Patents

水素化処理反応触媒の調製法と水素化処理方法

Info

Publication number
JPH06121930A
JPH06121930A JP3259747A JP25974791A JPH06121930A JP H06121930 A JPH06121930 A JP H06121930A JP 3259747 A JP3259747 A JP 3259747A JP 25974791 A JP25974791 A JP 25974791A JP H06121930 A JPH06121930 A JP H06121930A
Authority
JP
Japan
Prior art keywords
reaction
hydrogenation
catalyst
metal
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3259747A
Other languages
English (en)
Other versions
JPH078335B2 (ja
Inventor
Yasunori Kuriki
安則 栗木
Mitsutaka Kawamura
光隆 河村
Morio Yumura
守雄 湯村
Satoru Oshima
哲 大嶋
Fumikazu Igasaki
文和 伊ケ崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3259747A priority Critical patent/JPH078335B2/ja
Publication of JPH06121930A publication Critical patent/JPH06121930A/ja
Publication of JPH078335B2 publication Critical patent/JPH078335B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】 【目的】水素化処理反応において硫化触媒微粒子の調製
をその場で行い、水素化反応を行わせる方法を提供す
る。 【構成】温度200〜450℃、水素圧1〜20MPa
の条件下の反応器中に、鉄、モリブデン、コバルト等の
水素化活性を有する球状、不定形状等の固体金属を充填
し、フェナントレンのような炭化水素とともに水素と硫
黄を供給し、充填物を振動させて、微粒子状硫化金属触
媒を生成させると同時に、水素化処理を行う。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は振動を加えて微粒子状活
性金属触媒を製造すると同時に該触媒により炭化水素化
合物の水素化処理反応を行う方法に関するものである。
【0002】
【従来の技術】炭化水素化合物の水素化処理反応には、
水素を効率よく、かつ選択性よく添加する水素化反応
と、低分子化や軽質化を目的とした水素化分解反応の2
つの系がある。水素化反応については、古くは油脂類の
部分水素化、オレフィン類の選択的部分水素化、芳香族
の核水素化などを経て、今日までに石油化学の原料の調
製分野で工業的プラントが数多く稼働している。また医
薬・農薬の原料や香料などの合成の分野でも最適な方法
が選ばれ実施されている。水素化分解反応はアルキル化
や異性化反応などを皮切りに、石油精製業の隆盛ととも
に、リホーミングや水素化脱硫の分野で工業化が進み、
さらには石炭の液化では実用化に向けて研究が鋭意遂行
されている。
【0003】これらの水素化処理反応の各種の態様の中
で中心となるのは不均一系の固体触媒であり、とりわけ
金属触媒の使用である。それらの触媒に求められる必要
条件は活性化水素の保有であり、保有水素量の増大のた
めに活性金属原子の配列状態又は触媒粒子の大きさの選
択が必要で、触媒設計や調製の条件の設定が重要とな
る。とくに金属触媒は、活性の賦活操作として還元処理
をしなければならず、一方、触媒が還元状態のまま空気
に触れると容易に発火し失活するためにさらにその防止
策を施さなければならないという問題がある。したがっ
て水素化処理、特にその触媒系について効果的な機能発
現と触媒利用プロセスに関する研究のさらなる発展が望
まれている。
【0004】
【発明が解決しようとする課題】固体金属触媒の調製法
として最も広く用いられている方法に沈殿法があり、反
応液の濃度、pH調整、水洗、乾燥などによって沈殿物
をつくりだすが、均質な沈殿を得ることが難しい。また
担持金属触媒として、担体に活性金属を担持させる方法
には、沈殿法の他に浸漬法やイオン交換法、さらに蒸着
法が用いられているが、調製工程が多岐にわたり、品質
管理を含めた製造コストの上昇をもたらすという問題を
かかえている。
【0005】とくに金属触媒は、上述したように水素化
反応を行いうる状態のときは空気に触れると発熱発火す
る例が多い。そのため触媒の調製後還元処理をしてから
反応にかけるまでの品質保持に十分注意するか、速やか
に反応に供することが必要とされている。また使用触媒
の再生処理も重要な課題であるが、従来の固体金属触媒
に対してはこの点を満足する再生操作法が開発されてい
なかった。
【0006】本発明は、従来の金属触媒の水素化処理反
応にみられるような、触媒を調製し還元処理を施して、
活性の維持管理を行いつつ、反応に供するという方法で
はなく、新規な視点で硫化触媒微粒子の調製と水素化処
理反応を反応系内で同時進行させるという新しい方法を
提供することを目的とするものである。
【0007】
【課題を解決するための手段】本発明者らは上記の目的
を達成するため鋭意研究を重ねた結果、高温で、水素存
在下、反応器の中に、球状、棒状、不定形状のモリブデ
ン、コバルト等の水素化活性を有する固体金属を充填
し、反応基質とともに水素と硫黄、あるいは硫化水素を
供給しながら、充填物を振動させて水素化処理反応を行
う、すなわち振動反応により固体間の衝突で金属種の水
素化活性が著しく向上することを見い出しこの知見に基
づき本発明をなすに至った。
【0008】すなわち本発明は、(1)水素化活性を有
する固体金属を水素と硫黄、又は硫化水素の存在下、加
熱条件下で振動させることを特徴とする水素化処理用金
属触媒の調製方法、及び(2)上記(1)に記載された
方法により調製した金属触媒を製造すると同時に水素を
供給しながら基質を水素化処理することを特徴とする水
素化処理方法、を提供するものである。
【0009】本発明においては硫化金属触媒の製造及び
炭化水素化合物の水素化処理反応を行うに際して、両者
を振動反応法により行う。本発明において充填物として
用いうる固体金属の種類はコバルト、モリブデン、ニッ
ケル及び鉄が触媒活性及び経費の点から好ましい。また
固体金属の形状も特に制限するものではないが、球状、
棒状あるいは不定形状のいずれであってもよい。
【0010】したがって、上記の金属の混合物や不活性
粒子の表面を上記の水素化活性を有する金属で覆ったも
のも使用できる。充填物の大きさは、衝突力を高める上
で大きい方がよいが、逆に硫化される比表面積を大きく
する上では小さい方がよい。これらの条件を考慮して好
ましくは0.2〜10mmの範囲、より好ましくは衝突
にかける動力の低減化も考慮して、0.5〜5mmの範
囲である。
【0011】充填物を振動し衝突させる方法は、容器全
体を振動させても、電磁誘導による充填物だけの振動に
よってもよい。衝突回数は加振数の関数であり、微粒子
の生成量も衝突回数に比例する。もちろん充填物の硬度
により、微粒子生成量は異なり、硫黄の存在量にも依存
するので硫黄量は多いほど効果的である。しかし水素化
に必要とする水素消費量と水素分圧の効果の上から、水
素中の硫化水素の含有率は5〜20%が好ましい。ま
た、水素化には水素供与能をもった溶剤を使うことで反
応を進行させることができる。水素供与能を有する媒質
は、反応基質である炭化水素化合物に水素を供与できる
物質であれば気体、液体あるいは前記炭化水素化合物の
溶媒、希釈剤などのいずれでもよいが、硫化金属触媒の
生成を同時に行うことから硫化水素のような含硫黄物質
であることが好ましい。
【0012】本発明の触媒の調製及び水素化処理の条件
は、微粒子状粒化金属触媒の生成速度、炭化水素化合物
の水素化処理反応速度、反応容器の価格、保守、運転管
理の容易さ等から適宜に定められるが、好ましくは反応
温度200〜450℃、水素圧1〜20MPaの範囲に
設定される。
【0013】また本発明においては固体間の衝突で活性
面の再生が達成できる。すなわち触媒微粒子の再生は、
金属固体を確保する操作だけですむ。つまり、硫黄を回
収しながら、金属を溶融し目的の大きさに調製するだけ
の簡便な処理を行うだけである。本発明の適用分野とし
て、硫化金属微粒子を触媒とする反応が挙げられる。
【0014】
【作用】固体金属で形成された充填層を振動させること
で充填物どうし、あるいは充填物と壁面とが激しく衝突
を繰り返す。一方、水素と硫黄、または硫化水素を含有
した水素雰囲気のもとに金属が置かれると、その表面が
硫化され剥離され易い状態になる。これらの振動と硫化
の両現象を同じ反応層内で出現させることで振動等によ
って硫化された金属表面から微粒子が生成される。ま
た、固体の微粒子化による分散度の増大や粒子の空孔容
積の増大が起きる。その触媒微粒子が生成される反応系
中に反応基質が供給されることで、反応条件で制御され
る水素化処理反応が進行する。
【0015】
【実施例】次に本発明を実施例により、さらに詳細に説
明する。 実施例1 縮合多環芳香族のフェナントレンを反応基質として、内
径14mm×高さ325mmのオートクレーブを用い、
その中に金属を22mlと硫黄を0.17g充填し、水
素初期圧10MPa、温度400℃、振動数1600r
pm、振幅4mmの条件下で、最大90分まで振動ボー
ルミル装置で振動させながら反応を行った。使用した金
属はコバルト、モリブデン、ニッケルと鉄であり、その
大きさはモリブデンとコバルトが不定形状の5〜9メッ
シュ、ニッケルと鉄が球状の3mmφと2.7mmφで
ある。60分間の振動反応を行って生産された各金属の
触媒微粒子の粒度分布を図1に示す。また振動反応を9
0分まで行ったときのフェナントレンの転化率を図2に
示す。
【0016】
【発明の効果】本発明によれば、次のような効果を得る
ことができる。 (1)水素化反応の活性をもつ固体金属の充填層におい
て、水素中に硫黄又は硫化水素を混合し、振動等の機械
的衝突を加えることで水素化活性の高い微粒子触媒が生
成される。充填物は2種以上の金属の混合でも合金でも
よい。 (2)微粒子触媒の生成量と粒子サイズは、硫黄の添加
量、振動の加振数、振幅、反応時間を変化させることに
よって容易に制御できる。 (3)微粒子触媒の生成と相俟って進行する水素化処理
反応を、上記(2)の微粒子の調製段階によって規制す
ることができる。 (4)活性金属の選択によって、炭化水素化合物の水素
化処理だけでなく、脱水素反応、水素化脱硫反応、水素
化脱窒素反応への適用が期待できる。
【図面の簡単な説明】
【図1】充填金属から剥離した硫化金属触媒微粒子の粒
度分布図である。(A)、(B)、(C)、(D)はC
o、Ni、Mo、Feそれぞれのグラフを示す。
【図2】フェナントレンの水素化転化率の反応時間によ
る変化を示すグラフである。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大嶋 哲 茨城県つくば市東1丁目1番地 工業技術 院化学技術研究所内 (72)発明者 伊ケ崎 文和 茨城県つくば市東1丁目1番地 工業技術 院化学技術研究所内

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 水素化活性を有する固体金属を水素と硫
    黄、又は硫化水素の存在下、加熱条件下で振動させるこ
    とを特徴とする水素化処理用金属触媒の調製方法。
  2. 【請求項2】 請求項1に記載された方法により調製し
    た金属触媒を製造すると同時に水素を供給しながら基質
    を水素化処理することを特徴とする水素化処理方法。
JP3259747A 1991-09-11 1991-09-11 水素化処理反応触媒の調製法と水素化処理方法 Expired - Lifetime JPH078335B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3259747A JPH078335B2 (ja) 1991-09-11 1991-09-11 水素化処理反応触媒の調製法と水素化処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3259747A JPH078335B2 (ja) 1991-09-11 1991-09-11 水素化処理反応触媒の調製法と水素化処理方法

Publications (2)

Publication Number Publication Date
JPH06121930A true JPH06121930A (ja) 1994-05-06
JPH078335B2 JPH078335B2 (ja) 1995-02-01

Family

ID=17338391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3259747A Expired - Lifetime JPH078335B2 (ja) 1991-09-11 1991-09-11 水素化処理反応触媒の調製法と水素化処理方法

Country Status (1)

Country Link
JP (1) JPH078335B2 (ja)

Also Published As

Publication number Publication date
JPH078335B2 (ja) 1995-02-01

Similar Documents

Publication Publication Date Title
US7585812B2 (en) High surface area, small crystallite size catalyst for Fischer-Tropsch synthesis
US20090018366A1 (en) Production and use of supported activated base metal catalysts for organic transformation
EP0736326B1 (en) Fischer-Tropsch catalysts containing iron and cobalt
KR102444992B1 (ko) 금속 발포체를 포함하는 고정 촉매 층
WO1998037168A2 (en) Catalyst and process for the hydrogenation of hydrocarbons
KR960007740A (ko) 금속 황화물 촉매가 지지된 신규한 "인으로 처리된 탄소"를 이용한 탄화수소 오일의 수소화 탈방향족 방법
EP0398447A2 (en) A method of forming lines of weakness in or grooving a plastic material, especially a packaging material
Bruno et al. Supported Ni–Au colloid precursors for active, selective, and stable alkyne partial hydrogenation catalysts
JP2011036857A (ja) 多価不飽和炭化水素の選択的水素化のための、Niと第IB族金属とをベースとした担持触媒の調製方法
US3668148A (en) Catalyst prepared by homogeneous precipitation under high temperature and pressure
US3677970A (en) Hydrogenation of organic compounds
JP2006522686A (ja) フィッシャー−トロプシュ触媒の製造
US4102778A (en) Method and apparatus for carrying out hydrogenation reactions
Hajjar et al. Optimizing parameters affecting synthesis of a novel Co–Mo/GO catalyst in a Naphtha HDS reaction utilizing D-optimal experimental design method
JPH0431737B2 (ja)
JP2004526032A (ja) 三相化学処理のための微細構造触媒床
US5143877A (en) Process for preparation of a catalyst
JPS59162949A (ja) ジエン類の存在下でのアルキン類の選択的水素化用触媒
JPH06121930A (ja) 水素化処理反応触媒の調製法と水素化処理方法
RU2705574C1 (ru) Каталитическая композиция для превращения алканов в алкены и способ ее получения
JPH0780309A (ja) 炭化水素製造用触媒及び炭化水素の製造方法
GB2131043A (en) Selective hydrogenation of dienes in pyrolysis gasoline
CA1295964C (en) Process for the catalytic conversion of hydrocarbon oils
AU594977B2 (en) Process for the conversion of hydrocarbon oils.
CN108014722A (zh) 一种加氢反应器

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term