JPH06120381A - Solid image pickup device - Google Patents

Solid image pickup device

Info

Publication number
JPH06120381A
JPH06120381A JP4264731A JP26473192A JPH06120381A JP H06120381 A JPH06120381 A JP H06120381A JP 4264731 A JP4264731 A JP 4264731A JP 26473192 A JP26473192 A JP 26473192A JP H06120381 A JPH06120381 A JP H06120381A
Authority
JP
Japan
Prior art keywords
layer
cooling
solid
cooled
polyimide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4264731A
Other languages
Japanese (ja)
Other versions
JP3167194B2 (en
Inventor
Kazuhisa Miyaguchi
和久 宮口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP26473192A priority Critical patent/JP3167194B2/en
Publication of JPH06120381A publication Critical patent/JPH06120381A/en
Application granted granted Critical
Publication of JP3167194B2 publication Critical patent/JP3167194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve temperature control performance during cooling by placing a thermal cushioning member of a sandwich construction made of a member having a high heat conductivity sandwiched between members having a low heat conductivity between a solid image pickup element and an electronic cooling element. CONSTITUTION:An electric current is applied to a Peltier element 40 for quickly cooling a CCD2O. A polyimide layer 31 with a low heat conductivity bonded to the rear surface of the Peltier element 30 is gradually cooled off. An aluminum layer 32 bonded to the rear surface of the polyimide layer 31 is also cooled off. The aluminum layer 32 is a member with a high heat conductivity and a member of polyimide layer 33 underneath said layer 32 has a low heat conductivity; therefore, even if the cooling of the polyimide 31 is not performed uniformly because of irregularity in the temperature cooling at the Peltier element 40, the temperature cooling can be uniformed by the aluminum layer 32. Thereafter, the polyimide layer 33 is gradually cooled off, and the CCD20 bonded to the rear surface of the polyimide layer 33 is slowly cooled off. Therefore, the CCD20 can be cooled off without giving great damages and also without degrading the characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体撮像素子の冷却用
の電子冷却型素子が設けられた固体撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device provided with an electronic cooling type element for cooling the solid-state image pickup element.

【0002】[0002]

【従来の技術】特開昭60−220965の公報には、
ペルチェ素子のような電子冷却型素子を備えた固体撮像
装置が記載されている。この従来例は、固体撮像素子の
受光部を電子冷却型素子上に配設して受光部を冷却する
ことにより、固体撮像素子の受光部で生じた電荷を転送
する際に発生する暗電流の低減を図るものである。
2. Description of the Related Art Japanese Patent Application Laid-Open No. 60-220965 discloses
A solid-state imaging device having an electronically cooled element such as a Peltier element is described. In this conventional example, the light receiving part of the solid-state imaging device is arranged on the electronic cooling type device to cool the light receiving part, so that the dark current generated when the charge generated in the light receiving part of the solid-state imaging device is transferred. It is intended to reduce.

【0003】[0003]

【発明が解決しようとする課題】ところで、電子冷却型
素子で固体撮像素子を冷却する場合、急冷によって固体
撮像素子が破壊されたり、特性が劣化する恐れがあっ
た。そこで、従来の固体撮像装置は電子冷却型素子の温
度変化を制御するコントローラを設けて、急冷による固
体撮像素子の破壊や特性の劣化を防いでいた。
By the way, when the solid-state image pickup device is cooled by the electronic cooling type device, there is a possibility that the solid-state image pickup device may be broken or the characteristics may be deteriorated by the rapid cooling. Therefore, the conventional solid-state image pickup device is provided with a controller for controlling the temperature change of the electronic cooling type element to prevent destruction of the solid-state image pickup element and deterioration of characteristics due to rapid cooling.

【0004】しかしながら、コントローラを用いて電子
冷却型素子の温度変化を制御しても、固体撮像素子を均
一に冷却するような細かな調節は困難であった。このた
めに、均一に冷却できないために生ずる部分的な急冷に
よって、固体撮像素子の破壊や特性の劣化が発生した。
However, even if the temperature change of the electronic cooling type element is controlled by using the controller, it is difficult to make a fine adjustment to uniformly cool the solid-state image pickup element. For this reason, the partial rapid cooling caused by the inability to uniformly cool the solid-state image sensor causes the destruction and deterioration of the characteristics.

【0005】また、たとえコントローラを設けたとして
も、デバイス自身は急冷に対して何の保護もない。この
ため、コントローラが誤動作して電子冷却型素子の温度
が急激に変化した場合には、固体撮像素子の破壊や特性
の劣化が発生した。
Also, even if a controller is provided, the device itself has no protection against quenching. Therefore, when the controller malfunctions and the temperature of the electronic cooling type element changes abruptly, the solid-state image pickup element is broken or the characteristics are deteriorated.

【0006】本発明は、このような問題を解決して、冷
却時の温度制御性能に優れた固体撮像装置を提供するこ
とを目的とする。
It is an object of the present invention to solve the above problems and provide a solid-state image pickup device having excellent temperature control performance during cooling.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明の固体撮像素装置は、固体撮像素子とこの固
体撮像素子を冷却する電子冷却素子の間に熱緩衝部材を
介在させている。熱緩衝部材には、熱伝導率の高い材料
をこの材料よりも熱伝導率の低い材料で挟み込んだ構造
の部材を用いている。
In order to solve the above-mentioned problems, the solid-state image pickup device of the present invention has a thermal buffer member interposed between a solid-state image pickup element and an electronic cooling element for cooling the solid-state image pickup element. There is. As the heat buffer member, a member having a structure in which a material having a high thermal conductivity is sandwiched between materials having a lower thermal conductivity than this material is used.

【0008】[0008]

【作用】本発明の固体撮像装置によれば、固体撮像素子
と電子冷却素子の間に、熱伝導率の高い材料をこの材料
よりも熱伝導率の低い材料で挟み込んだサンドイッチ構
造の熱緩衝部材を介在させている。この熱緩衝部材の熱
伝導率の低い材料によって固体撮像素子の冷却速度が低
下し、熱緩衝部材の熱伝導率の高い材料によって固体撮
像素子の冷却が均一化される。特に、熱伝導率の高い材
料が熱伝導率の低い材料に挟まれているので、一方の熱
伝導率の低い材料から伝導される温度の低下は、他方の
熱伝導率の低い材料に伝導される前に、熱伝導率の高い
材料内で十分に伝導される。このため、温度低下の均一
化が促進される。
According to the solid-state image pickup device of the present invention, a heat-absorbing member having a sandwich structure in which a material having a high thermal conductivity is sandwiched between the solid-state image pickup element and the electronic cooling element by a material having a lower thermal conductivity than this material. Is intervening. The material having a low thermal conductivity of the heat buffering member reduces the cooling rate of the solid-state imaging device, and the material having a high thermal conductivity of the heat buffering member uniformizes the cooling of the solid-state imaging device. In particular, since the material with high thermal conductivity is sandwiched by the materials with low thermal conductivity, the decrease in temperature conducted from one material with low thermal conductivity is conducted to the material with low thermal conductivity. Before it is fully conducted in a material with high thermal conductivity. Therefore, uniformization of temperature decrease is promoted.

【0009】[0009]

【実施例】以下、添付図面を用いて、本発明の固体撮像
装置の一実施例について説明する。図1は本実施例の構
造を示す斜視図であり、図2は本実施例の構造を示す断
面図である。図1の斜視図に示すように、固体撮像装置
は、階段状の凹部11を有するAl2 3 を用いたセラ
ミック基板10と、セラミック基板10の凹部11内に
固定された固体撮像素子であるシリコン製のCCD20
と、セラミック基板10の凹部11上に設けられCCD
20を取り囲んだ熱緩衝部材30と、熱緩衝部材30の
上面に接合された電子冷却型素子であるペルチェ素子4
0を備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the solid-state image pickup device of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a perspective view showing the structure of this embodiment, and FIG. 2 is a sectional view showing the structure of this embodiment. As shown in the perspective view of FIG. 1, the solid-state imaging device is a ceramic substrate 10 using Al 2 O 3 having a stepped recess 11, and a solid-state imaging device fixed in the recess 11 of the ceramic substrate 10. CCD 20 made of silicon
And the CCD provided on the concave portion 11 of the ceramic substrate 10.
A heat buffering member 30 surrounding 20 and a Peltier element 4 which is an electronic cooling type element bonded to the upper surface of the heat buffering member 30.
It has 0.

【0010】図2の断面図からも判るように、セラミッ
ク基板10の凹部11の底面には開口部12が形成さ
れ、この開口部12を通過した光がCCD20の裏面に
照射される。CCD20の裏面は薄く削られており、受
光感度の向上が図られている。この結果、削られていな
い部分の厚さが約500μmであるのに対して、削られ
た部分の厚さは10〜20μmとなる。
As can be seen from the sectional view of FIG. 2, an opening 12 is formed in the bottom surface of the recess 11 of the ceramic substrate 10, and the light passing through the opening 12 is applied to the back surface of the CCD 20. The back surface of the CCD 20 is thinly shaved to improve the light receiving sensitivity. As a result, the thickness of the uncut portion is about 500 μm, while the thickness of the cut portion is 10 to 20 μm.

【0011】熱緩衝部材30は3層のサンドイッチ構造
で、厚さが100〜200μmのポリイミド層31と厚
さが500〜800μmのポリイミド層33の間に、厚
さが約500μmのAl層32が挟み込まれている。ポ
リイミド層33の裏面はCCD20と接合されており、
接合面積は約1.2cm×1.2cmとなる。
The heat buffer member 30 has a three-layer sandwich structure, and an Al layer 32 having a thickness of about 500 μm is provided between a polyimide layer 31 having a thickness of 100 to 200 μm and a polyimide layer 33 having a thickness of 500 to 800 μm. It is sandwiched. The back surface of the polyimide layer 33 is bonded to the CCD 20,
The joint area is about 1.2 cm × 1.2 cm.

【0012】CCD20を冷却するためにペルチェ素子
40に電流を流すと、ペルチェ素子40は約−40℃に
急冷する。ペルチェ素子40の裏面にはポリイミド層3
1が接合されており、ポリイミド層31の冷却が行われ
る。ポリイミド層31は熱伝導率の低い材料なので、冷
却は徐々に行われる。
When a current is applied to the Peltier element 40 to cool the CCD 20, the Peltier element 40 is rapidly cooled to about -40 ° C. A polyimide layer 3 is formed on the back surface of the Peltier element 40.
1, the polyimide layer 31 is cooled. Since the polyimide layer 31 is a material having a low thermal conductivity, cooling is gradually performed.

【0013】ポリイミド層31の裏面にはAl層32が
接合されており、Al層32もポリイミド層31の冷却
に合わせて冷却される。Al層32は熱伝導率の高い材
料なので、Al層32全体が均一な温度となる。つま
り、ペルチェ素子40の温度冷却にむらがあってポリイ
ミド層31の冷却が均一に行われない場合でも、Al層
32で温度冷却が均一化される。これは、Al層32の
下層のポリイミド層33が熱伝導率の低い材料なので、
Al層32によってポリイミド層33が冷却される前
に、Al層32内を冷気が十分に循環して均一に冷却さ
れるからである。また、Al層32は熱伝導率の低いポ
リイミド層31、33に挟まれているので、保温瓶と同
じ状態になり、冷気の循環が一層加速されて、Al層3
2の温度の均一化が促進される。
An Al layer 32 is bonded to the back surface of the polyimide layer 31, and the Al layer 32 is also cooled according to the cooling of the polyimide layer 31. Since the Al layer 32 is a material having a high thermal conductivity, the temperature of the entire Al layer 32 is uniform. That is, even when the temperature of the Peltier element 40 is unevenly cooled and the polyimide layer 31 is not uniformly cooled, the Al layer 32 uniformly cools the temperature. This is because the polyimide layer 33 below the Al layer 32 is a material with low thermal conductivity,
This is because before the polyimide layer 33 is cooled by the Al layer 32, cold air is sufficiently circulated in the Al layer 32 to be cooled uniformly. In addition, since the Al layer 32 is sandwiched between the polyimide layers 31 and 33 having low thermal conductivity, the Al layer 32 is in the same state as the heat retaining bottle, and the circulation of cold air is further accelerated, so that the Al layer 3
The homogenization of the temperature of 2 is promoted.

【0014】このようにAl層32が均一に冷却された
後に、ポリイミド層33が徐々に冷却される。ポリイミ
ド層33の裏面にはCCD20が接合されており、ポリ
イミド層33の冷却に合わせてCCD20が冷却され
る。ポリイミド層33の冷却はゆっくりと行われるの
で、CCD20の冷却も例えば5℃/min 以下の遅い温
度変化となる。このようにゆっくりとCCD20を冷却
することによって、大きな損傷を与えることなく、また
特性を劣化させることなくCCD20を冷却することが
できる。
After the Al layer 32 is uniformly cooled in this manner, the polyimide layer 33 is gradually cooled. The CCD 20 is bonded to the back surface of the polyimide layer 33, and the CCD 20 is cooled according to the cooling of the polyimide layer 33. Since the polyimide layer 33 is cooled slowly, the CCD 20 is also cooled slowly, for example, at 5 ° C./min or less. By cooling the CCD 20 slowly in this way, it is possible to cool the CCD 20 without causing significant damage and without deteriorating the characteristics.

【0015】本実施例の特徴である熱緩衝部材30は、
Al層32をポリイミド層31とポリイミド層33で挟
んだサンドイッチ構造を有している。Al層32の熱伝
導率は、2.38〔Wcm-1deg -1〕と高く、ポリイミド
層31、33の熱伝導率は、0.0012〔Wcm-1deg
-1〕と低い。熱緩衝部材30には、熱伝導率が近接した
別の材料を用いてもよく、この場合は、熱伝導率の違う
分だけ層の厚さを変えることにより、CCD20の冷却
速度を5℃/min 以下に抑えることができる。
The heat buffer member 30 which is a feature of this embodiment is
It has a sandwich structure in which the Al layer 32 is sandwiched between the polyimide layer 31 and the polyimide layer 33. The thermal conductivity of the Al layer 32 is as high as 2.38 [Wcm -1 deg -1 ], and the thermal conductivity of the polyimide layers 31, 33 is 0.0012 [Wcm -1 deg].
-1 ] and low. Another material having a close thermal conductivity may be used for the thermal buffer member 30, and in this case, the cooling rate of the CCD 20 is 5 ° C./° C. by changing the layer thickness by the amount of the different thermal conductivity. It can be kept below min.

【0016】なお、本発明は背面照射型のCCDに限定
されるものではなく、表面照射型のCCDであってもよ
い。さらに、本発明はあらゆる固体検出器、例えばAP
D(avalanche photo diode)や
PD(photo diode)にも適用される。
The present invention is not limited to the backside illumination type CCD, but may be a frontside illumination type CCD. Further, the present invention is applicable to any solid state detector, such as AP.
It is also applied to D (avalanche photo diode) and PD (photo diode).

【0017】[0017]

【発明の効果】本発明の固体撮像装置であれば、熱緩衝
部材の熱伝導率の低い材料によって固体撮像素子の冷却
速度が緩和され、熱緩衝部材の熱伝導率の高い材料によ
って固体撮像素子の冷却が均一化される。このため、冷
却時の特性の劣化やデバイスの破壊を著しく減少でき
る。
According to the solid-state image pickup device of the present invention, the cooling rate of the solid-state image pickup element is relaxed by the material having a low thermal conductivity of the thermal buffer member, and the solid-state image pickup element is made of the material having a high thermal conductivity of the thermal buffer member. Cooling is made uniform. Therefore, the deterioration of the characteristics during cooling and the destruction of the device can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】固体撮像装置の構造を示す斜視図である。FIG. 1 is a perspective view showing a structure of a solid-state imaging device.

【図2】固体撮像装置の構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of a solid-state imaging device.

【符号の説明】[Explanation of symbols]

10…セラミック基板、20…CCD、30…熱緩衝部
材、31、33…ポリイミド層、32…Al層、40…
ペルチェ素子。
10 ... Ceramic substrate, 20 ... CCD, 30 ... Thermal buffer member, 31, 33 ... Polyimide layer, 32 ... Al layer, 40 ...
Peltier element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電子冷却型素子により固体撮像素子を冷
却する固体撮像装置において、 前記電子冷却型素子と前記固体撮像素子の間に熱緩衝部
材を介在させており、当該熱緩衝部材は熱伝導率の高い
材料をこの材料よりも熱伝導率の低い材料で挟み込んだ
構造の部材であることを特徴とする固体撮像装置。
1. A solid-state imaging device for cooling a solid-state imaging device with an electronic cooling type device, wherein a thermal buffer member is interposed between the electronic cooling type device and the solid-state imaging device, and the thermal buffer member conducts heat. A solid-state imaging device, which is a member having a structure in which a material having a high thermal conductivity is sandwiched between materials having a lower thermal conductivity than this material.
JP26473192A 1992-10-02 1992-10-02 Solid-state imaging device Expired - Fee Related JP3167194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26473192A JP3167194B2 (en) 1992-10-02 1992-10-02 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26473192A JP3167194B2 (en) 1992-10-02 1992-10-02 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH06120381A true JPH06120381A (en) 1994-04-28
JP3167194B2 JP3167194B2 (en) 2001-05-21

Family

ID=17407393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26473192A Expired - Fee Related JP3167194B2 (en) 1992-10-02 1992-10-02 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3167194B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644164A (en) * 1995-07-07 1997-07-01 Samsung Aerospace Industries, Ltd. Semiconductor device which dissipates heat
JP2002033473A (en) * 2000-07-17 2002-01-31 Hamamatsu Photonics Kk Semiconductor device
WO2004034004A1 (en) * 2002-10-10 2004-04-22 Hamamatsu Photonics K.K. Photo-detection device and manufacturing method thereof
EP2234151A1 (en) * 2009-03-24 2010-09-29 Sony Corporation Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644164A (en) * 1995-07-07 1997-07-01 Samsung Aerospace Industries, Ltd. Semiconductor device which dissipates heat
JP2002033473A (en) * 2000-07-17 2002-01-31 Hamamatsu Photonics Kk Semiconductor device
WO2004034004A1 (en) * 2002-10-10 2004-04-22 Hamamatsu Photonics K.K. Photo-detection device and manufacturing method thereof
US7545015B2 (en) 2002-10-10 2009-06-09 Hamamatsu Photonics K.K. Photo-detection device and manufacturing method thereof
EP2234151A1 (en) * 2009-03-24 2010-09-29 Sony Corporation Semiconductor device

Also Published As

Publication number Publication date
JP3167194B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
US5515683A (en) Thermoelectric heating or cooling device
JP3180701B2 (en) Semiconductor laser device
JP3040356B2 (en) Infrared solid-state imaging device
JP2010500734A5 (en)
JPS61189657A (en) Semiconductor element temperature controller
JPH06120381A (en) Solid image pickup device
US11011558B2 (en) Energy ray detector, detection apparatus, and equipment
JP2014036041A (en) Imaging module
JP2814987B2 (en) Semiconductor laser module
JP4253557B2 (en) Imaging device
JP3121424B2 (en) Semiconductor photodetector
JP2631121B2 (en) Laser melting recrystallization method of semiconductor thin film
JPH06233311A (en) Heat radiation structure of solid state image pickup element
JPH07147462A (en) Semiconductor laser device
US9397134B1 (en) Methods and devices configured to provide selective heat transfer of an integrated circuit
JP3657701B2 (en) Photodetector
JPH09106966A (en) Freezing chuck table
US6236045B1 (en) Infrared quantum structure imaging device working at ambient temperature
Possin et al. MOSFET's fabricated in laser-recrystallized Silicon on Quartz using selectively absorbing dielectrical layers
JP2540956B2 (en) Semiconductor device
JP2678765B2 (en) Electronic cooler
KR100207370B1 (en) Cooling sytstem for lightpath modulation device used in optical projection system
JP2005012003A (en) Crystalline semiconductor film and method for manufacturing the same
JPH0837612A (en) Image pickup device
JPS6331278A (en) Solid-state image pickup device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees