JPH06114863A - 繊維強化樹脂製歯車の製造方法 - Google Patents

繊維強化樹脂製歯車の製造方法

Info

Publication number
JPH06114863A
JPH06114863A JP26355492A JP26355492A JPH06114863A JP H06114863 A JPH06114863 A JP H06114863A JP 26355492 A JP26355492 A JP 26355492A JP 26355492 A JP26355492 A JP 26355492A JP H06114863 A JPH06114863 A JP H06114863A
Authority
JP
Japan
Prior art keywords
gear
laminated
fiber
laminated plate
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26355492A
Other languages
English (en)
Inventor
Keiichi Haraguchi
慶一 原口
Minoru Adachi
稔 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A C M KK
Asahi Chemical Industry Co Ltd
Original Assignee
A C M KK
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A C M KK, Asahi Chemical Industry Co Ltd filed Critical A C M KK
Priority to JP26355492A priority Critical patent/JPH06114863A/ja
Publication of JPH06114863A publication Critical patent/JPH06114863A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Gears, Cams (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

(57)【要約】 【目的】 生産性、作業性に優れた高物性且つ寸法精度
の良好な長繊維強化熱可塑性樹脂製の歯車の製造方法を
提供すること。 【構成】 強化用長繊維と熱可塑性樹脂プリプレグの有
角度積層板を歯車の形状に打ち抜くか、又は打抜いた積
層板を金型に装填して加熱圧縮成形する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、一般産業機械、電子・
電機機器、自動車機器、スポーツレジャー機器分野など
に広く使用される長繊維強化熱可塑性樹脂製の歯車の製
造方法に関するものである。
【0002】
【従来の技術】軽量化、耐腐食性、騒音防止性、振動防
止性、自己潤滑性などの点で金属製の歯車の欠点をカバ
ーすることができる熱可塑性樹脂歯車の製作がなされて
きた。しかしながら、熱可塑性樹脂製の歯車は、射出成
形で効率的に安価に製造できる特徴を持っている反面、
強度などの機械的性質が劣っているために高負荷がかか
る部分の歯車としての使用には難点があった。
【0003】その欠点を補うために、強化用繊維を短繊
維の形態で熱可塑性樹脂に練り込み、射出成形、押し出
し成形などの方法で成形することが行われているが、未
だ強度は不十分で且つ成形品中の強化用短繊維の配向や
それに伴う樹脂の収縮の異方性を制御することが難しい
ことから、得られる歯車の寸法精度が劣り、精密歯車と
しての使用には制限があった。
【0004】そこで、強化用繊維を長繊維の形態で使用
することが提案されている。例えば特開昭54−364
3号公報には炭素繊維強化熱硬化性樹脂から製造された
歯車が提示されている。この歯車は、高い強度を有する
ことから、高負荷がかかる部分の歯車として使用が可能
になったが、熱硬化性樹脂は、靭性が劣るために使用中
に歯車の歯が欠けやすい欠点があった。
【0005】強度及び寸法精度に優れた繊維強化樹脂製
の歯車の製造方法としては、例えば特開昭61−181
634号公報では、強化用長繊維に予め熱硬化性樹脂を
含浸させたプリプレグを歯車の形状に打ち抜いて金型に
装填して加熱圧縮成形する方法が開示されているが、こ
の方法は一枚一枚のプリプレグを打抜いて金型に積層す
るために手間がかかり、また樹脂の反応に長時間必要な
ため生産効率に劣る欠点があった。またその他の歯車の
製造方法としては、一旦強化用繊維間に樹脂が含浸した
必要な厚みの積層板を成形しておいてから積層板を歯車
の形状にプレスで打ち抜き加工する方法があるが、熱硬
化性樹脂の場合は、靭性が劣るために打ち抜き時の衝撃
力で積層板にクラックが入ったり、欠けたりする欠点が
あった。また別の製造方法として、積層板を機械加工に
よって歯車の形状に切削する方法もあるが、この方法は
加工に時間がかかるとともに寸法精度を確保しにくい欠
点があった。
【0006】
【発明が解決しようとする課題】本発明は、こうした実
情の下に生産性、作業性に優れた、高物性で且つ寸法精
度の良好な長繊維強化熱可塑性樹脂製歯車の製造方法を
提供するものである。
【0007】
【課題を解決するための手段】本発明者らは、複雑な形
状を成形加工するのに極めて効率的な打抜き加工方法に
注目して研究を重ねた結果、次のような歯車の製造方法
を見出した。
【0008】即ち本発明は、長繊維強化熱可塑性樹脂よ
りなる歯車の製造法において、強化用長繊維と熱可塑性
樹脂からなる有角度積層板を歯車の形状に打ち抜くか、
又は、打ち抜いた有角度積層板を金型に装填して加熱圧
縮成形することを特徴とする繊維強化樹脂製歯車の製造
方法である。
【0009】本発明でいう強化用長繊維と熱可塑性樹脂
からなる有角度積層板とは、強化用長繊維と熱可塑性樹
脂が一体化した板状の成形体であって、該強化用長繊維
の配列方向を各層間で角度を有するように偏位させ、積
層板の物性が疑似等方性となるように形成したものを言
い、このような有角度積層板の成形体は例えば、強化用
長繊維をその配列方向を一方向に引き揃えたり、または
織物や編物に編織したものに熱可塑性樹脂を含ませたプ
リプレグを積層したのち、プリプレグを加熱して熱可塑
性樹脂を溶融して強化用長繊維の繊維間に樹脂を加圧、
真空などの手段により含浸させた後樹脂を冷却・固化さ
せて得ることができる。あるいは熱可塑性樹脂繊維の抄
造シートと配向又は編織した強化用長繊維との複合シー
トを形成し、これを積層・成形して得ることができる。
【0010】板状の有角度積層板の具体的な製造方法と
しては、強化用長繊維に溶融した熱可塑性樹脂を含浸
し、冷却・固化したシート状のソリッドプリプレグや強
化用長繊維に熱可塑性樹脂の繊維や粉末を種々の方法で
混合した柔軟性のあるシート状のフレキシブルプリプレ
グなどを強化用長繊維の配列方向を、積層板の力学的物
性が疑似等方性になり、且つ積層板にソリが発生しない
ようにシンメトリックに積層してからプレス成形法やス
タンピング成形法、オートクレーブ成形法、真空バッグ
成形法などの成形法で製造する方法などがあるが特に限
定されるものではない。
【0011】本発明の歯車の製造方法は、マトリクス樹
脂として靭性の低い熱硬化性樹脂の代りに靭性の高い熱
可塑性樹脂を用いて、上記の如く予め強化用長繊維と熱
可塑性樹脂からなる板状の有角度積層板を成形しておい
てからそれをプレスなどの方法で歯車の形状に打ち抜き
加工する方法のため、打抜き加工に際して積層板に加わ
る剪断衝撃力により打ち抜き部分が欠けたり、積層プラ
イ間に剥離やクラックが発生したりすることなく、極め
て効率的に歯車を製造することができる方法である。
【0012】また本発明の方法によって得られる歯車
は、強化用長繊維が配列した有角度積層板を打ち抜き加
工して得られているため、歯車の歯先まで強化用長繊維
が行き渡って充填されているため機械的強度(特に歯
先、歯元強度)と歯車の径方向の熱及び吸湿の寸法安定
性に優れたものである。
【0013】積層板の厚みは、必要とする歯車の厚みに
よって、また、積層板の種類(強化用長繊維/熱可塑性
樹脂の組み合わせの種類や強化用繊維の含有率など)な
どに影響される打ち抜き加工性などによって変わるが、
厚みがあまり厚くなると打ち抜きが困難になるため一般
的には、0.5〜5mmの厚みの積層板が用いられる。
【0014】それ故、歯車の厚みが、積層板を打ち抜け
る範囲の厚みである場合は、それと同じ厚みの積層板を
歯車の形状に打ち抜くことによって直接歯車を得ること
ができるが、他の方法として歯車の所定の厚みより薄い
積層板を打ち抜いてその複数数枚を歯車の所定の厚みに
なるように金型に積層してこれを加熱圧縮成形して積層
板を一体化することにより任意の厚みの歯車を製造する
ことができる。
【0015】歯車形状に打ち抜いた有角度積層板を金型
に積層して成形一体化する方法としては、有角度積層板
を目的とする歯車の外寸法より若干小さめの外周サイズ
の歯車形状に打ち抜いて、それらを目的とする歯車の外
寸法と同じ寸法を有する金型キャビティに必要枚数積層
して加熱加圧することにより有角度積層板を構成する熱
可塑性樹脂を強化用繊維と共に溶融流動させて積層体と
金型の間に生じた空間を充填するとともに積層した有角
度積層板同志を一体化させ、その後、金型を冷却して樹
脂を冷却・固化する成形方法、又は上記の歯車形状に打
ち抜いた多方向積層板を必要枚数積層して、それを熱風
加熱装置や遠赤外線加熱装置などで熱可塑性樹脂の溶融
温度以上の温度に予熱してから、熱可塑性樹脂の溶融温
度以下の温度に保持した上記の寸法を有する金型に素早
く移して加圧することにより樹脂と強化繊維を流動さ
せ、積層体と金型の間の空間を充填するとともに有角度
積層板同志を一体化させる謂ゆるスタンピング成形法な
どが用いられる。
【0016】本発明の積層板を構成する強化用長繊維と
しては、炭素繊維、ガラス繊維、アラミド繊維、炭化ケ
イソ繊維、アルミナ繊維などの高強度、高弾性率繊維が
単独又は組み合わせて用いられるが、この中で得られる
ギアの強度の強化効率及び寸法安定性、耐蝕性、摺動
性、帯電防止性、軽量化などの機能を付与する面からは
炭素繊維が最も好ましい。
【0017】マトリクスである熱可塑性樹脂の種類は要
求される歯車の機能から選定されるが、一般的にはナイ
ロン、ポリエステル、ポリプロピレン、ポリカーボネー
ト、ABS、ポリフェニレンオキサイド、ポリフェニレ
ンサルファイドやそれらのポリマーアロイが、特に強
度、耐熱性が要求される場合は、ポリエーテルケトン、
ポリエーテルエーテルケトン、ポリエーテルイミド、ポ
リエーテルサルフォンなどが用いられる。
【0018】下記の式で表わされる積層板中で強化用繊
維が占める体積含有率(以下Vfと略す)は、 Vf(%)={(強化用繊維体積)/(熱可塑性樹脂の
体積+強化用繊維の体積)}×100 必要とされる歯車の機械的特性などによって決定される
が、一般的には、30〜70%の範囲が好ましく、さら
に好ましくは40〜60%の範囲である。
【0019】有角度積層板の打ち抜き加工は、有角度積
層板を所定の歯車形状をした打ち抜きポンチとダイスの
間に配置固定して、プレスなどによってポンチ又はダイ
スを上昇又は下降させてそのクリアランス部分で有角度
積層板に剪断力を加える方法によって行われるが、この
時ポンチとダイスの打ち抜きクリアランスが適切である
ことが必要である。これは大きなクリアランスで打ち抜
いた場合切り口面が平滑面になり難いためである。適切
な打ち抜きクリアランスは、積層板の厚み及び種類(強
化用長繊維/熱可塑性樹脂の組み合わせの種類や強化用
繊維のVfなど)などにより変わるが一般的には、0.
5mm以下である。
【0020】本発明の製造方法により製造する歯車は、
例えば平歯車、円筒歯車などが代表的な物であり、これ
らの歯車は、一般産業機械分野、電子・電機機器分野、
自動車機器分野、スポーツレジャー分野、その他の雑貨
などの各分野の部品として広く利用ができる。
【0021】
【実施例】以下実施例によって本発明を説明する。
【0022】参考例 ナイロン−6重合体を溶融紡糸して長繊維束を得た。こ
の長繊維束を多数本集めて、ギロチン式カッターで5m
mの長さに切断してナイロン短繊維を得た。次いで、こ
の短繊維を水中に投入して水スラリー液として金網上で
抄造して目付け48g/m2の抄造シートを得た。
【0023】次に、ポリアクリロニトリル系炭素繊維
(新旭化成カーボンファイバー(株)社製、ハイカーボ
ロン12Kf)96本をクリルから連続的に引きだし、
炭素繊維が一方向に引き揃った幅50cmで目付け15
0g/m2の集合体とし、その上面と下面に上記の目付
けが48g/m2の抄造シートを配置して、炭素繊維集
合体をサンドウィッチ状にはさんだ。このサンドウィッ
チ状シートを4m/分の速度で移動する金網ネット上に
のせてシートの表と裏側から150cpmで揺動する直
径が0.2mmφの250個のノズルを通して高圧水流
をシートに垂直に当てナイロン−6短繊維が炭素繊維間
に入り込んで交絡一体化した総目付けが246g/m2
で炭素繊維のVfが50%の複合シートを得た。この様
にしてえられた複合シートを110℃の熱風乾燥機で2
時間乾燥させた。
【0024】実施例1 参考例の複合シートを炭素繊維の配列角度が0°,30
°,30°,及び90°になるように裁断して下記の積
層構成及びプレス成形条件で板厚2mmの有角度積層板
を成形した。この積層板の断面を倍率200倍の光学顕
微鏡で観察したところ炭素繊維は均一に分散しており且
つ樹脂の未含浸部分や空洞は全く観察されなかった。
【0025】積層構成;(0/90/30/−60/6
0/−30)s…計12層 成形条件;50cm各の平板成形用金型(マッチドダ
イ)のキャビティに、上記の12枚の複合シートをセッ
トして、ホットプレスの熱板の間にはさみ、複合シート
の単位面積当たり10kg/cm2の圧力を加えて25
0℃迄昇温した後、250℃で10分保持した。その
後、圧力を加えたままで50℃まで冷却して、金型から
成形された板を取り出した。
【0026】ついで、この有角度積層板を図1の形状の
歯数18、歯先円直径30mm、モジュール1.5mm
で中心に軸受け用の穴を有する歯車の形状にプレスで打
ち抜いた。この時、打ち抜きポンチとダイスのクリアラ
ンスは、0.1mmであった。この様にして得られた平
歯車の打ち抜き面は平滑で欠けや層間クラックは認めら
れなかった。
【0027】又、これとは別に、上記の有角度積層板を
上記の歯車の歯先円直径より内のりが1mm小さくなる
(直径28mm)ような歯車形状に打ち抜いた。この歯
車形状に打ち抜いた積層板を3層重ねてずれないように
注意して赤外線加熱炉で250℃の温度になるように予
熱した。次いでこの予熱した積層板を加熱炉より取りだ
して、温度を180℃に保持した歯数18、歯先円直径
30mmの歯車の外寸法と同じ内寸法(外径30mm)
を有する金型のキャビティに素早く移して積層板の単位
面積当たり150kg/cm2の圧力でプレスして1分
加圧して賦形及び冷却を行ったのち金型より取り出し
た。この成形された歯車の厚みは5.9mmで積層した
3層の有角度積層板は完全に一体化して、且つ加圧前に
積層体と金型の間に生じていた空間も完全に充填されて
おり歯車の外径は金型の内径と殆ど一致していた。又歯
車の歯先の断面を観察したところ空洞は全く観察されず
繊維が均一に充填されたものであった。
【0028】比較例1 炭素繊維を一方向に引き揃えた目付け150g/m2
シートにエポキシ樹脂を含浸させた、炭素繊維のVfが
50%のプリプレグ(新旭化成カーボンファイバー
(株)社製、ハイカーボロンプリプレグ)を、実施例1
と同じ積層構成で積層し、オートクレープにて130℃
で2時間硬化させて、厚み2mmの有角度積層板を成形
した。この板を、実施例1と同じ打抜き条件で歯車の形
状に打抜いたところ打ち抜き面のエッジ部分が欠けて且
つプリプレグの積層面に層間剥離が観察され、ギアとし
ての使用は困難と判った。
【0029】実施例2および比較例2 炭素繊維の代りに、ガラス繊維を用いて参考例と同様に
してガラス繊維の目付が215g/m2(総目付け31
1g/m2)の複合シートを得た。次いで、この複合シ
ートを実施例1と同じ積層構成とプレス成形条件で板厚
2mmの有角積層板を成形した。この積層板を実施例1
と同様に直径が28mmで中心に軸受け用の直径5mm
の穴を有する歯車形状に打ち抜いた。この歯車形状の打
ち抜き面は滑らかで欠けやクラックは認められなかっ
た。この打ち抜いた積層板を3枚重ねてずれないように
注意して赤外線加熱炉で250℃に予熱した。次に予熱
した積層板を図1の形状の歯先円直径a,軸受け穴直径
bを有する歯車を成形する金型に移して表1の条件でプ
レスにて圧縮して歯車を成形した。
【0030】このようにして得られた歯車を観察したと
ころ、積層した3層の有角度積層板は一体化しており且
つ歯車の歯先までガラス繊維が均一に充填されていた。
【0031】比較のためにSMC材料を歯車形状に打ち
抜いて金型に装填しようとしたが粘着してうまく打ち抜
けないため、ナイフで実施例2と同じ歯車形状に切り出
して金型に装填し表1の条件にて圧縮成形して歯車を得
た。また、もう一つの比較のためのBMC材料について
は実施例2の歯車と同じ重量になるように材料を計量し
て同じ金型に装填して表1の条件にて圧縮成形して歯車
を得た。
【0032】
【表1】
【0033】SMC材料;ガラス繊維、不飽和ポリエス
テル混合シート材料 (日本触媒製;エポラックマット3100CG) BMC材料;ガラス繊維、不飽和ポリエステル混合体 (日本触媒製;エポラック プレミックス PT272
2) このようにして得た3種類の歯車について刃先円直径、
軸受け用穴の直径の寸法及びこの円の同心度を(株)ミ
ツトヨ製の3次元測定器を使用して測定した。測定は歯
車の中心を通って対向する2つの歯先の距離を刃先円直
径aとして測定点数9点を、また歯先を結ぶ直線が軸受
け穴を横切る2点間の距離を軸受け穴直径bとして刃先
円直径aに対応して同じく測定点数9点を測定した。
【0034】その結果を表2に示した。
【0035】
【表2】
【0036】金型の詳細寸法;a=30.003mmφ
a,bの同心度*=0.001mm b=7.005mmφ *同心度とはa,b各中心間のずれを言う 本発明の方法によって得られた歯車の成形収縮率は小さ
く寸法の精度が良好なことが分かる。
【0037】比較例3 参考例において、炭素繊維の変わりにガラス繊維を用い
て、ガラス繊維を20mmの長さにギロチン式カッター
で切断した。このガラス繊維と、5mmの長さのナイロ
ン−6短繊維とを水中投入して分散させて混合スラリー
液とし、金網上で抄造して短繊維状のガラス繊維を強化
用繊維とする総目付け量が311g/m2の抄造シート
を得た。ガラス繊維はこの抄造シート中で均一に分散し
ており且つ繊維はほぼランダム方向に配列していた。
尚、この場合抄造シート中のガラス繊維のVfを30%
以上にすると、実施例2と同じ積層枚数と成形条件で積
層板を成形した場合積層板中に空洞が観察されたので、
ガラス繊維のVfを25%とした抄造シートを作成して
それを積層して実施例2と同じ成形条件で成形して厚み
約2mmの積層板を得た。
【0038】このようにして得られた積層板を実施例2
と同様の方法で歯車に成形しその寸法精度を実施例2と
同様にして測定した。
【0039】その結果を表3に示した。
【0040】
【表3】
【0041】比較例の方法によって得られた歯車は、実
施例2の歯車と比較して成形収縮率が大きく且つ寸法の
精度が悪いことが分かる。
【0042】比較例4 比較例3の強化繊維の種類を炭素繊維に変えた以外は同
様にして総目付けが246g/m2の短繊維状の炭素繊
維を強化繊維とする抄造シートを得た。
【0043】炭素繊維はこの抄造シート中で均一に分散
しており且つ繊維はほぼランダム方向に配列していた。
尚、この場合比較例3と同様に抄造シート中の炭素繊維
のVfを30%以上にすると、実施例1と同じ積層枚数
と成形条件で積層板を成形した場合積層板中に空洞が観
察されたので、炭素繊維のVfを25%とした抄造シー
トを作成してそれを積層して実施例1と同じ成形条件で
成形して厚み約2mmの積層板を得た。
【0044】このようにして、得られた積層板を、19
6φの円盤状に打ち抜いて、2層重ねて実施例1と同様
の条件で予熱して180℃に保持した200φの金型に
装填して円盤状の厚み約4mmで200φの円盤状の積
層板を得た。この様にして得られた積層板の断面を観察
したところ、積層した2層の積層板は完全に一体化して
空洞は観察されなかった。得られた積層体を任意の方向
に長さ130mm、幅13mmの短冊状の板に切り出
し、L/d=32でASTEM−D790に準じて曲げ
強度を測定した。
【0045】その結果を表4に示した。
【0046】実施例3 実施例1で得られた積層板を196φの円盤状に打ち抜
き、2層重ねて実施例1と同様の条件で予熱して180
℃に保持した200φの金型に装填して円盤状の厚み約
4mmで200φの円盤状の積層板を得た。
【0047】この様にして得られた積層板の断面を観察
したところ、積層した2層の積層板は完全に一体化して
空洞は観察されなかった。得られた積層板を積層板の表
層の炭素繊維の0°方向の配列方向と平行方向に比較例
3と同じ寸法の短冊状の板を切り出し、比較例3と同様
に曲げ強度を測定した。
【0048】その結果を表4に示した。
【0049】
【表4】
【0050】
【発明の効果】本発明の繊維強化樹脂製歯車の製造方法
によれば、高物性で寸法精度の良好な歯車を効率的に生
産できる。
【図面の簡単な説明】
【図1】本発明の実施例で製造した平歯車の概念図であ
る。
【符号の説明】
ア 強化用繊維の90度方向の配向方向を表わす。 イ 強化用繊維の60度方向の配向方向を表わす。 ウ 強化用繊維の30度方向の配向方向を表わす。 エ 強化用繊維の0度方向の配向方向を表わす。 a 歯車の刃先円直径 b 歯車の軸受け穴直径

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 長繊維強化熱可塑性樹脂よりなる歯車の
    製造法において、強化用長繊維と熱可塑性樹脂からなる
    有角度積層板を歯車の形状に打ち抜くか、または打ち抜
    いた有角度積層板を金型に装填して加熱圧縮成形するこ
    とを特徴とする繊維強化樹脂製歯車の製造方法。
JP26355492A 1992-10-01 1992-10-01 繊維強化樹脂製歯車の製造方法 Pending JPH06114863A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26355492A JPH06114863A (ja) 1992-10-01 1992-10-01 繊維強化樹脂製歯車の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26355492A JPH06114863A (ja) 1992-10-01 1992-10-01 繊維強化樹脂製歯車の製造方法

Publications (1)

Publication Number Publication Date
JPH06114863A true JPH06114863A (ja) 1994-04-26

Family

ID=17391165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26355492A Pending JPH06114863A (ja) 1992-10-01 1992-10-01 繊維強化樹脂製歯車の製造方法

Country Status (1)

Country Link
JP (1) JPH06114863A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179751B2 (en) 2004-12-02 2012-05-15 Koninklijke Philips Electronics N.V. Method and device for sensitivity compensation
DE102017008913A1 (de) 2016-10-11 2018-04-12 Tatsuru KIOKA Stanzvorrichtung zum Stanzen einer Fasermatte zur Verwendung für ein Kunststoffzahnrad, Verfahren zum Herstellen eines zahnradförmigen Schneiders zur Verwendung für die Stanzvorrichtung, Verfahren zum Herstellen eines Schneidwerkzeuges und Verfahren zum Stanzen einer Fasermatte

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179751B2 (en) 2004-12-02 2012-05-15 Koninklijke Philips Electronics N.V. Method and device for sensitivity compensation
DE102017008913A1 (de) 2016-10-11 2018-04-12 Tatsuru KIOKA Stanzvorrichtung zum Stanzen einer Fasermatte zur Verwendung für ein Kunststoffzahnrad, Verfahren zum Herstellen eines zahnradförmigen Schneiders zur Verwendung für die Stanzvorrichtung, Verfahren zum Herstellen eines Schneidwerkzeuges und Verfahren zum Stanzen einer Fasermatte
US10751960B2 (en) 2016-10-11 2020-08-25 Tatsuru KIOKA Die-cutting device for die-cutting fiber mat to be used for plastic gear, method for producing gear-shaped cutter to be used for this die-cutting device, method for producing cutting tool, and method for die-cutting fiber mat

Similar Documents

Publication Publication Date Title
JP4789940B2 (ja) 等方性の繊維強化熱可塑性樹脂シートとその製造方法並びに成形板
JP5644496B2 (ja) 繊維強化熱可塑性樹脂成形体
JP6965957B2 (ja) 積層基材およびその製造方法並びに炭素繊維強化樹脂基材
Sharba et al. Tensile and compressive properties of woven kenaf/glass sandwich hybrid composites
JP6085798B2 (ja) 3次元形状成形用複合材及びその製造方法
JP2013208725A (ja) 炭素繊維強化熱可塑性樹脂積層体及びその製造法
JPH0579226B2 (ja)
JPH01297238A (ja) 可撓性の薄層積層型プレプレグから形成された繊維強化熱可塑性樹脂複合体
JPH085079B2 (ja) 繊維強化熱可塑性プラスチツクの製造法
JP5851767B2 (ja) 繊維強化基材
DE102013219765A1 (de) Wärmeleitfähiger, faserverstärkter Kunststoff für Elektromotorengehäuse sowie Verfahren zur Herstellung und Verwendung dazu
CN106671538B (zh) 具有半封闭蜂窝夹层结构的热塑性复合材料及其制备方法
JPS5996951A (ja) 予め製造された板状の複合材料
JPH06114863A (ja) 繊維強化樹脂製歯車の製造方法
CN113728038A (zh) 纤维增强复合材料成型品的制造方法、增强纤维基材及纤维增强复合材料成型品
JPWO2019131125A1 (ja) 繊維強化熱可塑性樹脂成形材料
JP7039823B2 (ja) 炭素繊維強化プラスチック積層体およびその製造方法
CN117355414A (zh) 压制用层叠体及压制后层叠体
JP2013203836A (ja) 炭素繊維複合成形体、炭素繊維サンドイッチ材、及びその炭素繊維複合成形体を含む自動車用フロアパン
JP2017205977A (ja) プリフォーム、該プリフォームの製造方法、及び上記プリフォームを用いた繊維強化プラスチック。
JPH05269909A (ja) 繊維強化樹脂成形品
JP2020199643A (ja) 炭素繊維強化プラスチック板および炭素繊維強化プラスチック板の製造方法
EP4316801A1 (en) Prepreg laminate, composite structure, and method for manufacturing composite structure
JPS61181634A (ja) Frp歯車の製造法
JP2016087907A (ja) 繊維強化プラスチックの製造方法