JPH06112302A - Plasma processing apparatus and its handling method - Google Patents

Plasma processing apparatus and its handling method

Info

Publication number
JPH06112302A
JPH06112302A JP25627292A JP25627292A JPH06112302A JP H06112302 A JPH06112302 A JP H06112302A JP 25627292 A JP25627292 A JP 25627292A JP 25627292 A JP25627292 A JP 25627292A JP H06112302 A JPH06112302 A JP H06112302A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
sample substrate
plasma processing
conductor
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25627292A
Other languages
Japanese (ja)
Inventor
Toshihisa Nozawa
俊久 野沢
Takashi Kinoshita
隆 木下
Tetsuya Nishizuka
哲也 西塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25627292A priority Critical patent/JPH06112302A/en
Publication of JPH06112302A publication Critical patent/JPH06112302A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To control temperature with high precision and uniformity by providing a through hole in the depth direction and a groove for distributing a gas for heat conduction in an electrostatic chuck which holds a sample substrate on a table. CONSTITUTION:An electrostatic chuck 5 of an apparatus A for plasma processing of a sample substrate 3 in a vacuum chamber 6, comprises a conductor 1 and a dielectric 2 containing the conductor therein. Static electricity generated in the dielectric 2 when the conductor is impressed with a voltage, is utilized to hold a sample substrate 3 on a mount table 4 in a manner of freely attaching or removing it. The center of the electrostatic chuck 5 is arranged in a similar figure as the sample substrate 3, and an appropriate number of through holes 8, outermost periphery of which is 5 to 10mm less than the periphery of the electrostatic chuck 5, are formed in the depth direction. Further, a groove 7 distributing a gas for heat conduction is formed at a joint with the electrostatic chuck 5 of the mount table 4. Temperature control of the sample substrate 3 can be performed with high precision and g processing with good energy efficiency can be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,プラズマ処理装置及び
その取扱方法に係り,詳しくは真空容器内にて処理ガス
をプラズマ化し,試料基板のエッチング,CVD,スパ
ッタリング等のプラズマ処理を行うプラズマ処理装置及
びその取扱方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus and a method of handling the same, and more particularly to a plasma processing in which a processing gas is turned into a plasma in a vacuum container to perform plasma processing such as etching, CVD and sputtering of a sample substrate. The present invention relates to a device and its handling method.

【0002】[0002]

【従来の技術】図7は従来のプラズマ処理装置の第1例
A1における静電チャック周りの概略構成を示す模式
図,図8は従来のプラズマ処理装置の第2例A2におけ
る静電チャック周りの概略構成を示す模式図,図9は従
来のプラズマ処理装置の取扱方法の一例におけるシーケ
ンスを示す説明図である。プラズマ処理装置は真空中で
処理を行なうために,通常,試料基板とその載置台との
間も真空である。このため,試料基板と載置台との間の
熱伝導は非常に小さく,載置台を冷却していてもプラズ
マ処理中にイオンの照射により試料基板が加熱されて試
料基板の温度が上昇してしまい,エッチングでは形状
が,CVDやスパッタリングでは膜質が悪化するという
問題があった。従来,これらの問題を解決するため,載
置台を一定温度になるように温度制御し,載置台上に置
いた静電チャックを用いて試料基板を静電気的に吸着す
ることにより試料基板の温度制御を行っていた(特公昭
57−44747)。しかし,単に静電チャックを用い
て試料基板を吸着するだけでは,試料基板から静電チャ
ックとの間の熱コンダクタンスが不十分であり,試料基
板の温度を効果的に制御することができない。このた
め,試料基板と静電チャックとの間に熱伝導用ガスを導
入して,このガスを熱伝導の媒体として熱伝導をさらに
向上させる必要があった。そして,そのガスは試料基板
と静電チャックとの間に均一に充満させる必要があっ
た。そこで,図7に示す装置A1のようにガスを試料基
板1と静電チャック2との間に導入するために,静電チ
ャック2の中にガスを分配する孔3を設けたり(特開昭
63−300517),あるいは図8に示す装置A2の
ように静電チャック2′の表面にガスを分配する溝3′
を形成したりしていた(特開平2−119131)。一
方,プラズマ処理装置の取扱方法としては,図9に示す
ように試料基板を載置台に載せ,まずプラズマを発生
し,その後で静電チャックに電圧を印加し,プラズマ処
理装置での処理を終了する前に印加電圧を0にしてプラ
ズマ処理を終了していた(特開平3−236255)。
因に,静電チャックには電圧をかける導電体と吸着する
試料基板との間に絶縁体をはさんでいるが,この絶縁体
は誘電体でもあり,その誘電率が大きいものを使用すれ
ば,それに従って大きな吸着力が得られる。これは誘電
体に電圧をかけたときその内部で分極をおこし,誘電率
が大きいものほどこの分極の程度が大きくなるからであ
る。一般に,この分極にはヒステリシスがあるため,一
旦分極した誘電体は印加していた電圧を0にしても分極
は完全に0にならない。即ち,印加していた電圧を0に
しても吸着力が0にはならない。そのため,試料基板を
静電チャックから取り外すときに残留吸着力により試料
基板がすぐに離れず,はねたり割れたりすることがあっ
た。また,静電チャックの吸着力の再現性が悪くなり,
静電チャックを用いたプラズマ処理装置における温度制
御性の再現性が悪くなるため,プラズマ処理の結果が試
料基板ごと変わってしまうという問題があった。そこ
で,試料基板を連続処理する場合は,静電チャックに残
留した電荷の除去を確実にするため,試料基板を取り出
した後,静電チャックの表面をプラズマにさらし,静電
チャックの表面をスパッタすることにより電荷を除去し
ていた(特開平4−99024)。
2. Description of the Related Art FIG. 7 is a schematic diagram showing a schematic structure around an electrostatic chuck in a first example A1 of a conventional plasma processing apparatus, and FIG. 8 is a schematic view around an electrostatic chuck in a second example A2 of a conventional plasma processing apparatus. FIG. 9 is a schematic diagram showing a schematic configuration, and FIG. 9 is an explanatory diagram showing a sequence in an example of a handling method of a conventional plasma processing apparatus. Since the plasma processing apparatus performs the processing in a vacuum, the space between the sample substrate and its mounting table is usually a vacuum. Therefore, the heat conduction between the sample substrate and the mounting table is very small, and even if the mounting table is cooled, the sample substrate is heated by the irradiation of ions during the plasma processing and the temperature of the sample substrate rises. However, there is a problem that the shape is deteriorated by etching and the film quality is deteriorated by CVD or sputtering. Conventionally, in order to solve these problems, the temperature of the sample base is controlled by controlling the temperature of the mount to a constant temperature and electrostatically adsorbing the sample substrate using an electrostatic chuck placed on the mount. (Japanese Patent Publication No. 57-44747). However, simply adsorbing the sample substrate by using the electrostatic chuck cannot sufficiently control the temperature of the sample substrate because the thermal conductance between the sample substrate and the electrostatic chuck is insufficient. Therefore, it is necessary to introduce a heat conduction gas between the sample substrate and the electrostatic chuck and further improve the heat conduction by using this gas as a heat conduction medium. Then, the gas had to be uniformly filled between the sample substrate and the electrostatic chuck. Therefore, in order to introduce the gas between the sample substrate 1 and the electrostatic chuck 2, as in the apparatus A1 shown in FIG. 63-300517), or a groove 3'for distributing gas to the surface of the electrostatic chuck 2'as in the apparatus A2 shown in FIG.
Was formed (Japanese Patent Laid-Open No. 2-119131). On the other hand, as a handling method of the plasma processing apparatus, as shown in FIG. 9, a sample substrate is placed on a mounting table, plasma is first generated, and then a voltage is applied to the electrostatic chuck to end the processing in the plasma processing apparatus. Before that, the applied voltage was set to 0 and the plasma treatment was completed (Japanese Patent Laid-Open No. 3-236255).
By the way, the electrostatic chuck has an insulator sandwiched between the conductor to which a voltage is applied and the sample substrate to be attracted. This insulator is also a dielectric, and if one with a large dielectric constant is used, , Accordingly, a large adsorption force is obtained. This is because when a voltage is applied to the dielectric, polarization occurs inside the dielectric, and the higher the permittivity, the greater the degree of this polarization. In general, since this polarization has hysteresis, the polarization does not completely become zero even if the voltage applied to the once-polarized dielectric is zero. That is, even if the applied voltage is set to 0, the attraction force does not become 0. Therefore, when removing the sample substrate from the electrostatic chuck, the sample substrate may not be immediately separated due to the residual suction force, and may be splashed or broken. In addition, the reproducibility of the attraction force of the electrostatic chuck deteriorates,
Since the reproducibility of the temperature controllability in the plasma processing apparatus using the electrostatic chuck is deteriorated, there is a problem that the result of the plasma processing changes for each sample substrate. Therefore, when the sample substrate is continuously processed, in order to ensure removal of the electric charge remaining on the electrostatic chuck, the surface of the electrostatic chuck is exposed to plasma after the sample substrate is taken out, and the surface of the electrostatic chuck is sputtered. By doing so, the charge was removed (JP-A-4-99024).

【0003】[0003]

【発明が解決しようとする課題】しかし,上記したよう
な従来のプラズマ処理装置では以下のような問題があっ
た。 (1)特開昭63−300517で開示されたプラズマ
処理装置A1の静電チャック2では,図7に示すように
静電チャック自体の中に分配用の孔3を形成するために
静電チャック2の厚さを厚くする必要がある。しかし,
静電チャック2は誘電体を用いて作製されているため,
静電チャック2の厚さを厚くすると,高周波(RF)を
印加したり電気的にアースとして使用する載置台4と,
試料基板1との間に形成されるコンデンサの容量が大幅
に低下する。従って,RFを印加した場合には,試料基
板1に印加されるRFパワーのロスが大きくなり,他の
場所にRFパワーが集中して異常放電を起こすことがあ
る。また,載置台4をアースとして使用する場合も同様
に試料基板1にプラズマからのパワーが入らず,他の場
所に行ってしまうという問題があった。 (2)特開平2−119131で開示されたプラズマ処
理装置A2の静電チャック2′では,図8に示すように
ガスの分配を静電チャック2′の試料基板1′側に溝
3′を形成してガスを分配しているが,このような場合
は静電チャック2′の表面に溝3′を彫ってあるため,
試料基板1′と静電チャック2′の誘電体2a′とが接
触する面積が減って吸着力が低下してしまう。吸着力は
試料基板1′と静電チャック2′との間に充填するガス
圧力と真空容器(不図示)との差圧程度だけでは,実際
に試料基板1′を連続で処理する際には試料基板1′ご
とに吸着力が変化や吸着力の低下がある。このため,吸
着力は充填するガスの圧力に対して数倍のマージンをと
っておく必要がある。そこで,表面に溝3′を彫ってあ
る静電チャック2′では,吸着力を高めるため,より大
きな電圧を印加する必要があった。また,誘電体2aが
接している場所と,接していない場所とではコンデンサ
としての容量が異なるため,試料基板1′中に電位差が
生じてしまい,試料基板1′上の電子デバイスが劣化す
る問題があった。また,上記プラズマ処理装置の取扱方
法についても以下のような問題があった。即ち,特開平
4−99024で開示されたプラズマ処理装置の取扱方
法では,残留した電荷を除去するために静電チャックの
表面をプラズマでスパッタするので,例えば1回の処理
で10Åスパッタするとすると,試料基板を10000
枚処理すれば静電チャックの表面は100000Å(1
0μm)も削り取られることになる。このような場合,
静電チャックの絶縁体の厚さがうすくなることと,表面
が荒れるため吸着力が変化するのと,試料基板と静電チ
ャックとの間に充填しているガスが真空容器にもれる量
が増加するためにプラズマ処理の再現性が悪くなる。ま
た,プラズマ処理終了後に放電をたてるのでそれにかか
る時間の分だけ試料基板を処理するスループットが悪く
なる。更に,スパッタされた静電チャックの中に入って
いた不純物が試料基板を汚染するという問題もあった。
本発明は,このような従来の技術における課題を解決す
るため,プラズマ処理装置及びその取扱方法を改良し,
試料基板の温度を精度良く均一な温度に制御できて,し
かもエネルギ効率及び再現性の良い処理を行い得るプラ
ズマ処理装置及びその取扱方法を提供することを目的と
するものである。
However, the conventional plasma processing apparatus described above has the following problems. (1) In the electrostatic chuck 2 of the plasma processing apparatus A1 disclosed in Japanese Patent Laid-Open No. 63-300517, the electrostatic chuck 2 is formed in order to form the distribution holes 3 in the electrostatic chuck itself as shown in FIG. It is necessary to increase the thickness of 2. However,
Since the electrostatic chuck 2 is made of a dielectric material,
When the thickness of the electrostatic chuck 2 is increased, a mounting table 4 for applying a high frequency (RF) or electrically used as an earth,
The capacitance of the capacitor formed between the sample substrate 1 and the sample substrate 1 is significantly reduced. Therefore, when RF is applied, the loss of the RF power applied to the sample substrate 1 becomes large, and the RF power may be concentrated in other places to cause abnormal discharge. Further, when the mounting table 4 is used as an earth, similarly, there is a problem that power from plasma does not enter the sample substrate 1 and the sample substrate 1 goes to another place. (2) In the electrostatic chuck 2'of the plasma processing apparatus A2 disclosed in Japanese Patent Laid-Open No. 2-119131, as shown in FIG. 8, the gas is distributed by forming the groove 3'on the sample substrate 1'side of the electrostatic chuck 2 '. The gas is formed and distributed, but in such a case, since the groove 3'is carved on the surface of the electrostatic chuck 2 ',
The contact area between the sample substrate 1'and the dielectric 2a 'of the electrostatic chuck 2'is reduced, and the attraction force is reduced. When the sample substrate 1'is actually processed continuously, the suction force is only about the pressure difference between the gas pressure charged between the sample substrate 1'and the electrostatic chuck 2'and the vacuum container (not shown). There is a change in the suction force or a decrease in the suction force for each sample substrate 1 '. For this reason, it is necessary to set a margin for the adsorption force to be several times larger than the pressure of the filling gas. Therefore, in the electrostatic chuck 2'having the groove 3'formed on the surface, it is necessary to apply a larger voltage in order to enhance the attraction force. Further, since the capacitance as a capacitor is different between the place where the dielectric 2a is in contact and the place where the dielectric 2a is not in contact, a potential difference is generated in the sample substrate 1 ', and the electronic device on the sample substrate 1'is deteriorated. was there. Further, the handling method of the plasma processing apparatus has the following problems. That is, in the method of handling the plasma processing apparatus disclosed in Japanese Patent Laid-Open No. 4-99024, the surface of the electrostatic chuck is sputtered with plasma in order to remove the residual charges, so if, for example, 10 Å sputtering is performed in one processing, Sample substrate 10000
The surface of the electrostatic chuck will be 100,000Å (1
0 μm) will also be scraped off. In such cases,
The thickness of the insulator of the electrostatic chuck becomes thin, the suction force changes due to the rough surface, and the amount of gas filled between the sample substrate and the electrostatic chuck leaks into the vacuum container. Because of the increase, the reproducibility of the plasma processing becomes worse. Further, since the discharge is generated after the plasma processing is finished, the throughput for processing the sample substrate is deteriorated by the time required for the discharge. Furthermore, there is a problem that impurities contained in the sputtered electrostatic chuck contaminate the sample substrate.
In order to solve the problems in the conventional art, the present invention improves a plasma processing apparatus and a handling method thereof,
An object of the present invention is to provide a plasma processing apparatus capable of controlling the temperature of a sample substrate to a uniform temperature with high accuracy and capable of performing processing with good energy efficiency and reproducibility, and a handling method thereof.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は,導電体と該導電体を内包する誘電体とによ
り形成され,上記導電体に電圧を印加した時に上記誘電
体に発生する静電気を利用して,上記誘電体上に載置さ
れた試料基板を温度制御された載置台上に着脱自在に保
持する静電チャックを備え,上記静電チャックにより保
持された上記試料基板を真空容器内でプラズマ処理する
プラズマ処理装置において,上記静電チャックに上記導
電体を回避して該静電チャックの厚さ方向の貫通孔を適
宜数形成し,上記貫通孔に熱伝導用ガスを分配する溝を
上記載置台の上記静電チャックとの接合面に形成してな
ることを特徴とするプラズマ処理装置として構成されて
いる。更には,上記静電チャックに形成された貫通孔の
各中心が上記試料基板と相似形状に配設され,その最外
周が上記静電チャックの外周より5mm乃至10mm小
さいプラズマ処理装置である。更には,上記静電チャッ
クの外周が上記試料基板の外周より0mm乃至2mm小
さいプラズマ処理装置である。更には,上記静電チャッ
クの上記試料基板を保持する面の平均表面粗さが0.3
μmより小さいプラズマ処理装置である。更には,上記
載置台の温度制御を該載置台の中心から外周に向けて温
度が徐々に低くなるような制御としたプラズマ処理装置
である。又,導電体と該導電体を内包する誘電体とによ
り形成され,上記導電体に電圧を印加した時に上記誘電
体に発生する静電気を利用して,上記誘電体上に載置さ
れた試料基板を温度制御された載置台上に着脱自在に保
持する静電チャックを備え,上記静電チャックにより保
持された上記試料基板を真空容器内でプラズマ処理する
プラズマ処理装置の取扱方法において,上記試料基板を
上記静電チャック上に載置した後,プラズマを発生し,
上記静電チャックの上記導電体に一旦所定電圧を印加し
た後,逆電圧を印加して該静電チャックに載置された上
記試料基板を吸着し,上記静電チャックにより吸着され
た上記試料基板と該静電チャックとの間に熱伝導用ガス
を充填した後,上記プラズマ処理を行い,上記プラズマ
処理終了後,上記試料基板と上記静電チャックとの間に
充填された上記熱伝導用ガスを排出し,上記静電チャッ
クの上記導電体に印加された電圧を徐々に下げて0とし
た後,該導電体を接地し,上記プラズマの発生を停止し
た後,上記試料基板を上記静電チャックから取り外して
なるプラズマ処理装置の取扱方法である。更には,上記
所定電圧が負電圧であるプラズマ処理装置の取扱方法で
ある。更には,上記所定電圧が正電圧であるプラズマ処
理装置の取扱方法である。
In order to achieve the above object, the present invention comprises a conductor and a dielectric containing the conductor, and is generated in the dielectric when a voltage is applied to the conductor. The electrostatic chuck for detachably holding the sample substrate mounted on the dielectric on the temperature-controlled mounting table by using the static electricity to generate the sample substrate held by the electrostatic chuck. In a plasma processing apparatus for performing plasma processing in a vacuum container, the conductor is avoided in the electrostatic chuck to form an appropriate number of through holes in the thickness direction of the electrostatic chuck, and a gas for heat conduction is provided in the through holes. The plasma processing apparatus is characterized in that a groove for distribution is formed on a joint surface of the mounting table with the electrostatic chuck. Further, in the plasma processing apparatus, each center of the through holes formed in the electrostatic chuck is arranged in a shape similar to the sample substrate, and the outermost circumference thereof is smaller than the outer circumference of the electrostatic chuck by 5 mm to 10 mm. Furthermore, in the plasma processing apparatus, the outer circumference of the electrostatic chuck is 0 mm to 2 mm smaller than the outer circumference of the sample substrate. Furthermore, the average surface roughness of the surface of the electrostatic chuck holding the sample substrate is 0.3.
It is a plasma processing apparatus smaller than μm. Furthermore, the plasma processing apparatus is such that the temperature of the mounting table is controlled such that the temperature gradually decreases from the center of the mounting table toward the outer periphery. A sample substrate, which is formed of a conductor and a dielectric containing the conductor, is placed on the dielectric by using static electricity generated in the dielectric when a voltage is applied to the conductor. A method of handling a plasma processing apparatus, comprising: an electrostatic chuck for detachably holding a substrate on a temperature-controlled mounting table, wherein the sample substrate held by the electrostatic chuck is plasma-processed in a vacuum container. Is placed on the electrostatic chuck, plasma is generated,
A predetermined voltage is once applied to the conductor of the electrostatic chuck, and then a reverse voltage is applied to attract the sample substrate placed on the electrostatic chuck, and the sample substrate attracted by the electrostatic chuck. The heat conducting gas is filled between the electrostatic chuck and the electrostatic chuck, the plasma treatment is performed, and the heat conducting gas filled between the sample substrate and the electrostatic chuck after the plasma treatment is completed. Is discharged, the voltage applied to the conductor of the electrostatic chuck is gradually reduced to 0, the conductor is grounded, and the generation of the plasma is stopped. It is a method of handling a plasma processing apparatus which is detached from a chuck. Furthermore, it is a method of handling a plasma processing apparatus in which the predetermined voltage is a negative voltage. Further, it is a method of handling a plasma processing apparatus in which the predetermined voltage is a positive voltage.

【0005】[0005]

【作用】本発明によれば,導電体と該導電体を内包する
誘電体とにより形成され,上記導電体に電圧を印加した
時に上記誘電体に発生する静電気を利用して,上記誘電
体上に載置された試料基板を温度制御された載置台上に
着脱自在に保持する静電チャックを備え,上記静電チャ
ックにより保持された上記試料基板を真空容器内でプラ
ズマ処理するプラズマ処理装置の上記静電チャックに上
記導電体を回避して該静電チャックの厚さ方向の貫通孔
が適宜数形成され,上記貫通孔に熱伝導用ガスを分配す
る溝が上記載置台の上記静電チャックとの接合面に形成
される。従って,上記載置台の溝及び上記静電チャック
の貫通孔内に熱伝導用ガスをむらなく充填させることが
できるため,上記載置台から上記試料基板までの熱コン
ダクタンスを向上させてこの間の温度差を小さくするこ
とができる。また,上記静電チャック自体に溝を設けな
いため,その厚みを従来例に比べて薄くすることがで
き,かつ試料基板の吸着面積の確保が容易である。この
ため,従来例におけるようなエネルギ損失等を生じるお
それがなくなる。その結果,上記試料基板の温度制御を
精度良く行うことができると共に,エネルギ効率の良い
処理を行うことができる。更に,上記静電チャックに形
成された貫通孔の各中心が上記試料基板と相似形状に配
置され,その最外周が上記静電チャックの外周寄り5m
m乃至10mm小さくなるように配設される。従って,
上記静電チャックの外周からの熱伝導用ガスのもれを抑
えて上記試料基板の温度のばらつきを少なくすることが
できる。更に,上記静電チャックの外周が上記試料基板
の外周より0mm乃至2mm小さくなるように形成され
る。従って,上記静電チャックが上記試料基板からはみ
出してスパッタされるおそれがなくなり,かつ上記試料
基板の冷却されていない部分を極めて少なくすることが
できる。更に,上記静電チャックの上記試料基板を保持
する面の平均表面粗さが0.3μmより小さくなるよう
に形成される。従って,このことによっても上記静電チ
ャックの外周からの熱伝導用ガスのもれを抑えて上記試
料基板の温度のばらつきを少なくすることができる。更
に,上記載置台の温度制御が該載置台の中心から外周に
向けて温度が徐々に低くなるように制御される。通常,
上記試料基板は上記熱伝導用ガスのもれにより,その外
周側が加熱されぎみになるため,これと逆方向の温度勾
配を与えることにより上記試料基板の温度の均一化を図
ることができる。又,上記プラズマ処理装置を取扱うに
際し,上記試料基板が上記静電チャック上に載置された
後にプラズマが発生され,上記静電チャックの上記導電
体に一旦所定電圧(負電圧又は正電圧)が印加された後
に逆電圧(正電圧または負電圧)が印加されて該静電チ
ャック上に載置された上記試料基板が吸着される。次
に,上記静電チャックにより吸着された上記試料基板と
該静電チャックとの間に熱伝導用ガスが充填された後,
プラズマ処理が行われる。上記プラズマ処理終了後,上
記試料基板と上記静電チャックとの間に充填された上記
熱伝導用ガスが排出される。そして,上記静電チャック
の上記導電体に印加された電圧が徐々に下げられて0と
なった後に該導電体が接地され,上記プラズマの発生が
停止された後,上記試料基板が上記静電チャックから取
り外される。従って,上記静電チャックの誘電体のヒス
テリシスによる残留電荷を極力小さくできて該試料基板
を上記静電チャックから取り外すときに,上記試料基板
がはねたり,割れたりするおそれがなくなる。
According to the present invention, a conductor and a dielectric containing the conductor are formed, and the static electricity generated in the dielectric when a voltage is applied to the conductor is used to form a dielectric on the dielectric. Of a plasma processing apparatus that includes an electrostatic chuck that detachably holds a sample substrate mounted on a temperature-controlled mounting table, and that performs plasma processing on the sample substrate held by the electrostatic chuck in a vacuum container. An appropriate number of through holes in the thickness direction of the electrostatic chuck are formed in the electrostatic chuck so as to avoid the conductor, and a groove for distributing a heat conduction gas is provided in the through hole. It is formed on the joint surface with. Therefore, the groove for the mounting table and the through hole of the electrostatic chuck can be uniformly filled with the heat-conducting gas, so that the thermal conductance from the mounting table to the sample substrate is improved and the temperature difference between them is increased. Can be made smaller. Further, since no groove is provided on the electrostatic chuck itself, the thickness thereof can be made thinner than that of the conventional example, and it is easy to secure the adsorption area of the sample substrate. Therefore, there is no possibility of causing energy loss as in the conventional example. As a result, the temperature control of the sample substrate can be performed with high accuracy, and the process with high energy efficiency can be performed. Furthermore, the centers of the through holes formed in the electrostatic chuck are arranged in a shape similar to that of the sample substrate, and the outermost periphery thereof is 5 m closer to the outer periphery of the electrostatic chuck.
It is arranged so as to be smaller by m to 10 mm. Therefore,
Leakage of the heat conducting gas from the outer circumference of the electrostatic chuck can be suppressed to reduce variations in the temperature of the sample substrate. Further, the outer circumference of the electrostatic chuck is formed to be 0 mm to 2 mm smaller than the outer circumference of the sample substrate. Therefore, the electrostatic chuck does not run off the sample substrate and is sputtered, and the uncooled portion of the sample substrate can be extremely reduced. Further, the surface of the electrostatic chuck that holds the sample substrate is formed to have an average surface roughness of less than 0.3 μm. Therefore, also by this, the leakage of the heat conducting gas from the outer circumference of the electrostatic chuck can be suppressed and the variation in the temperature of the sample substrate can be reduced. Further, the temperature control of the mounting table is controlled so that the temperature gradually decreases from the center of the mounting table toward the outer periphery. Normal,
Since the outer periphery of the sample substrate is heated due to the leakage of the heat conduction gas, the temperature of the sample substrate can be made uniform by providing a temperature gradient in the opposite direction. Further, in handling the plasma processing apparatus, plasma is generated after the sample substrate is placed on the electrostatic chuck, and a predetermined voltage (negative voltage or positive voltage) is temporarily applied to the conductor of the electrostatic chuck. After being applied, a reverse voltage (positive voltage or negative voltage) is applied to attract the sample substrate mounted on the electrostatic chuck. Next, after the heat conduction gas is filled between the electrostatic chuck and the sample substrate attracted by the electrostatic chuck,
Plasma treatment is performed. After the plasma processing is completed, the heat conducting gas filled between the sample substrate and the electrostatic chuck is discharged. Then, after the voltage applied to the conductor of the electrostatic chuck is gradually reduced to 0 and then the conductor is grounded and the generation of the plasma is stopped, the sample substrate is electrostatically charged. Removed from chuck. Therefore, the residual charge due to the hysteresis of the dielectric of the electrostatic chuck can be made as small as possible, and when the sample substrate is detached from the electrostatic chuck, there is no risk of the sample substrate bouncing or cracking.

【0006】[0006]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の第1の実施例に係るプラズマ処理装
置Aの概略構成を示す模式図,図2は載置台の溝形状を
示す平面図,図3はHeガスによる試料基板の冷却状態
を示すグラフ,図4はHeガスの圧力分布状態を示す説
明図,図5はプラズマ中での試料基板の温度分布と静電
チャックの貫通孔の位置との関係を示すグラフ,図6は
本発明の第2の実施例に係るプラズマ処理装置Aの取扱
方法のシーケンスを示す説明図である。図1に示す如
く,第1の実施例に係るプラズマ処理装置Aは,導電体
1とこの導電体1を内包する誘電体2とにより形成さ
れ,導電体1に電圧を印加した時に誘電体2に発生する
静電気を利用して,誘電体2上に載置された試料基板3
を温度制御された載置台4上に着脱自在に保持する静電
チャック5を備え,静電チャック5により保持された試
料基板3を真空容器6内でエッチング,CVD,スパッ
タリングといったプラズマ処理を行うように構成されて
いる点で従来例と同様である。しかし,本実施例では静
電チャック5に導電体1を回避して静電チャック5の厚
さ方向の貫通孔7が適宜数形成され,貫通孔7に熱伝導
用ガス(例えばHeガス等,以下ガスと略す)を分配す
る溝8を図2に示すように載置台4の静電チャック5と
の接合面に形成した点で従来例と異なる。この装置Aに
よるプラズマ処理は試料基板3をプラズマ中のイオンや
ラジカルによって物理的及び化学的に処理するのである
が,とくに化学反応を用いる場合はその反応は試料基板
3の温度によって大きな影響を受ける。そこで,プラズ
マ処理を精度よく行うために試料基板3の温度を精度よ
く制御する必要がある。(ここで,試料基板3との密着
性のよい静電チャック5を用いているのも試料基板3の
温度コントロールのためである。)そのため,静電チャ
ック5を載置する載置台4の温度制御を行い,載置台4
と試料基板3との温度差を一定に保つことによって温度
コントロールを行う。ここで重要なのは試料基板3をな
るべく全面均一な温度に保つこと,試料基板3のコント
ロール温度の精度を上げるために試料基板3と載置台4
との温度差をできるだけ小さくすること,そして静電チ
ャック5を用いることによってプラズマ処理される試料
基板3に悪影響 が生じないことである。この装置Aに
よれば,まず静電チャック5の試料基板3を保持する面
の平均表面粗さを経験上0.3μmより小さくすること
により試料基板3と静電チャック5との接触熱コンダク
タンスを向上させ,充填されたガスによる熱コンダクタ
ンスと合せて大きな熱コンダクタンスを得て温度コント
ロールを効果的に行うことができるようになる。また,
静電チャック5と載置台4との接合は従来問題とされて
いなかったが,この間の熱コンダクタンスも大きくする
ためにはネジで固定するだけでは不十分であり,接着や
溶着等によってしっかりと固定することにより載置台4
から試料基板3までの熱コンダクタンスを向上させて試
料基板3と載置台4との温度差を小さくすることができ
る。その結果,精度の良い温度コントロールができるよ
うになる。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and are not intended to limit the technical scope of the present invention. Here, FIG. 1 is a schematic diagram showing a schematic configuration of a plasma processing apparatus A according to a first embodiment of the present invention, FIG. 2 is a plan view showing a groove shape of a mounting table, and FIG. 6 is a graph showing the cooling state, FIG. 4 is an explanatory view showing the pressure distribution state of He gas, FIG. 5 is a graph showing the relationship between the temperature distribution of the sample substrate in plasma and the position of the through hole of the electrostatic chuck, FIG. FIG. 7 is an explanatory diagram showing a sequence of a method of handling the plasma processing apparatus A according to the second embodiment of the present invention. As shown in FIG. 1, the plasma processing apparatus A according to the first embodiment is formed of a conductor 1 and a dielectric 2 containing the conductor 1, and the dielectric 2 is formed when a voltage is applied to the conductor 1. The sample substrate 3 placed on the dielectric 2 by using the static electricity generated in the
An electrostatic chuck 5 for removably holding the substrate on a temperature-controlled mounting table 4 is provided, and the sample substrate 3 held by the electrostatic chuck 5 is subjected to plasma processing such as etching, CVD and sputtering in a vacuum container 6. The configuration is similar to that of the conventional example. However, in this embodiment, the electrostatic chuck 5 is provided with a proper number of through holes 7 in the thickness direction of the electrostatic chuck 5 while avoiding the conductor 1, and the through holes 7 are provided with a heat conduction gas (for example, He gas or the like). This is different from the conventional example in that a groove 8 for distributing gas (hereinafter abbreviated as gas) is formed on the joint surface of the mounting table 4 with the electrostatic chuck 5 as shown in FIG. The plasma treatment by the apparatus A physically and chemically treats the sample substrate 3 with the ions and radicals in the plasma. Especially when a chemical reaction is used, the reaction is greatly influenced by the temperature of the sample substrate 3. . Therefore, it is necessary to control the temperature of the sample substrate 3 with high precision in order to perform the plasma processing with high precision. (Here, the electrostatic chuck 5 having good adhesion to the sample substrate 3 is used for controlling the temperature of the sample substrate 3.) Therefore, the temperature of the mounting table 4 on which the electrostatic chuck 5 is mounted is set. Control and mount table 4
The temperature control is performed by keeping the temperature difference between the sample substrate 3 and the sample substrate 3 constant. Here, it is important to keep the temperature of the sample substrate 3 as uniform as possible over the entire surface of the sample substrate 3 and to improve the accuracy of the control temperature of the sample substrate 3 and the mounting table 4.
The temperature difference between and is as small as possible, and by using the electrostatic chuck 5, the sample substrate 3 to be plasma-treated is not adversely affected. According to this apparatus A, the contact thermal conductance between the sample substrate 3 and the electrostatic chuck 5 is first reduced by empirically making the average surface roughness of the surface of the electrostatic chuck 5 holding the sample substrate 3 smaller than 0.3 μm. By improving the thermal conductance of the filled gas, a large thermal conductance can be obtained to effectively control the temperature. Also,
The joining of the electrostatic chuck 5 and the mounting table 4 has not been a problem in the past, but fixing with screws is not enough to increase the thermal conductance between them, and it is firmly fixed by adhesion or welding. By placing the table 4
It is possible to improve the thermal conductance from to the sample substrate 3 and reduce the temperature difference between the sample substrate 3 and the mounting table 4. As a result, accurate temperature control can be performed.

【0007】次に,試料基板3の温度分布を均一にする
方法であるが,試料基板3と静電チャック5との間に充
填したガス圧力によって図3に示すように試料基板3の
温度は変化する。すなわち,充填されたガスの圧力にむ
らがあると,試料基板3にも温度分布のむらが生じてし
まうことになる。充填されたガスの圧力の分布はどのよ
うになっているかを図4に示す。ガスはあらかじめ外部
の圧力コントローラ(不図示)によって制御されて導入
されるが,静電チャック5と試料基板3との間からわず
かに真空容器6内にもれる。このガスのもれは少ない方
がプラズマ処理に与える影響が小さい。そのためには,
試料基板3と静電チャック5との隙間を小さくする必要
がある。そこで,上述したように試料基板3の平均表面
粗さを小さくすることによりこの隙間を小さくし,もれ
量を少なくすることができる。また,導入されるガスの
圧力は10〜20Torrであり,真空容器6内の圧力
は0.0005〜0.1Torrであるので,静電チャ
ック5と試料基板3との間から真空容器6内に向けてガ
スの流れが生じる。このガスの流れによって静電チャッ
ク5の外周付近で圧力の分布を生じる。ガスの圧力降下
はガスの流れの抵抗が相対的に大きいところで大きくな
るが,ガス導入口10から静電チャック5の貫通孔7ま
では静電チャック5と試料基板3との隙間によるガス流
れの抵抗に比べて十分大きい。すなわち,静電チャック
5にその中心軸が試料基板3と相似形状,例えば同心円
状となるように開けられた貫通孔7の最外周から真空容
器6にかけての間でほぼ直線的に圧力が降下することに
なる。試料基板3を均一温度にするためにはこの圧力降
下の長さが短い方が良いが,あまり短いと真空容器6内
にもれるガスの量が増加してしまうというトレードオフ
の関係にある。実際には,まずもれ量を規定し,その範
囲でできるだけ温度が均一になるように最外周の貫通孔
7の位置を決定する必要がある。その場合の最外周の貫
通孔7の位置をパラメータとして,その場合の温度分布
計算より求めた結果を図5に示す。この結果より,ガス
のもれ量1sccm以下で温度のばらつきが±5℃とな
るための最外周の貫通孔7の位置は静電チャック5の外
周より5〜10mm小さいことがわかる。また,試料基
板3より大きい静電チャック5や静電チャック5の一部
が試料基板3からはみ出した状態でプラズマ処理をおこ
なうと,プラズマによって静電チャック5の表面がスパ
ッタされ,不純物が試料基板3に悪影響を与えてしま
う。このため,静電チャック5は試料基板3より小さく
する必要がある。しかし,あまり小さくしてしまうと,
静電チャック5によって温度コントロールされない部分
が大きくなり,試料基板3の温度分布が大きくなってし
まう。また,静電チャック5は,試料基板3を搬送して
載置する時の精度上,許される範囲内でできるだけ大き
い方が良いので,試料基板3の大きさより0〜2mm小
さいものが良いとした。
Next, there is a method of making the temperature distribution of the sample substrate 3 uniform. The temperature of the sample substrate 3 is controlled by the gas pressure filled between the sample substrate 3 and the electrostatic chuck 5 as shown in FIG. Change. That is, if the pressure of the filled gas is uneven, the sample substrate 3 will also be uneven in temperature distribution. FIG. 4 shows the distribution of pressure of the filled gas. The gas is introduced by being controlled by an external pressure controller (not shown) in advance, but is slightly leaked into the vacuum container 6 from between the electrostatic chuck 5 and the sample substrate 3. The less the gas leaks, the smaller the effect on the plasma processing. for that purpose,
It is necessary to reduce the gap between the sample substrate 3 and the electrostatic chuck 5. Therefore, as described above, by reducing the average surface roughness of the sample substrate 3, this gap can be reduced and the amount of leakage can be reduced. Further, since the pressure of the introduced gas is 10 to 20 Torr and the pressure in the vacuum container 6 is 0.0005 to 0.1 Torr, the pressure in the vacuum container 6 from between the electrostatic chuck 5 and the sample substrate 3 is increased. There is a flow of gas towards it. This gas flow causes a pressure distribution near the outer circumference of the electrostatic chuck 5. The gas pressure drop increases when the resistance of the gas flow is relatively large, but from the gas inlet 10 to the through hole 7 of the electrostatic chuck 5, the gas flow due to the gap between the electrostatic chuck 5 and the sample substrate 3 is reduced. Large enough compared to resistance. That is, the pressure drops substantially linearly between the outermost periphery of the through hole 7 formed in the electrostatic chuck 5 so that its central axis has a shape similar to the sample substrate 3, for example, a concentric circle, and the vacuum container 6. It will be. In order to bring the sample substrate 3 to a uniform temperature, it is preferable that the length of this pressure drop is short, but if it is too short, there is a trade-off relationship that the amount of gas leaked into the vacuum container 6 increases. In practice, it is necessary to first define the amount of leakage and to determine the position of the outermost through hole 7 so that the temperature is as uniform as possible within that range. FIG. 5 shows the result obtained from the temperature distribution calculation in that case, using the position of the outermost through hole 7 in that case as a parameter. From this result, it can be seen that the position of the through hole 7 at the outermost circumference is 5 to 10 mm smaller than the outer circumference of the electrostatic chuck 5 because the temperature variation is ± 5 ° C. when the gas leak amount is 1 sccm or less. Further, when plasma processing is performed in a state where the electrostatic chuck 5 larger than the sample substrate 3 or a part of the electrostatic chuck 5 protrudes from the sample substrate 3, the surface of the electrostatic chuck 5 is sputtered by the plasma, and impurities are removed from the sample substrate 3. 3 will be adversely affected. Therefore, the electrostatic chuck 5 needs to be smaller than the sample substrate 3. However, if you make it too small,
The area where the temperature is not controlled by the electrostatic chuck 5 becomes large, and the temperature distribution of the sample substrate 3 becomes large. Further, the electrostatic chuck 5 is preferably as large as possible within an allowable range in terms of accuracy when the sample substrate 3 is transferred and placed, and therefore, it is preferable that the electrostatic chuck 5 is smaller than the size of the sample substrate 3 by 0 to 2 mm. .

【0008】また,上記したように外周からのガスのも
れにより,試料基板3は外側の方が加熱されぎみとなる
ので,載置台4の方であらかじめその中心から外周に向
けて温度が徐々に低くなるようにコントロールしておく
ことによって試料基板3の温度の均一化を図ることがで
きる。以上に述べたように,この第1の実施例に係るプ
ラズマ処理装置Aを用いることにより,試料基板3の温
度を精度良く均一な温度に制御することができるので,
プラズマ処理で起こる化学反応を制御でき,エッチング
では形状や選択比の向上ができ,スパッタリングやCV
Dでは膜質の向上が図れる。しかも,試料基板3上で均
一にできるので,電子デバイスを製作した場合において
はその歩留りの向上に大きく貢献できる。また,静電チ
ャック5自体に溝を設けないため,その厚みを従来例に
比べて薄くすることができ,かつ試料基板3の吸着面積
の確保が容易である。このため,従来例におけるような
エネルギ損失等を生じるおそれがなくなる。その結果,
試料基板3の温度制御を精度良く行うことができると共
にエネルギ効率の良い処理を図ることができる。引続い
て,第2の実施例に係るプラズマ処理装置Aの取扱方法
について図1及び図6を参照して説明する。尚,取扱対
象となるプラズマ処理装置は,第1の実施例に係る装置
Aに限らないが,ここでは説明の便宜上装置Aを対象と
して説明する。図1及び図6に示す如く,まず試料基板
3を静電チャック5上に置いた後,最初にプラズマを発
生させることにより試料基板3はプラズマを介して真空
容器6に電気的に接続される。この後,静電チャック5
の導電体1に一旦負電圧(又は正電圧)(所定電圧に相
当)を印加し,いままでの残留電荷をキャンセルし,そ
の後で正電圧(又は負電圧)(逆電圧に相当)を印加す
るので,静電チャック5による吸着を再現性良く行うこ
とができる。そして,処理を行い,その終了後,静電チ
ャック5の電圧をスイッチ等でオフにするのではなく,
電圧を徐々に0にし,その後で,真空容器6のグランド
に接続することによりヒステリシスによる残留電荷を極
力小さくすることができる。従って,この後試料基板3
を静電チャック5から取り外すときに試料基板3がはね
たり,割れたりするおそれがなくなる。以上に述べたよ
うに,この第2の実施例に係る取扱方法によれば,プラ
ズマ処理における静電チャック5の吸着力を再現性良く
することができる。このため,静電チャック5を用いた
プラズマ処理において再現性良く処理ができることにな
る。また,残留吸着力を極力小さくできるので,処理後
に試料基板3を取り外すときに試料基板3がはねたり,
割れたりすることもなくなる。さらに,従来例の取扱方
法のように,プラズマによって静電チャック5の表面を
スパッタすることもないので,静電チャック5の劣化や
スループットの低下もなくプラズマ処理を行うことがで
きるようになる。尚,上記第1の実施例の装置Aにおけ
る静電チャック5の貫通孔7及び載置台4の溝8の大き
さ,個数(条数)等は,実使用に際して試料基板3と載
置台4との間の熱コンダクタンスを十分確保しうるガス
の流量及び圧力から適宜決定することができる。尚,上
記第2の実施例の取扱方法では,上述した如く,説明の
便宜上,第1の実施例の装置Aを対象としたが,実使用
に際しては従来例の各種装置を対象としても良い。但
し,上記のように装置Aを対象とした場合は,エネルギ
効率及び再現性のいずれも良好な処理が可能となる。
Further, as described above, the outside of the sample substrate 3 is heated due to the leakage of the gas from the outer periphery, so that the temperature of the mounting table 4 is gradually increased from the center to the outer periphery in advance. It is possible to make the temperature of the sample substrate 3 uniform by controlling the temperature to be extremely low. As described above, by using the plasma processing apparatus A according to the first embodiment, the temperature of the sample substrate 3 can be accurately controlled to a uniform temperature.
The chemical reaction that occurs in plasma processing can be controlled, and the shape and selectivity can be improved by etching. Sputtering and CV
In D, the film quality can be improved. Moreover, since it can be made uniform on the sample substrate 3, it can greatly contribute to the improvement of the yield in the case of manufacturing electronic devices. Further, since the electrostatic chuck 5 itself is not provided with a groove, the thickness thereof can be made thinner than that of the conventional example, and the adsorption area of the sample substrate 3 can be easily secured. Therefore, there is no possibility of causing energy loss as in the conventional example. as a result,
It is possible to control the temperature of the sample substrate 3 with high accuracy and to perform energy-efficient processing. Subsequently, a handling method of the plasma processing apparatus A according to the second embodiment will be described with reference to FIGS. 1 and 6. The plasma processing apparatus to be handled is not limited to the apparatus A according to the first embodiment, but the apparatus A will be described here for convenience of description. As shown in FIGS. 1 and 6, after the sample substrate 3 is first placed on the electrostatic chuck 5, plasma is first generated to electrically connect the sample substrate 3 to the vacuum container 6 via the plasma. . After this, the electrostatic chuck 5
A negative voltage (or a positive voltage) (corresponding to a predetermined voltage) is once applied to the conductor 1 to cancel the residual charge so far, and then a positive voltage (or a negative voltage) (corresponding to a reverse voltage) is applied. Therefore, the adsorption by the electrostatic chuck 5 can be performed with good reproducibility. Then, processing is performed, and after that, the voltage of the electrostatic chuck 5 is not turned off by a switch or the like, but
By gradually reducing the voltage to 0 and then connecting it to the ground of the vacuum container 6, the residual charge due to hysteresis can be minimized. Therefore, after this, the sample substrate 3
There is no risk of the sample substrate 3 bouncing or cracking when the is removed from the electrostatic chuck 5. As described above, according to the handling method of the second embodiment, it is possible to improve the reproducibility of the attraction force of the electrostatic chuck 5 in the plasma processing. Therefore, the plasma processing using the electrostatic chuck 5 can be processed with high reproducibility. Further, since the residual suction force can be made as small as possible, the sample substrate 3 may be splashed when the sample substrate 3 is removed after processing,
It will not break. Further, unlike the conventional handling method, since the surface of the electrostatic chuck 5 is not sputtered by plasma, plasma processing can be performed without deterioration of the electrostatic chuck 5 and reduction in throughput. The size, number (number of threads), etc. of the through holes 7 of the electrostatic chuck 5 and the grooves 8 of the mounting table 4 in the apparatus A of the first embodiment are different from those of the sample substrate 3 and the mounting table 4 in actual use. It can be appropriately determined from the flow rate and pressure of the gas that can sufficiently secure the thermal conductance between the two. In the handling method of the second embodiment, as described above, the device A of the first embodiment is targeted for convenience of explanation, but various devices of the conventional example may be targeted during actual use. However, when the apparatus A is targeted as described above, both energy efficiency and reproducibility can be processed favorably.

【0009】[0009]

【発明の効果】本発明に係るプラズマ処理装置及びその
取扱方法は上記したように構成されているため, (1)この装置を用いることにより,試料基板の温度を
精度良く均一な温度に制御することができる。このた
め,プラズマ処理で起こる化学反応を制御でき,エッチ
ングでは形状や選択比の向上ができ,スパッタリングや
CVDでは膜質の向上が図れる。しかも,試料基板上で
均一にできるので,電子デバイスを製作した場合におい
てはその歩留りの向上に大きく貢献できる。また,静電
チャック自体に溝を設けないため,その厚みを従来例に
比べて薄くすることができ,かつ試料基板の吸着面積の
確保が容易である。このため,従来例におけるようなエ
ネルギ損失等を生じるおそれがなくなる。その結果,試
料基板3の温度制御を精度良く行うことができると共に
エネルギ効率の良い処理を図ることができる。 (2)この取扱方法を用いることによりプラズマ処理に
おける静電チャックの吸着力を再現性良くすることがで
きる。このため,静電チャックを用いたプラズマ処理に
おいて再現性良く処理ができることになる。また残留吸
着力を極力小さくできるので,処理後に試料基板を取り
外すときに試料基板がはねたり,割れたりすることもな
くなる。さらに,従来例の取扱方法のようにプラズマに
よって静電チャックの表面をスパッタすることもないの
で,静電チャックの劣化やスループットの低下もなく,
プラズマ処理を行うことができるようになる。 その結果,試料基板の温度を精度良く均一な温度に制御
できて,しかもエネルギ効率及び再現性の良い処理を行
い得るプラズマ処理装置及びその取扱方法を得ることが
できる。
Since the plasma processing apparatus and the method of handling the same according to the present invention are configured as described above, (1) by using this apparatus, the temperature of the sample substrate is accurately controlled to a uniform temperature. be able to. Therefore, it is possible to control the chemical reaction that occurs in the plasma treatment, improve the shape and the selection ratio by etching, and improve the film quality by sputtering or CVD. Moreover, since it can be made uniform on the sample substrate, it can greatly contribute to the improvement of the yield in the case of manufacturing electronic devices. Further, since the electrostatic chuck itself is not provided with a groove, its thickness can be made smaller than that of the conventional example, and it is easy to secure the adsorption area of the sample substrate. Therefore, there is no possibility of causing energy loss as in the conventional example. As a result, the temperature control of the sample substrate 3 can be performed with high accuracy, and energy-efficient processing can be achieved. (2) By using this handling method, the attraction force of the electrostatic chuck in plasma processing can be improved with good reproducibility. Therefore, the plasma processing using the electrostatic chuck can be processed with high reproducibility. Moreover, since the residual suction force can be made as small as possible, the sample substrate will not be splashed or cracked when the sample substrate is removed after the processing. Furthermore, unlike the conventional handling method, since the surface of the electrostatic chuck is not sputtered by plasma, there is no deterioration of the electrostatic chuck or reduction in throughput,
It becomes possible to perform plasma treatment. As a result, it is possible to obtain a plasma processing apparatus and a handling method thereof that can control the temperature of the sample substrate to a uniform temperature with high accuracy and can perform processing with good energy efficiency and reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施例に係るプラズマ処理装
置Aの概略構成を示す模式図。
FIG. 1 is a schematic diagram showing a schematic configuration of a plasma processing apparatus A according to a first embodiment of the present invention.

【図2】 載置台の溝形状を示す平面図。FIG. 2 is a plan view showing the groove shape of the mounting table.

【図3】 Heガスによる試料基板の冷却状態を示すグ
ラフ。
FIG. 3 is a graph showing a cooling state of a sample substrate with He gas.

【図4】 Heガスの圧力分布状態を示す説明図。FIG. 4 is an explanatory diagram showing a pressure distribution state of He gas.

【図5】 プラズマ中での試料基板の温度分布と静電チ
ャックの貫通孔の位置との関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the temperature distribution of the sample substrate in plasma and the position of the through hole of the electrostatic chuck.

【図6】 本発明の第2の実施例に係るプラズマ処理装
置Aの取扱方法のシーケンスを示す説明図。
FIG. 6 is an explanatory diagram showing a sequence of a handling method of the plasma processing apparatus A according to the second embodiment of the present invention.

【図7】 従来のプラズマ処理装置の第1例A1におけ
る静電チャック廻りの概略構成を示す模式図。
FIG. 7 is a schematic diagram showing a schematic configuration around an electrostatic chuck in a first example A1 of a conventional plasma processing apparatus.

【図8】 従来のプラズマ処理装置の第2例A2におけ
る静電チャック廻りの概略構成を示す模式図。
FIG. 8 is a schematic diagram showing a schematic configuration around an electrostatic chuck in a second example A2 of the conventional plasma processing apparatus.

【図9】 従来のプラズマ処理装置の取扱方法の一例に
おけるシーケンスを示す説明図。
FIG. 9 is an explanatory diagram showing a sequence in an example of a handling method of a conventional plasma processing apparatus.

【符号の説明】[Explanation of symbols]

A…プラズマ処理装置 1…導電体 2…誘電体 3…試料基板 4…載置台 5…静電チャ
ック 6…真空容器 7…貫通孔 8…溝 9…接合面
A ... Plasma processing apparatus 1 ... Conductor 2 ... Dielectric 3 ... Sample substrate 4 ... Mounting table 5 ... Electrostatic chuck 6 ... Vacuum container 7 ... Through hole 8 ... Groove 9 ... Bonding surface

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 導電体と該導電体を内包する誘電体とに
より形成され,上記導電体に電圧を印加した時に上記誘
電体に発生する静電気を利用して,上記誘電体上に載置
された試料基板を温度制御された載置台上に着脱自在に
保持する静電チャックを備え,上記静電チャックにより
保持された上記試料基板を真空容器内でプラズマ処理す
るプラズマ処理装置において, 上記静電チャックに上記導電体を回避して該静電チャッ
クの厚さ方向の貫通孔を適宜数形成し, 上記貫通孔に熱伝導用ガスを分配する溝を上記載置台の
上記静電チャックとの接合面に形成してなることを特徴
とするプラズマ処理装置。
1. A conductor is formed of a conductor and a dielectric containing the conductor, and is placed on the dielectric by using static electricity generated in the dielectric when a voltage is applied to the conductor. In the plasma processing apparatus, which comprises an electrostatic chuck that detachably holds the sample substrate on a temperature-controlled mounting table, and plasma-processes the sample substrate held by the electrostatic chuck in a vacuum container, An appropriate number of through holes in the thickness direction of the electrostatic chuck are formed in the chuck while avoiding the conductor, and a groove for distributing a heat conduction gas is formed in the through hole to join the electrostatic chuck of the mounting table. A plasma processing apparatus characterized by being formed on a surface.
【請求項2】 上記静電チャックに形成された貫通孔の
各中心が上記試料基板と相似形状に配設され,その最外
周が上記静電チャックの外周より5mm乃至10mm小
さい請求項1記載のプラズマ処理装置。
2. The electrostatic chuck according to claim 1, wherein each of the through holes formed in the electrostatic chuck has a center similar to that of the sample substrate, and the outermost circumference thereof is smaller than the outer circumference of the electrostatic chuck by 5 mm to 10 mm. Plasma processing equipment.
【請求項3】 上記静電チャックの外周が上記試料基板
の外周より0mm乃至2mm小さい請求項1又は2記載
のプラズマ処理装置。
3. The plasma processing apparatus according to claim 1, wherein the outer circumference of the electrostatic chuck is smaller than the outer circumference of the sample substrate by 0 mm to 2 mm.
【請求項4】 上記静電チャックの上記試料基板を保持
する面の平均表面粗さが0.3μmより小さい請求項
1,2又は3記載のプラズマ処理装置。
4. The plasma processing apparatus according to claim 1, wherein an average surface roughness of a surface of the electrostatic chuck that holds the sample substrate is smaller than 0.3 μm.
【請求項5】 上記載置台の温度制御を該載置台の中心
から外周に向けて温度が徐々に低くなるような制御とし
た請求項1,2,3又は4記載のプラズマ処理装置。
5. The plasma processing apparatus according to claim 1, wherein the temperature control of the mounting table is such that the temperature gradually decreases from the center of the mounting table toward the outer periphery.
【請求項6】 導電体と該導電体を内包する誘電体とに
より形成され,上記導電体に電圧を印加した時に上記誘
電体に発生する静電気を利用して,上記誘電体上に載置
された試料基板を温度制御された載置台上に着脱自在に
保持する静電チャックを備え,上記静電チャックにより
保持された上記試料基板を真空容器内でプラズマ処理す
るプラズマ処理装置の取扱方法において, 上記試料基板を上記静電チャック上に載置した後,プラ
ズマを発生し, 上記静電チャックの上記導電体に一旦所定電圧を印加し
た後,逆電圧を印加して該静電チャックに載置された上
記試料基板を吸着し, 上記静電チャックにより吸着された上記試料基板と該静
電チャックとの間に熱伝導用ガスを充填した後,上記プ
ラズマ処理を行い, 上記プラズマ処理終了後,上記試料基板と上記静電チャ
ックとの間に充填された上記熱伝導用ガスを排出し, 上記静電チャックの上記導電体に印加された電圧を徐々
に下げて0とした後,該導電体を接地し, 上記プラズマの発生を停止した後,上記試料基板を上記
静電チャックから取り外してなるプラズマ処理装置の取
扱方法。
6. A conductor formed of a conductor and a dielectric containing the conductor and placed on the dielectric by utilizing static electricity generated in the dielectric when a voltage is applied to the conductor. A method of handling a plasma processing apparatus, comprising: an electrostatic chuck that detachably holds a sample substrate on a temperature-controlled mounting table; and plasma processing the sample substrate held by the electrostatic chuck in a vacuum container, After the sample substrate is placed on the electrostatic chuck, plasma is generated, a predetermined voltage is once applied to the conductor of the electrostatic chuck, and then a reverse voltage is applied to place the sample substrate on the electrostatic chuck. The sample substrate thus adsorbed is adsorbed, a heat conducting gas is filled between the sample substrate adsorbed by the electrostatic chuck and the electrostatic chuck, and then the plasma treatment is performed. After the plasma treatment is completed, The heat-conducting gas filled between the sample substrate and the electrostatic chuck is discharged, and the voltage applied to the conductor of the electrostatic chuck is gradually reduced to 0, and then the conductor is removed. Is a method for handling a plasma processing apparatus in which the sample substrate is removed from the electrostatic chuck after the plasma is stopped and the plasma is stopped.
【請求項7】 上記所定電圧が負電圧である請求項6記
載のプラズマ処理装置の取扱方法。
7. The method of handling a plasma processing apparatus according to claim 6, wherein the predetermined voltage is a negative voltage.
【請求項8】 上記所定電圧が正電圧である請求項6記
載のプラズマ処理装置の取扱方法。
8. The method of handling a plasma processing apparatus according to claim 6, wherein the predetermined voltage is a positive voltage.
JP25627292A 1992-09-25 1992-09-25 Plasma processing apparatus and its handling method Pending JPH06112302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25627292A JPH06112302A (en) 1992-09-25 1992-09-25 Plasma processing apparatus and its handling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25627292A JPH06112302A (en) 1992-09-25 1992-09-25 Plasma processing apparatus and its handling method

Publications (1)

Publication Number Publication Date
JPH06112302A true JPH06112302A (en) 1994-04-22

Family

ID=17290345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25627292A Pending JPH06112302A (en) 1992-09-25 1992-09-25 Plasma processing apparatus and its handling method

Country Status (1)

Country Link
JP (1) JPH06112302A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010919A (en) * 1996-04-11 2000-01-04 Nippon Soken, Inc. Method for manufacturing semiconductor devices by use of dry etching
JP2001107229A (en) * 1999-10-13 2001-04-17 Anelva Corp Substrate processing device, and sputtering device
JP2005203426A (en) * 2004-01-13 2005-07-28 Hitachi High-Technologies Corp Electrode for mounting wafer
JP2006286812A (en) * 2005-03-31 2006-10-19 Tokyo Electron Ltd Apparatus and method for plasma treatment
US7646580B2 (en) 2005-02-24 2010-01-12 Kyocera Corporation Electrostatic chuck and wafer holding member and wafer treatment method
CN112864074A (en) * 2019-11-27 2021-05-28 东京毅力科创株式会社 Mounting table and inspection apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010919A (en) * 1996-04-11 2000-01-04 Nippon Soken, Inc. Method for manufacturing semiconductor devices by use of dry etching
DE19715194B4 (en) * 1996-04-11 2005-03-17 Denso Corp., Kariya Method for manufacturing semiconductor devices using dry etching
JP2001107229A (en) * 1999-10-13 2001-04-17 Anelva Corp Substrate processing device, and sputtering device
JP2005203426A (en) * 2004-01-13 2005-07-28 Hitachi High-Technologies Corp Electrode for mounting wafer
JP4642358B2 (en) * 2004-01-13 2011-03-02 株式会社日立ハイテクノロジーズ Wafer mounting electrode
US7646580B2 (en) 2005-02-24 2010-01-12 Kyocera Corporation Electrostatic chuck and wafer holding member and wafer treatment method
JP2006286812A (en) * 2005-03-31 2006-10-19 Tokyo Electron Ltd Apparatus and method for plasma treatment
TWI424792B (en) * 2005-03-31 2014-01-21 Tokyo Electron Ltd Plasma processing device and plasma processing method
EP1708241B1 (en) * 2005-03-31 2016-08-10 Tokyo Electron Limited Capacitively coupled plasma processing apparatus and method
CN112864074A (en) * 2019-11-27 2021-05-28 东京毅力科创株式会社 Mounting table and inspection apparatus

Similar Documents

Publication Publication Date Title
JP3911787B2 (en) Sample processing apparatus and sample processing method
US5946184A (en) Electrostatic chuck, and method of and apparatus for processing sample
US4968374A (en) Plasma etching apparatus with dielectrically isolated electrodes
TWI445114B (en) A substrate processing device and a focusing ring
TWI317150B (en)
JP6552346B2 (en) Substrate processing equipment
KR20040093043A (en) Plasma processing apparatus, focus ring, and susceptor
JP2000323456A (en) Plasma processing device and electrode used therefor
US8545672B2 (en) Plasma processing apparatus
JP5432629B2 (en) Baffle plate and plasma processing apparatus
JPH06112302A (en) Plasma processing apparatus and its handling method
JP2007266296A (en) Substrate processing apparatus and sidewall part
JPH08186094A (en) Plasma treatment device
JP2019102521A (en) Component for semiconductor manufacturing device and semiconductor manufacturing device
JP2000331996A (en) Plasma processing device
JP4456218B2 (en) Plasma processing equipment
JP4602528B2 (en) Plasma processing equipment
JPH1027780A (en) Plasma treating method
JPS62287950A (en) Electrostatic attracting device
JPH06291064A (en) Plasma treatment device
JP2978857B2 (en) Plasma etching equipment
JP3819538B2 (en) Electrostatic chuck device and mounting table
JP2020021931A (en) Substrate processing apparatus and substrate processing method
JP4515652B2 (en) Plasma processing equipment
JPH11233600A (en) Electrostatic attractor and vacuum processor using the same