JPH06111827A - Polymer solid-electrolyte fuel cell - Google Patents

Polymer solid-electrolyte fuel cell

Info

Publication number
JPH06111827A
JPH06111827A JP4256805A JP25680592A JPH06111827A JP H06111827 A JPH06111827 A JP H06111827A JP 4256805 A JP4256805 A JP 4256805A JP 25680592 A JP25680592 A JP 25680592A JP H06111827 A JPH06111827 A JP H06111827A
Authority
JP
Japan
Prior art keywords
silica
fuel cell
catalyst layer
ion exchange
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4256805A
Other languages
Japanese (ja)
Other versions
JP3498321B2 (en
Inventor
Paul Stonehart
ポール・ストンハルト
Masahiro Watanabe
政廣 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Stonehart Associates Inc
Original Assignee
Tanaka Kikinzoku Kogyo KK
Stonehart Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Stonehart Associates Inc filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP25680592A priority Critical patent/JP3498321B2/en
Priority to US08/126,337 priority patent/US5523181A/en
Publication of JPH06111827A publication Critical patent/JPH06111827A/en
Application granted granted Critical
Publication of JP3498321B2 publication Critical patent/JP3498321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To provide a polymer solid electrolyte fuel cell of which ion conductivity is improved by lowering the specific resistance of an ion exchange membrane and in which water control can be carried out so as to allow of no- humidification operation. CONSTITUTION: In a solid electrolyte fuel cell comprising a collector 1 for a cathode, a catalytic layer 2 for the cathode, an ion exchange membrane 3, a catalytic layer 4 for an anode, and a collector 5 for the anode which are united, finely granulated silica and/or fibrous silica fiber is added to the catalytic layer 1 for the cathode and the catalytic layer 4 for the anode. Consequently, the specific resistance of the fuel cell is lowered and the ion conductivity is improved and at the same time no-humidification operation can be carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオン交換膜を有する
高分子固体電解質型燃料電池の電池性能の改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of cell performance of polymer electrolyte fuel cells having an ion exchange membrane.

【0002】[0002]

【従来の技術】燃料電池は天然ガス等の化学エネルギー
を化学反応によって直接に電気エネルギーに変換するも
ので、他の発電機(ガスエンジン、ガスタービン、ディ
ーゼルエンジン等)に比べてクリーン且つ発電効率が高
いという大きな特徴を有している。
2. Description of the Related Art A fuel cell directly converts chemical energy such as natural gas into electric energy through a chemical reaction, and is cleaner and more efficient in power generation than other generators (gas engine, gas turbine, diesel engine, etc.). It has a great feature that it is high.

【0003】燃料電池の種類にはリン酸型、アルカリ水
溶液型、溶融炭酸塩型、固体電解質型、高分子固体電解
質型等があるが、本発明に関する高分子固体電解質型燃
料電池は他の燃料電池と比べてコンパクトで高い電流密
度を取り出せることから、電気自動車、宇宙船用の電源
として注目されている。そして、この高分子固体電解質
型燃料電池の電池性能は以下に示す要因により大きく支
配される。 (1)イオン交換膜はイオン伝導性が良いこと。即ち、
イオン交換膜自体の比抵抗が小さいほどイオン伝導性は
良くなり、高い電流密度を得ることができる。このこと
から、イオン交換膜のイオン伝導性の改良方法として、
イオン交換膜の膜材である炭化水素系イオン交換樹脂、
又はナフィオン(商品名…米国デュポン社が開発したパ
ーフルオロカーボンスルホン酸)等のフッ素化樹脂等の
高分子固体電解質中のイオン交換基の濃度を増すことが
提案されている。あるいは、膜を機械加工することによ
りイオン交換膜のイオン伝導性を改良する試みもなされ
ている。 (2)イオン交換膜、アノード、及びカソードの水分管
理が適正であること。即ち、イオン交換膜が乾燥する
と、そのイオン伝導性が著しく低下し、電池の内部抵抗
が増大して電池性能が低下する。また、アノード、カソ
ードの水分状態について見ると、イオン交換膜中をアノ
ードからカソードに向かってH+ イオンが水分子を同伴
する為、アノード側の水分が欠乏して乾燥しやすくH+
イオンの移動を低下させる。一方、カソード側では電極
反応により生成される水が過剰になると、反応ガスの流
入を妨げスムーズな電極反応を阻害する。この為、アノ
ード側では加湿を行い、カソード側では除湿を行って水
分を適正に維持することが必要である。即ち、イオン交
換膜、アノード、及びカソードの水分管理を適正に行う
ことより、電池性能を向上させることができる。このこ
とから水分管理対策の1つとして、イオン交換膜に縒糸
状の繊維を挟んでサンドイッチ構造にすることにより、
繊維を介してイオン交換膜を加湿する方法が提案されて
いる。また別の対策として、アノード側の反応ガスを水
蒸気で加湿することにより間接的にイオン交換膜を加湿
する方法が提案されている。
There are various types of fuel cells, such as phosphoric acid type, alkaline aqueous solution type, molten carbonate type, solid electrolyte type, polymer solid electrolyte type, etc., but the polymer solid electrolyte type fuel cell of the present invention uses other fuels. It is more compact than a battery and can draw high current density, so it is attracting attention as a power source for electric vehicles and spacecraft. The cell performance of this polymer electrolyte fuel cell is largely controlled by the following factors. (1) The ion exchange membrane has good ionic conductivity. That is,
The smaller the specific resistance of the ion exchange membrane itself, the better the ionic conductivity and the higher current density can be obtained. From this, as a method for improving the ion conductivity of the ion exchange membrane,
Hydrocarbon-based ion exchange resin, which is the membrane material of the ion exchange membrane,
Alternatively, it has been proposed to increase the concentration of ion exchange groups in a polymer solid electrolyte such as a fluorinated resin such as Nafion (trade name: perfluorocarbon sulfonic acid developed by DuPont, USA). Alternatively, attempts have been made to improve the ionic conductivity of the ion exchange membrane by machining the membrane. (2) Water management of the ion exchange membrane, anode, and cathode is appropriate. That is, when the ion exchange membrane is dried, its ion conductivity is remarkably lowered, the internal resistance of the battery is increased, and the battery performance is lowered. The anode, regarding the cathode moisture conditions, since H + ions entrained water molecules toward the cathode of the ion exchange membrane from the anode, easily water on the anode side is dry deficient H +
Reduces ion migration. On the other hand, on the cathode side, when the water produced by the electrode reaction becomes excessive, the reaction gas is prevented from flowing in and the smooth electrode reaction is hindered. Therefore, it is necessary to perform humidification on the anode side and dehumidify on the cathode side to appropriately maintain the water content. That is, the battery performance can be improved by appropriately managing the water content of the ion exchange membrane, the anode, and the cathode. From this, as one of the water management measures, by sandwiching the filament-shaped fibers in the ion exchange membrane to form a sandwich structure,
A method of humidifying an ion exchange membrane through fibers has been proposed. As another measure, there has been proposed a method of indirectly humidifying the ion exchange membrane by humidifying the reaction gas on the anode side with steam.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、高分子
固体電解質のイオン交換基の濃度を増すと、炭化水素系
イオン交換樹脂は高分子の特徴である柔らかさが失わ
れ、イオン交換膜とアノード又はイオン交換膜とカソー
ドの接合が困難となり、燃料電池の製作が困難になると
いう問題がある。また、ナフィオン等のフッ素化樹脂の
場合は、膜が流動化してしまう為、多くのイオン交換基
の導入が技術的に困難であるという問題がある。
However, when the concentration of ion-exchange groups in the polymer solid electrolyte is increased, the hydrocarbon-type ion-exchange resin loses the softness characteristic of the polymer, and the ion-exchange membrane and the anode or There is a problem that it becomes difficult to join the ion exchange membrane and the cathode, which makes it difficult to manufacture a fuel cell. Further, in the case of a fluorinated resin such as Nafion, since the membrane is fluidized, there is a problem that it is technically difficult to introduce many ion exchange groups.

【0005】また、イオン交換膜の膜厚を薄くすると膜
自体の機械的強度が小さくなり、イオン交換膜が損傷し
やすいという問題がある。従って、現在、用い得るイオ
ン交換膜のイオン伝導性は満足すべきものではなく、イ
オン伝導性の良いイオン交換膜が要望されている。一
方、水分管理対策において、縒糸状の繊維をサンドイッ
チした構造にする方法は、イオン交換膜への加湿はでき
るものの、繊維を挟んでサンドイッチにする分だけ膜厚
が厚くなりイオン伝導性の低下を招く為、根本的な解決
にはなりにくい。また、反応ガスを水蒸気で加湿する方
法は、水蒸気分だけ反応ガスが希釈される為、反応ガス
の分圧低下を招くと共に、電極触媒層中の反応ガスの拡
散も阻害される為、電池性能が低下する要因になる。更
には、変動する負荷に追従して加湿する水蒸気の量を変
動させることが難しい為、水分を充分供給できずに膜が
乾燥したり、逆に触媒層を濡らし過ぎたりして、電池性
能を低下させるという問題がある。
Further, if the thickness of the ion exchange membrane is made thin, the mechanical strength of the membrane itself becomes small, and there is a problem that the ion exchange membrane is easily damaged. Therefore, the ion exchange membranes that can be used at present are not satisfactory in ion conductivity, and there is a demand for ion exchange membranes having good ion conductivity. On the other hand, as a moisture management measure, the method in which the filament-shaped fibers are sandwiched allows the ion exchange membrane to be humidified, but the sandwiching of the fibers causes the film thickness to increase and the ion conductivity to decrease. Because it invites, it is hard to be a fundamental solution. In addition, the method of humidifying the reaction gas with water vapor dilutes the reaction gas by the water vapor content, so that the partial pressure of the reaction gas is lowered and the diffusion of the reaction gas in the electrode catalyst layer is hindered. Will be a factor to decrease. Furthermore, since it is difficult to change the amount of steam to be humidified by following a changing load, it is not possible to supply sufficient water, the membrane may dry, or conversely, the catalyst layer may be excessively wetted, resulting in poor battery performance. There is a problem of lowering it.

【0006】本発明はこのような事情に鑑みてなされた
もので、イオン交換膜の比抵抗を小さくしてイオン伝導
性を改良することができると共に、無加湿運転が可能な
水分管理のできる高分子固体電解質型燃料電池を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to improve the ionic conductivity by reducing the specific resistance of the ion exchange membrane, and at the same time, it is possible to manage moisture without humidification. An object is to provide a molecular solid oxide fuel cell.

【0007】[0007]

【課題を解決する為の手段】本発明を概説すれば、本発
明は高分子固体電解質型燃料電池の電池性能を改良する
発明であって、カソード用集電体、カソード用触媒層、
イオン交換膜、アノード用触媒層、及びアノード用集電
体が積層された高分子固体電解質型燃料電池に於いて、
前記イオン交換膜、カソード用触媒層、及びアノード用
触媒層のうち少なくともその1つに微細粒子のシリカ及
び/又は繊維状のシリカファイバーが含有されているこ
とを特徴とする。
Means for Solving the Problems The present invention will be described in brief. The present invention is an invention for improving the cell performance of a polymer electrolyte fuel cell, comprising a cathode current collector, a cathode catalyst layer,
In a polymer electrolyte fuel cell in which an ion exchange membrane, an anode catalyst layer, and an anode current collector are laminated,
At least one of the ion exchange membrane, the cathode catalyst layer, and the anode catalyst layer contains fine particles of silica and / or fibrous silica fibers.

【0008】本発明者らは表1に示すように、シリカ及
び/又はシリカファイバーが含有された高分子固体電解
質(ナフィオンを使用)は比抵抗が小さくなりイオン伝
導性が改良されると共に含水率を高めることを見いだし
た。そして、これに基づいてイオン交換膜、カソード触
媒層、及びアノード触媒層のうち、少なくともその1つ
に微細粒子のシリカ及び/又は繊維状のシリカファイバ
ーが含有されていることにより、高分子固体電解質型燃
料電池の電池性能を向上させたものである。 表1 高分子固体電解質の含水率及び比抵抗 シリカ含有率(%含水率(%比抵抗(Ωcm)80°C 0.00 2.5 10.5 0.01 20.0 10.0 0.10 28.0 7.4 1.00 31.0 5.5 3.00 − 5.4 10.00 34.0 6.0 20.00 − 6.8 30.00 − 7.5 50.00 − 9.8 (備考)表1では微細粒子のシリカを用いたが繊維状の
シリカファイバーでも同様の結果が得られた。
As shown in Table 1, the present inventors have found that the solid polymer electrolyte (using Nafion) containing silica and / or silica fiber has a small specific resistance, improved ionic conductivity and water content. Found to raise. Then, based on this, at least one of the ion exchange membrane, the cathode catalyst layer, and the anode catalyst layer contains fine particles of silica and / or fibrous silica fiber, so that the solid polymer electrolyte The cell performance of the fuel cell is improved. Table 1 Water content and specific resistance of solid polymer electrolyte Silica content (% ) Water content (% ) Specific resistance (Ωcm) 80 ° C 0.00 2.5 10.5 0.01 20.0 10.0 0 .10 28.0 7.4 1.00 31.0 5.5 3.0-5.4 10.00 34.0 6.0 20.00-6.8 30.00-7.5 50.00 -9.8 (Remarks) In Table 1, fine particles of silica were used, but similar results were obtained with fibrous silica fibers.

【0009】即ち、本発明の高分子固体電解質型燃料電
池によれば、イオン交換膜には、微細粒子のシリカ及び
/又は繊維状のシリカファイバーが含有されている。こ
れにより、イオン交換膜自体の比抵抗を小さくすること
ができるので、イオン交換膜のイオン伝導性が改良され
電池性能を向上させることができる。そして、前記シリ
カ及び/又はシリカファイバーの含有によりイオン交換
膜自体のイオン伝導性が改良される理由は、膜を構成す
る高分子固体電解質のクラスター構造モデルにより説明
することができる。即ち、高分子固体電解質のイオン伝
導機構はイオン交換基同志が集まって4nm程度の空間
を形成し、この空間同志が1nm程度の連通管で接続さ
れている。そして、前記空間に水が存在することにより
イオンの移動が起こるとされている。一方、微粒子すな
わち高比表面積のシリカは高い吸湿性を示す。このこと
から、イオン交換膜にシリカ及び/又はシリカファイバ
ーが含有されることにより、前記空間における水の存在
率が高まり、イオン交換膜のイオン伝導性が改良される
ものと考えられる。
That is, according to the polymer solid oxide fuel cell of the present invention, the ion exchange membrane contains fine particles of silica and / or fibrous silica fibers. As a result, the specific resistance of the ion exchange membrane itself can be reduced, so that the ion conductivity of the ion exchange membrane is improved and the battery performance can be improved. The reason why the ion conductivity of the ion exchange membrane itself is improved by containing the silica and / or silica fiber can be explained by the cluster structure model of the polymer solid electrolyte constituting the membrane. That is, in the ionic conduction mechanism of the solid polymer electrolyte, the ion exchange groups are gathered to form a space of about 4 nm, and the spaces are connected by a communication tube of about 1 nm. The existence of water in the space causes the movement of ions. On the other hand, fine particles, that is, silica having a high specific surface area, exhibits high hygroscopicity. From this, it is believed that the presence of silica and / or silica fibers in the ion exchange membrane increases the abundance of water in the space and improves the ion conductivity of the ion exchange membrane.

【0010】また、シリカ及び/又はシリカファイバー
が含有されることにより、イオン交換膜全体が保持でき
る保水量を大きくすることができるので、イオン交換膜
の乾燥を防止することができる。更には、シリカファイ
バーが含有された場合には、イオン交換膜の機械的強度
を大きくすることができる。これにより、イオン交換膜
の膜厚を薄くしても膜の損傷が起きにくいので、膜厚を
薄くすることによりイオン伝導性を改良することができ
る。
Further, by containing silica and / or silica fibers, the amount of water retention that can be held by the entire ion exchange membrane can be increased, so that the ion exchange membrane can be prevented from drying. Furthermore, when silica fibers are contained, the mechanical strength of the ion exchange membrane can be increased. As a result, even if the film thickness of the ion exchange film is made thin, damage to the film is unlikely to occur, so that the ion conductivity can be improved by making the film thickness thin.

【0011】本発明において、含有される微細粒子のシ
リカは無定形の結晶構造を有し、平均一次粒度が0.1
μm以下、好ましくは0.01μm以下が望ましい。ま
た、シリカファイバーは太さが5μm以下であることが
望ましい。なぜなら、平均一次粒度が0.1μm以上の
シリカ及び太さが5μm以上のシリカファイバーの場合
は、イオン交換膜の比抵抗を低下させる効果が小さく実
用的でない。また、含有量としては、高分子固体電解質
の重量に対して0.01〜50重量%であり、好ましく
は0.1〜20重量%であることが望ましい。なぜな
ら、前記表1に示すように、高分子固体電解質に含有さ
れるシリカの含有率が0.01重量%以下又は50重量
%以上では、比抵抗の改良効果が認められなくなる。ま
た、シリカ及び/又はシリカファイバーをイオン交換膜
に含有させる場合は、シリカ及び/又はシリカファイバ
ー及びイオン交換樹脂を夫々メタノール、エタノール、
イソプロパノール、ブタノール等の親水性の溶剤に懸濁
又溶解させた状態で混合すると、イオン交換膜の比抵抗
が小さくなるので望ましい。この理由としては、親水性
の溶剤を用いることにより、含有されるシリカが高分子
固体電解質のイオン交換基(親水性)で形成される前記
クラスター構造に近接した状態で含有され易くなること
が推定される。
In the present invention, the fine particles of silica contained have an amorphous crystal structure and an average primary particle size of 0.1.
It is desirable that the thickness be less than or equal to μm, preferably less than or equal to 0.01 μm. The silica fiber preferably has a thickness of 5 μm or less. This is because in the case of silica having an average primary particle size of 0.1 μm or more and silica fiber having a thickness of 5 μm or more, the effect of lowering the specific resistance of the ion exchange membrane is small and not practical. The content is 0.01 to 50% by weight, preferably 0.1 to 20% by weight, based on the weight of the solid polymer electrolyte. This is because, as shown in Table 1, when the content of silica contained in the polymer solid electrolyte is 0.01% by weight or less or 50% by weight or more, the effect of improving the specific resistance cannot be recognized. When silica and / or silica fiber is contained in the ion exchange membrane, the silica and / or silica fiber and the ion exchange resin are respectively methanol, ethanol,
Mixing in a state of being suspended or dissolved in a hydrophilic solvent such as isopropanol or butanol is desirable because the specific resistance of the ion exchange membrane becomes small. The reason for this is presumed that the use of a hydrophilic solvent makes it easier for the contained silica to be contained in a state close to the cluster structure formed by the ion exchange groups (hydrophilic) of the solid polymer electrolyte. To be done.

【0012】また、イオン交換膜の膜材である高分子固
体電解質としては、種々の電気化学装置にイオン交換膜
として用いられるパーフルオロカーボンスルホン酸、ポ
リサルフォン、パーフルオロカルボン酸、スチレン─ビ
ニルベンゼンスルフォン酸のカチオン交換樹脂、またス
チレン−ブタジエン系アニオン交換樹脂等を用いること
ができる。特に、パーフルオロカーボンスルホン酸(ナ
フィオン)は、耐薬品性、耐熱性に優れており好適であ
る。
Further, as the polymer solid electrolyte which is the membrane material of the ion exchange membrane, perfluorocarbon sulfonic acid, polysulfone, perfluorocarboxylic acid, styrene-vinylbenzene sulfonic acid used as an ion exchange membrane in various electrochemical devices. The above cation exchange resin, styrene-butadiene type anion exchange resin and the like can be used. In particular, perfluorocarbon sulfonic acid (Nafion) is preferable because it has excellent chemical resistance and heat resistance.

【0013】次に、カソード触媒層、アノード触媒層に
おけるシリカ及び/又はシリカファイバーの含有につい
て説明する。本発明によれば、カソード触媒層にはシリ
カ及び/又はシリカファイバーが含有されている。これ
により、カソード触媒層での電極反応で生成される水が
ガス気相に揮散するの防止することができるので、電池
の作動の停止時又は低負荷時のようにカソードでの水の
生成量が少ない時には、電池系内に一定の水分を保持す
ることができる。また、高負荷時のようにカソードでの
水の生成量が多い時(アノードやイオン交換膜の乾燥が
発生し易い時)には、カソードの過剰水分がアノード側
に逆拡散して、イオン交換膜及びアノードの水源として
の役目を行うことができる。また、アノード触媒層にシ
リカ及び/又はシリカファイバーが含有されていること
により、アノードの乾燥を防止すると共に、カソード側
からアノード側への水分の逆拡散を助長する役目を行う
ことができる。
Next, the content of silica and / or silica fiber in the cathode catalyst layer and the anode catalyst layer will be described. According to the present invention, the cathode catalyst layer contains silica and / or silica fibers. As a result, the water generated by the electrode reaction in the cathode catalyst layer can be prevented from volatilizing into the gas vapor phase, so the amount of water generated at the cathode can be reduced, such as when the battery is not operating or when the load is low. When the amount is small, a certain amount of water can be retained in the battery system. Also, when the amount of water produced at the cathode is large, such as when the load is high (when drying of the anode and ion exchange membrane is likely to occur), excess water in the cathode is diffused back to the anode side and ion exchange is performed. It can serve as a water source for the membrane and the anode. Further, by containing silica and / or silica fiber in the anode catalyst layer, it is possible to prevent the anode from drying and to promote the reverse diffusion of water from the cathode side to the anode side.

【0014】また、カソード触媒層、アノード触媒層に
含有されるシリカ及び/又はシリカファイバーは、イオ
ン交換膜に含有されたものと同じである。また、触媒層
において電極反応を円滑に進行させる為には、触媒粒子
(又は炭素粒子表面に白金を還元法で析出させた触媒)
/高分子固体電解質を1/9〜5/5の重量比率になる
ようにすることが望ましい。ところで表1に示した如く
高分子固体電解質の重量に対してシリカが0.01〜5
0重量%の範囲で含有されることが触媒層の比抵抗及び
含水率を改良できるので、触媒層に対して0.0006
〜31重量%に相当するシリカを含有させることが望ま
しい。また、高分子固体電解質はイオン交換膜に用いた
のと同じものを用いることが好ましい。また、シリカを
触媒層に含有させる場合は、イオン交換膜で記載したと
同様に、触媒粒子(又は炭素粒子表面に白金を還元法で
析出させた触媒)、高分子固体電解質、シリカ及び/又
はシリカファイバーを夫々メタノール、エタノール、イ
ソプロパノール、ブタノール等の親水性の溶剤に懸濁又
溶解させた状態で混合すると、触媒層の比抵抗が小さく
なるので望ましい。
The silica and / or silica fibers contained in the cathode catalyst layer and the anode catalyst layer are the same as those contained in the ion exchange membrane. Further, in order to smoothly proceed the electrode reaction in the catalyst layer, catalyst particles (or a catalyst in which platinum is deposited on the surface of carbon particles by a reduction method)
It is desirable that the solid polymer electrolyte has a weight ratio of 1/9 to 5/5. By the way, as shown in Table 1, the silica content is 0.01 to 5 relative to the weight of the solid polymer electrolyte.
Since the content of 0% by weight can improve the specific resistance and the water content of the catalyst layer,
It is desirable to include silica corresponding to ˜31 wt%. Further, it is preferable to use the same solid polymer electrolyte as that used for the ion exchange membrane. When silica is contained in the catalyst layer, the catalyst particles (or the catalyst in which platinum is deposited on the surface of carbon particles by the reduction method), the polymer solid electrolyte, silica and / or silica are used as described in the ion exchange membrane. It is desirable to mix the silica fibers in a state of being suspended or dissolved in a hydrophilic solvent such as methanol, ethanol, isopropanol, butanol, etc., because the specific resistance of the catalyst layer becomes small.

【0015】以上説明したように、本発明の高分子固体
電解質型燃料電池では、イオン交換膜、カソード触媒
層、アノード触媒層のうち、その1つにシリカ及び/又
はシリカファイバーが含有される場合にも、夫々の効果
により電池性能を高めることができるが、少なくとも、
イオン交換膜には含有されていることが望ましい。しか
し、本発明の高分子固体電解質型燃料電池の大きな特徴
は、イオン交換膜、カソード触媒層、アノード触媒層の
全てにシリカ及び/又はシリカファイバーが含有される
ことにより電池性能を顕著に向上させることができると
共に、無加湿で運転を行うことができることである。即
ち、このシリカ含有により、カソード触媒層での電極反
応により水が生成されると、カソード触媒層では生成水
の反応ガス中への揮散を防止し、また、カソード触媒層
の余剰水のイオン交換膜及びアノード触媒層側への逆拡
散を助ける。これにより、本発明の高分子固体電解質燃
料電池は、電池系内の水分がクローズドシステムで移
動、逆拡散が行われるので、電池系外からの加湿を必要
とせずに運転することができる。
As described above, in the solid polymer electrolyte fuel cell of the present invention, when one of the ion exchange membrane, the cathode catalyst layer and the anode catalyst layer contains silica and / or silica fiber. Also, each effect can improve the battery performance, but at least,
It is desirable that it is contained in the ion exchange membrane. However, the major feature of the solid polymer electrolyte fuel cell of the present invention is that the ion exchange membrane, the cathode catalyst layer, and the anode catalyst layer all contain silica and / or silica fiber to significantly improve the cell performance. In addition to being able to operate, it is possible to operate without humidification. That is, when water is generated by the electrode reaction in the cathode catalyst layer due to the silica content, the generated water is prevented from volatilizing into the reaction gas in the cathode catalyst layer, and the excess water in the cathode catalyst layer is ion-exchanged. Helps back diffusion to the membrane and anode catalyst layer side. As a result, the polymer electrolyte fuel cell of the present invention can be operated without the need for humidification from outside the cell system, because the water in the cell system moves and back diffuses in the closed system.

【0016】尚、イオン交換膜、カソード用触媒層、ア
ノード用触媒層に含有されるシリカ及び/又はシリカフ
ァイバーの各含有率は、電池系内の水分の移動、逆拡散
のバランスから上記した含有率の範囲内で変えることが
望ましい。例えば乾燥し易いアノード用触媒層側にシリ
カ及び/又はシリカファイバーを多く含有させ、水が生
成されるカソード用触媒層にシリカ及び/又はシリカフ
ァイバーを少なめに含有させることができる。この場
合、アノード触媒層とイオン交換膜の接合面の少なくと
も一面に塗布したシリカ及び/又はシリカファイバーを
ホットプレス等の加熱圧着処理等により表面層に埋め込
んだ構造にすることも可能である。同様に、アノード用
触媒層とアノード集電体の接合面、イオン交換膜とカソ
ード用触媒層の接合面、カソード用触媒層とカソード集
電多体の接合面においてもシリカ及び/又はシリカファ
イバーを埋め込んだ構造にすることが可能である。
The respective contents of silica and / or silica fiber contained in the ion exchange membrane, the catalyst layer for the cathode and the catalyst layer for the anode are determined as described above from the balance of the movement of water in the battery system and the reverse diffusion. It is desirable to change within the range of rates. For example, a large amount of silica and / or silica fibers can be contained on the side of the anode catalyst layer that is easily dried, and a small amount of silica and / or silica fibers can be contained on the cathode catalyst layer where water is produced. In this case, it is also possible to have a structure in which silica and / or silica fiber applied to at least one of the joint surfaces of the anode catalyst layer and the ion exchange membrane is embedded in the surface layer by a heat compression treatment such as hot pressing. Similarly, silica and / or silica fibers are also used on the joint surface between the anode catalyst layer and the anode current collector, the joint surface between the ion exchange membrane and the cathode catalyst layer, and the joint surface between the cathode catalyst layer and the cathode current collector. It is possible to have an embedded structure.

【0017】以上の如く本発明の高分子固体電解質型燃
料電池によれば、イオン交換膜自体のイオン伝導性を改
良することができると共に、高分子固体電解質燃料電池
の無加湿運転を可能にすることができる。
As described above, according to the solid polymer electrolyte fuel cell of the present invention, the ion conductivity of the ion exchange membrane itself can be improved and the solid polymer electrolyte fuel cell can be operated without humidification. be able to.

【0018】[0018]

【作用】本発明の高分子固体電解質型燃料電池を構成す
るイオン交換膜、カソード触媒層、アノード触媒層に夫
々シリカ及び/又はシリカファイバーが含有されている
ので、電池のイオン伝導性が改良され、電池性能を向上
させることができる。また、含水率が高くなることによ
り、カソード用触媒層で生成された水分はアノード用触
媒層側に拡散され、イオン交換膜及びアノード用触媒層
に水分を供給する。これにより、電池内の水分がクロー
ズドシステムで移動、拡散するので、無加湿運転を行う
ことができる。
Since the ion exchange membrane, cathode catalyst layer and anode catalyst layer constituting the polymer electrolyte fuel cell of the present invention contain silica and / or silica fiber, the ionic conductivity of the cell is improved. The battery performance can be improved. In addition, since the water content is increased, the water generated in the cathode catalyst layer is diffused to the anode catalyst layer side, and the water is supplied to the ion exchange membrane and the anode catalyst layer. As a result, the moisture in the battery moves and diffuses in the closed system, so that non-humidified operation can be performed.

【0019】[0019]

【実施例1】次に、本発明に係わる高分子固体電解質型
燃料電池の好ましい実施例を記載するが、本実施例は本
発明を限定するものではない。本発明の高分子固体電解
質型燃料電池に用いたイオン交換膜は次の製法によって
作った。
EXAMPLE 1 Next, a preferred example of the polymer solid oxide fuel cell according to the present invention will be described, but this example does not limit the present invention. The ion exchange membrane used in the solid polymer electrolyte fuel cell of the present invention was produced by the following production method.

【0020】先ず、ナフィオンの5重量%イソプロパノ
ール溶液(アルドリッチ社製)と、前記ナフィオン重量
に対して5重量%相当のシリカ(商品名…アエロジル3
80、日本アエロジル社製、平均一次粒度0.007μ
m)のイソプロピルアルコール分散液(濃度…5g/
l)とを混合して超音波ホモジナイザーで良く攪拌し
た。次に、この溶液を膜成型容器に流し込み、60°C
で減圧乾燥してイソプロパノールを除去して成膜し、シ
リカ含有率5重量%及び膜厚0.1mmのイオン交換膜
を作成した。尚、押出し成型又はスクリーン印刷による
成膜も可能である。
First, a 5% by weight solution of Nafion in isopropanol (manufactured by Aldrich) and 5% by weight of silica (commercial name ... Aerosil 3) based on the weight of Nafion.
80, manufactured by Nippon Aerosil Co., Ltd., average primary particle size 0.007μ
m) isopropyl alcohol dispersion (concentration: 5 g /
1) and were mixed well with an ultrasonic homogenizer. Next, this solution is poured into a membrane forming container, and the temperature is 60 ° C.
Was dried under reduced pressure to remove isopropanol to form a film, thereby forming an ion exchange membrane having a silica content of 5% by weight and a film thickness of 0.1 mm. Film formation by extrusion molding or screen printing is also possible.

【0021】また、本発明の高分子固体電解質型燃料電
池に用いたカソード触媒層、アノード触媒層は次の製法
で作った。先ず、炭素粒子の表面に白金を還元法で析出
させた触媒と、ナフィオンと、シリカとが1:1:0.
05の重量比率になる各エタノール溶液を混合して超音
波ホモジナイザーで良く攪拌した。次に、この液を60
°Cで減圧乾燥してエタノールを除去した後、乾燥物を
破砕し、濾過転写法で集電極のカーボンペーパに転写
し、130°C、5kg/cm2 で3秒間ホットプレス
して薄板状に成形した。使用したシリカは前記イオン交
換膜で使用したものと同じである。この時の触媒層のシ
リカ含有率は、触媒層の重量に対して2.4重量%であ
り、カソード触媒層、アノード触媒層ともに同じ含有率
とした。
The cathode catalyst layer and the anode catalyst layer used in the polymer electrolyte fuel cell of the present invention were prepared by the following manufacturing method. First, a catalyst in which platinum is deposited on the surface of carbon particles by a reduction method, Nafion, and silica are mixed in a ratio of 1: 1: 0.
Each ethanol solution having a weight ratio of 05 was mixed and well stirred with an ultrasonic homogenizer. Next, add 60
After drying under reduced pressure at ° C to remove ethanol, the dried material is crushed, transferred to carbon paper of the collecting electrode by filtration transfer method, and hot pressed at 130 ° C and 5 kg / cm 2 for 3 seconds to form a thin plate. Molded. The silica used is the same as that used for the ion exchange membrane. The silica content of the catalyst layer at this time was 2.4% by weight based on the weight of the catalyst layer, and the same content was used for both the cathode catalyst layer and the anode catalyst layer.

【0022】そして、上記の如く作成した2枚の触媒電
極間に上記の如く作成したイオン交換膜を挟み、図1及
び図2に示す高分子固体電解質燃料電池を組み立てた。
図1及び図2において、1はイオン交換膜、2はカソー
ド触媒層、3はアノード触媒層、4は酸素の供給通路5
を有するカソード集電体、6は水素の供給通路7を有す
るアノード集電体、8はシール材を示している。
Then, the ion exchange membrane prepared as described above was sandwiched between the two catalyst electrodes prepared as described above, and the polymer electrolyte fuel cell shown in FIGS. 1 and 2 was assembled.
1 and 2, 1 is an ion exchange membrane, 2 is a cathode catalyst layer, 3 is an anode catalyst layer, 4 is an oxygen supply passage 5.
Is a cathode collector, 6 is an anode collector having a hydrogen supply passage 7, and 8 is a sealant.

【0023】また、比較例として、シリカを含有しない
以外は、上記と同様にイオン交換膜、カソード触媒層、
及びアノード触媒層を作製して、図2と同様に高分子固
体電解質燃料電池を組み立てた。そして、本発明の高分
子固体電解質燃料電池と従来の高分子固体電解質燃料電
池との電池性能の評価方法として、以下に示す比較テス
トを実施した。 (1)本発明の高分子固体電解質型燃料電池は無加湿で
運転して比抵抗を測定した。一方、比較例として作成し
た高分子固体電解質型燃料電池は、水素ガスに加湿した
場合及び無加湿の場合について比抵抗を測定した。電池
の作動条件は以下の通りであり、比較結果を図3に示
す。
In addition, as a comparative example, an ion exchange membrane, a cathode catalyst layer, and
Then, an anode catalyst layer was prepared, and a polymer electrolyte fuel cell was assembled in the same manner as in FIG. Then, as a method of evaluating the cell performance of the polymer solid electrolyte fuel cell of the present invention and the conventional polymer solid electrolyte fuel cell, the following comparative tests were carried out. (1) The solid polymer electrolyte fuel cell of the present invention was operated without humidification to measure the specific resistance. On the other hand, in the polymer electrolyte fuel cell prepared as a comparative example, the specific resistance was measured when humidified with hydrogen gas and when not humidified. The operating conditions of the battery are as follows, and the comparison result is shown in FIG.

【0024】 反応ガス…水素(アノード側)、酸素(カソード側) セル運転温度…80°C 加湿温度…80°C(加湿した場合) セル運転圧力…大気圧 図3の結果から明らかなように、本発明の高分子固体電
解質型燃料電池は無加湿にも係わらず、その比抵抗は比
較例の高分子固体電解質型燃料電池の加湿した時の比抵
抗より小さくイオン伝導性が良いことを示した。また、
比較例の高分子固体電解質型燃料電池の無加湿した時の
比抵抗は、明らかに高い値を示した。
Reaction gas: hydrogen (anode side), oxygen (cathode side) Cell operating temperature: 80 ° C Humidification temperature: 80 ° C (when humidified) Cell operating pressure: atmospheric pressure As is apparent from the results of FIG. Despite the fact that the solid polymer electrolyte fuel cell of the present invention is not humidified, its specific resistance is smaller than the specific resistance of the solid polymer electrolyte fuel cell of the comparative example when it is humid, and shows that the ion conductivity is good. It was Also,
The specific resistance of the solid polymer electrolyte fuel cell of Comparative Example when it was not humidified was obviously high.

【0025】このことから、本発明の高分子固体電解質
型燃料電池は無加湿でも、比較例の高分子固体電解質型
燃料電池の加湿した時と比べ同等以上の電池性能を有す
ることが分かった。 (2)また、前記両者の高分子固体電解質型燃料電池と
もに無加湿の条件の下に、電流密度350mA/cm2
で運転した場合の電池寿命を比較した結果を図4示す。
From this, it was found that the solid polymer electrolyte fuel cell of the present invention has a cell performance equivalent to or higher than that of the solid polymer electrolyte fuel cell of the comparative example when not humidified. (2) Further, both of the polymer electrolyte fuel cells have a current density of 350 mA / cm 2 under non-humidified conditions.
FIG. 4 shows the result of comparing the battery lifespan when the battery was operated at.

【0026】図4の結果から明らかなように、本発明の
高分子固体電解質燃料電池は、比較例の高分子固体電解
質燃料電池と比べ明らかに電池性能が高いことが分か
る。また、本発明の高分子固体電解質燃料電池は、無加
湿運転にも係わらず500時間後でも安定した電池性能
を維持していた。以上の結果から、本発明の高分子固体
電解質燃料電池は無加湿運転が可能なことを確認するこ
とができた。
As is clear from the results shown in FIG. 4, the polymer solid electrolyte fuel cell of the present invention clearly has higher cell performance than the polymer solid electrolyte fuel cell of the comparative example. Further, the polymer electrolyte fuel cell of the present invention maintained stable cell performance even after 500 hours despite the non-humidified operation. From the above results, it could be confirmed that the polymer electrolyte fuel cell of the present invention can be operated without humidification.

【0027】[0027]

【実施例2】前記ナフィオンの重量に対して太さ3μm
のシリカ短繊維を5重量%含有させたイオン交換膜を実
施例1と同様の成膜方法で成膜し、高分子固体電解質型
燃料電池を作った。尚、イオン交換膜以外は実施例1の
高分子固体電解質型燃料電池と同じ構成とした。そし
て、この高分子固体電解質型燃料電池について、無加湿
運転又は加湿運転での比抵抗を測定した。その結果、無
加湿運転での比抵抗は7Ωcmとなり、シリカ繊維を含
有させた場合も実施例1と同様の結果を得た。また、加
湿運転での比抵抗は5.5Ωcmとなり、更に小さな比
抵抗を得ることができた。
Example 2 Thickness of 3 μm with respect to the weight of Nafion
An ion-exchange membrane containing 5% by weight of the silica short fiber of 5 was formed by the same film-forming method as in Example 1 to prepare a polymer electrolyte fuel cell. It should be noted that, except for the ion exchange membrane, the polymer solid oxide fuel cell of Example 1 had the same structure. Then, the specific resistance of the polymer solid oxide fuel cell in the non-humidified operation or the humidified operation was measured. As a result, the specific resistance in non-humidified operation was 7 Ωcm, and the same results as in Example 1 were obtained when silica fiber was contained. Further, the specific resistance in the humidifying operation was 5.5 Ωcm, and a further smaller specific resistance could be obtained.

【0028】[0028]

【発明の効果】以上説明したように、本発明に係る高分
子固体電解質燃料電池によれば、イオン交換膜、カソー
ド用触媒層、及びアノード用触媒層のうち少なくともそ
の1つに微細粒子のシリカ及び/又は繊維状のシリカフ
ァイバーが含有されていることにより、良好な水分管理
ができるので、電池内抵抗を小さくでき、電池の高性能
化が図れる。
As described above, according to the solid polymer electrolyte fuel cell of the present invention, at least one of the ion exchange membrane, the cathode catalyst layer, and the anode catalyst layer has fine particle silica. By containing and / or fibrous silica fiber, good water content management can be achieved, so that the internal resistance of the battery can be reduced and the battery performance can be improved.

【0029】イオン交換膜、カソード用触媒層、及びア
ノード用触媒層の全てに微細粒子のシリカ及び/又は繊
維状のシリカファイバーが含有されることにより、無加
湿で運転を行うことができる。
Since the ion-exchange membrane, the cathode catalyst layer and the anode catalyst layer all contain fine particles of silica and / or fibrous silica fibers, the operation can be performed without humidification.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る高分子固体電解質型燃料電池の構
成を示す斜視図
FIG. 1 is a perspective view showing the structure of a polymer electrolyte fuel cell according to the present invention.

【図2】シール構造を持つ単セルに組立てた本発明に係
る高分子固体電解質型燃料電池の断面図
FIG. 2 is a sectional view of a polymer electrolyte fuel cell according to the present invention assembled into a single cell having a seal structure.

【図3】本発明の実施例における本発明の高分子固体電
解質型燃料電池と比較例の高分子固体電解質型燃料電池
との比抵抗を比較したグラフ
FIG. 3 is a graph comparing the specific resistances of the solid polymer electrolyte fuel cell of the present invention and the solid polymer electrolyte fuel cell of the comparative example in the examples of the present invention.

【図4】本発明の実施例における本発明の高分子固体電
解質型燃料電池と比較例の高分子固体電解質型燃料電池
の電池寿命を比較したグラフ
FIG. 4 is a graph comparing the cell life of the polymer solid oxide fuel cell of the present invention in the example of the present invention and the polymer solid electrolyte fuel cell of the comparative example.

【符号の説明】[Explanation of symbols]

1…イオン交換膜 2…カソード触媒層 3…アノード触媒層 4…カソード集電体 5…酸素供給通路 6…アノード集電体 7…水素供給通路 8…シール材 DESCRIPTION OF SYMBOLS 1 ... Ion exchange membrane 2 ... Cathode catalyst layer 3 ... Anode catalyst layer 4 ... Cathode collector 5 ... Oxygen supply passage 6 ... Anode collector 7 ... Hydrogen supply passage 8 ... Sealing material

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000218166 渡辺 政廣 山梨県甲府市和田町2421番地の8 (72)発明者 ポール・ストンハルト アメリカ合衆国 06443 コネチカット州 マジソン コテッジ・ロード 17、ピ ー・オー・ ボックス 1220 (72)発明者 渡辺 政廣 山梨県甲府市和田町2412番地8 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 000218166 Masahiro Watanabe 8241, 2421 Wada-cho, Kofu-shi, Yamanashi Prefecture (72) Inventor Paul Stonhardt United States 06443 Madison Cottage Road, Connecticut 17, 17 P-O Box 1220 (72) Inventor Masahiro Watanabe 2412 Wadacho, Kofu City, Yamanashi Prefecture 8

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 カソード用集電体、カソード用触媒層、
イオン交換膜、アノード用触媒層、及びアノード用集電
体が積層され、前記カソード用触媒層に酸化性ガスが、
前記アノード用触媒層に燃料ガスが供給される固体電解
質燃料電池に於いて、 前記イオン交換膜、カソード用触媒層、及びアノード用
触媒層のうち少なくともその1つに微細粒子のシリカ及
び/又は繊維状のシリカファイバーが含有されているこ
とを特徴とする高分子固体電解質型燃料電池。
1. A cathode current collector, a cathode catalyst layer,
An ion exchange membrane, an anode catalyst layer, and an anode current collector are laminated, and an oxidizing gas is added to the cathode catalyst layer,
In a solid electrolyte fuel cell in which fuel gas is supplied to the anode catalyst layer, fine particles of silica and / or fibers are present in at least one of the ion exchange membrane, the cathode catalyst layer, and the anode catalyst layer. A solid polymer electrolyte fuel cell characterized by containing silica fibers in the form of particles.
【請求項2】 前記シリカは平均一次粒度が0.1μm
以下であると共に、前記シリカファイバーは太さが6μ
m以下であることを特徴とする請求項1の高分子固体電
解質型燃料電池。
2. The silica has an average primary particle size of 0.1 μm.
In addition to the following, the silica fiber has a thickness of 6 μm.
The solid polymer electrolyte fuel cell according to claim 1, wherein the solid polymer electrolyte fuel cell has a thickness of m or less.
【請求項3】 前記イオン交換膜中のシリカ及び/又は
シリカファイバーの含有率はイオン交換膜の重量に対し
て0.01〜50重量%であることを特徴とする請求項
1の高分子固体電解質型燃料電池。
3. The polymer solid according to claim 1, wherein the content of silica and / or silica fiber in the ion exchange membrane is 0.01 to 50% by weight based on the weight of the ion exchange membrane. Electrolyte fuel cell.
【請求項4】 前記カソード用触媒層、及びアノード用
触媒層のシリカ及び/又はシリカファイバーの含有率は
触媒槽の重量に対して0.0006〜31重量%である
ことを特徴とする請求項1の高分子固体電解質型燃料電
池。
4. The content of silica and / or silica fiber in the cathode catalyst layer and the anode catalyst layer is 0.0006 to 31% by weight based on the weight of the catalyst tank. 1. The solid polymer electrolyte fuel cell of item 1.
JP25680592A 1992-09-25 1992-09-25 Polymer solid oxide fuel cell Expired - Fee Related JP3498321B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25680592A JP3498321B2 (en) 1992-09-25 1992-09-25 Polymer solid oxide fuel cell
US08/126,337 US5523181A (en) 1992-09-25 1993-09-24 Polymer solid-electrolyte composition and electrochemical cell using the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25680592A JP3498321B2 (en) 1992-09-25 1992-09-25 Polymer solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH06111827A true JPH06111827A (en) 1994-04-22
JP3498321B2 JP3498321B2 (en) 2004-02-16

Family

ID=17297687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25680592A Expired - Fee Related JP3498321B2 (en) 1992-09-25 1992-09-25 Polymer solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3498321B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145733A (en) * 1997-07-28 1999-02-16 Toshiba Corp Solid polimer fuel cell
JP2001032162A (en) * 1999-06-22 2001-02-06 Johnson Matthey Plc Nonwoven fiber web
JP2002505506A (en) * 1998-02-24 2002-02-19 ラモツト・ユニバーシテイ・オーソリテイ・フオー・アプライド・リサーチ・アンド・インダストリアル・デベロツプメント・リミテツド Ion conductive matrix and use thereof
JP2002203575A (en) * 2000-11-14 2002-07-19 Nuvera Fuel Cells Europ Srl Film electrode assembly for high polymer film fuel cell
JP2003059494A (en) * 2001-08-09 2003-02-28 Asahi Glass Co Ltd Method for operating solid polymer fuel cell and fuel cell system
US6713207B2 (en) 2000-05-18 2004-03-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Membrane electrode assembly, and solid polymer fuel cell using the assembly
KR100442827B1 (en) * 1997-08-30 2004-09-18 삼성전자주식회사 Composition for forming catalyst layer and fuel cell using the same to improve oxidation/reduction activity and ion conductivity with reduced amount of platinum catalyst in convenient way
JP2005174765A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Membrane electrode assembly, its manufacturing method, and its usage
JP2006216559A (en) * 2005-02-04 2006-08-17 Samsung Sdi Co Ltd Fuel cell
US7160926B2 (en) 2001-05-31 2007-01-09 Asahi Kasei Kabushiki Kaisha Ion exchange fluorocarbon resin membrane
WO2007004588A1 (en) * 2005-07-01 2007-01-11 Nippon Sheet Glass Company, Limited Reinforcing material for proton-conductive film, proton-conductive film manufactured using the same, and fuel cell
JP2008047388A (en) * 2006-08-14 2008-02-28 Nissan Motor Co Ltd Solid polymer electrolyte membrane, its manufacturing method, and solid polymer fuel cell
US7341799B2 (en) 2002-08-09 2008-03-11 Toyota Shatai Kabushiki Kaisha Separator from a fuel cell having first and second portions of different materials
WO2008053864A1 (en) 2006-10-30 2008-05-08 Nippon Steel Chemical Co., Ltd. Proton conducting compound and proton conducting polymer
WO2008102851A1 (en) 2007-02-21 2008-08-28 Asahi Kasei E-Materials Corporation Polyelectrolyte composition, polyelectrolyte membrane, membrane electrode assembly, and solid polymer electrolyte fuel cell
JP2009048975A (en) * 2007-08-23 2009-03-05 Toyota Motor Corp Laminated porous electrolyte membrane and fuel cell electrode
WO2009034684A1 (en) 2007-09-10 2009-03-19 Fujifilm Corporation Membrane electrode assembly and fuel cell
JP2009152166A (en) * 2007-11-26 2009-07-09 Toyota Motor Corp Composite electrolyte membrane, membrane-electrode assembly, fuel cell, and method for manufacturing the same
US7569302B2 (en) * 2002-11-05 2009-08-04 Panasonic Corporation Fuel cell for generating electric power
JP2010129397A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Electrode for fuel cell
US7736782B2 (en) 2004-10-20 2010-06-15 Samsung Sdi Co., Ltd. Proton conductive solid polymer electrolyte and fuel cell
JP2010135117A (en) * 2008-12-02 2010-06-17 Toshiba Fuel Cell Power Systems Corp Fuel cell electrode, manufacturing method therefor, and fuel cell
US7785726B2 (en) 2005-04-05 2010-08-31 Japan Atomic Energy Agency Process for producing hybrid ion-exchange membranes comprising functional inorganics and graft polymer and electrolyte membranes for use in fuel cells comprising the hybrid ion-exchange membranes
US7875392B2 (en) 2003-06-27 2011-01-25 Asahi Kasei Chemicals Corporation Polymer electrolyte membrane having high durability and method for producing the same
US7879506B2 (en) 2004-11-16 2011-02-01 Samsung Sdi Co., Ltd. Solid polymer electrolyte membrane, method for manufacturing the same, and fuel cell using the solid polymer electrolyte membrane
JP2011187458A (en) * 2005-03-31 2011-09-22 Samsung Sdi Co Ltd Polymer electrolyte membrane for fuel cell, method of manufacturing the same, membrane-electrode assembly for fuel cell, and fuel cell system
US8034493B2 (en) 2002-12-26 2011-10-11 Tokuyama Corporation Ion exchange membrane and production process therefor
US8129074B2 (en) 2005-11-17 2012-03-06 Japan Atomic Energy Agency Crosslinked nano-inorganic particle/polymer electrolyte membrane for membrane electrode assembly
CN102759786A (en) * 2011-04-28 2012-10-31 索尼公司 Drive unit, lens module, image pickup unit, fuel cell, and ion exchange resin
US8338052B2 (en) 2007-11-26 2012-12-25 Toyota Jidosha Kabushiki Kaisha Method for manufacturing a membrane-electrode assembly, with folding process
US8652985B2 (en) 2001-09-10 2014-02-18 Asahi Kasei Kabushiki Kaisha Electrode catalyst layer for use in fuel cell
US8795927B2 (en) 2004-12-24 2014-08-05 Asahi Kasei Kabushiki Kaisha Highly durable electrode catalyst layer
JP2014160671A (en) * 2014-04-18 2014-09-04 Nissan Motor Co Ltd Membrane electrode assembly
JP2015029978A (en) * 2013-08-06 2015-02-16 株式会社東芝 Oxygen reduction device
JP2016004658A (en) * 2014-06-16 2016-01-12 学校法人早稲田大学 Electrolyte membrane, membrane electrode assembly, fuel cell, and method of producing electrolyte membrane
JP2017511590A (en) * 2014-03-24 2017-04-20 エノセル リミテッドEnocell Limited Proton conducting membrane and fuel cell comprising the same
WO2022123917A1 (en) * 2020-12-07 2022-06-16 日清紡ホールディングス株式会社 Gel electrolyte

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145733A (en) * 1997-07-28 1999-02-16 Toshiba Corp Solid polimer fuel cell
KR100442827B1 (en) * 1997-08-30 2004-09-18 삼성전자주식회사 Composition for forming catalyst layer and fuel cell using the same to improve oxidation/reduction activity and ion conductivity with reduced amount of platinum catalyst in convenient way
JP2002505506A (en) * 1998-02-24 2002-02-19 ラモツト・ユニバーシテイ・オーソリテイ・フオー・アプライド・リサーチ・アンド・インダストリアル・デベロツプメント・リミテツド Ion conductive matrix and use thereof
JP4937449B2 (en) * 1998-02-24 2012-05-23 テル−アビブ・ユニバーシテイ・フユーチヤー・テクノロジー・デベロツプメント・エル・ピー Ion conductive matrix and use thereof
JP2001032162A (en) * 1999-06-22 2001-02-06 Johnson Matthey Plc Nonwoven fiber web
JP4615097B2 (en) * 1999-06-22 2011-01-19 テクニカル、ファイバー、プロダクツ、リミテッド Non-woven fiber web
US6713207B2 (en) 2000-05-18 2004-03-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Membrane electrode assembly, and solid polymer fuel cell using the assembly
JP2002203575A (en) * 2000-11-14 2002-07-19 Nuvera Fuel Cells Europ Srl Film electrode assembly for high polymer film fuel cell
US7160926B2 (en) 2001-05-31 2007-01-09 Asahi Kasei Kabushiki Kaisha Ion exchange fluorocarbon resin membrane
JP2003059494A (en) * 2001-08-09 2003-02-28 Asahi Glass Co Ltd Method for operating solid polymer fuel cell and fuel cell system
US8652985B2 (en) 2001-09-10 2014-02-18 Asahi Kasei Kabushiki Kaisha Electrode catalyst layer for use in fuel cell
US7341799B2 (en) 2002-08-09 2008-03-11 Toyota Shatai Kabushiki Kaisha Separator from a fuel cell having first and second portions of different materials
US7569302B2 (en) * 2002-11-05 2009-08-04 Panasonic Corporation Fuel cell for generating electric power
US8034493B2 (en) 2002-12-26 2011-10-11 Tokuyama Corporation Ion exchange membrane and production process therefor
US7875392B2 (en) 2003-06-27 2011-01-25 Asahi Kasei Chemicals Corporation Polymer electrolyte membrane having high durability and method for producing the same
JP2005174765A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Membrane electrode assembly, its manufacturing method, and its usage
JP4506164B2 (en) * 2003-12-11 2010-07-21 株式会社エクォス・リサーチ Membrane electrode assembly and method of using the same
US7736782B2 (en) 2004-10-20 2010-06-15 Samsung Sdi Co., Ltd. Proton conductive solid polymer electrolyte and fuel cell
US7879506B2 (en) 2004-11-16 2011-02-01 Samsung Sdi Co., Ltd. Solid polymer electrolyte membrane, method for manufacturing the same, and fuel cell using the solid polymer electrolyte membrane
US8795927B2 (en) 2004-12-24 2014-08-05 Asahi Kasei Kabushiki Kaisha Highly durable electrode catalyst layer
JP2006216559A (en) * 2005-02-04 2006-08-17 Samsung Sdi Co Ltd Fuel cell
US8187764B2 (en) 2005-02-04 2012-05-29 Samsung Sdi Co., Ltd. Fuel cell with moisture retentive layer in MEA
JP2011187458A (en) * 2005-03-31 2011-09-22 Samsung Sdi Co Ltd Polymer electrolyte membrane for fuel cell, method of manufacturing the same, membrane-electrode assembly for fuel cell, and fuel cell system
US7785726B2 (en) 2005-04-05 2010-08-31 Japan Atomic Energy Agency Process for producing hybrid ion-exchange membranes comprising functional inorganics and graft polymer and electrolyte membranes for use in fuel cells comprising the hybrid ion-exchange membranes
US8241770B2 (en) 2005-04-05 2012-08-14 Japan Atomic Energy Agency Process or producing hybrid ion-exchange membranes comprising functional inorganics and graft polymer and electrolyte membranes for use in fuel cells comprising the hybrid ion-exchange membranes
WO2007004588A1 (en) * 2005-07-01 2007-01-11 Nippon Sheet Glass Company, Limited Reinforcing material for proton-conductive film, proton-conductive film manufactured using the same, and fuel cell
US8129074B2 (en) 2005-11-17 2012-03-06 Japan Atomic Energy Agency Crosslinked nano-inorganic particle/polymer electrolyte membrane for membrane electrode assembly
JP2008047388A (en) * 2006-08-14 2008-02-28 Nissan Motor Co Ltd Solid polymer electrolyte membrane, its manufacturing method, and solid polymer fuel cell
WO2008053864A1 (en) 2006-10-30 2008-05-08 Nippon Steel Chemical Co., Ltd. Proton conducting compound and proton conducting polymer
EP2562864A1 (en) 2006-10-30 2013-02-27 Nippon Steel Chemical Co., Ltd. Proton-conducting polymer
US8304134B2 (en) 2007-02-21 2012-11-06 Asahi Kasei E-Materials Corporation Polymer electrolyte composition, polymer electrolyte membrane, membrane electrode assembly and solid polymer electrolyte-based fuel cell
WO2008102851A1 (en) 2007-02-21 2008-08-28 Asahi Kasei E-Materials Corporation Polyelectrolyte composition, polyelectrolyte membrane, membrane electrode assembly, and solid polymer electrolyte fuel cell
JP2009048975A (en) * 2007-08-23 2009-03-05 Toyota Motor Corp Laminated porous electrolyte membrane and fuel cell electrode
WO2009034684A1 (en) 2007-09-10 2009-03-19 Fujifilm Corporation Membrane electrode assembly and fuel cell
US8338052B2 (en) 2007-11-26 2012-12-25 Toyota Jidosha Kabushiki Kaisha Method for manufacturing a membrane-electrode assembly, with folding process
JP2009152166A (en) * 2007-11-26 2009-07-09 Toyota Motor Corp Composite electrolyte membrane, membrane-electrode assembly, fuel cell, and method for manufacturing the same
JP2010129397A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Electrode for fuel cell
JP2010135117A (en) * 2008-12-02 2010-06-17 Toshiba Fuel Cell Power Systems Corp Fuel cell electrode, manufacturing method therefor, and fuel cell
JP2012235585A (en) * 2011-04-28 2012-11-29 Sony Corp Drive unit, lens module, image pickup unit, fuel cell, and ion exchange resin
CN102759786A (en) * 2011-04-28 2012-10-31 索尼公司 Drive unit, lens module, image pickup unit, fuel cell, and ion exchange resin
US9397360B2 (en) 2011-04-28 2016-07-19 Dexerials Corporation Drive unit, lens module, image pickup unit, fuel cell, and ion exchange resin
JP2015029978A (en) * 2013-08-06 2015-02-16 株式会社東芝 Oxygen reduction device
JP2017511590A (en) * 2014-03-24 2017-04-20 エノセル リミテッドEnocell Limited Proton conducting membrane and fuel cell comprising the same
JP2014160671A (en) * 2014-04-18 2014-09-04 Nissan Motor Co Ltd Membrane electrode assembly
JP2016004658A (en) * 2014-06-16 2016-01-12 学校法人早稲田大学 Electrolyte membrane, membrane electrode assembly, fuel cell, and method of producing electrolyte membrane
WO2022123917A1 (en) * 2020-12-07 2022-06-16 日清紡ホールディングス株式会社 Gel electrolyte

Also Published As

Publication number Publication date
JP3498321B2 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
JP3498321B2 (en) Polymer solid oxide fuel cell
US7183017B2 (en) Composite polymer electrolytes for proton exchange membrane fuel cells
JP3375200B2 (en) Polymer solid electrolyte composition
Watanabe et al. Self‐humidifying polymer electrolyte membranes for fuel cells
EP0631337B1 (en) Electrochemical cell comprising solid polymer electrolyte composition.
US8389173B2 (en) Method for activating fuel cell
US5523181A (en) Polymer solid-electrolyte composition and electrochemical cell using the composition
JP3427003B2 (en) Fuel cell
JP4233208B2 (en) Fuel cell
JP2000106202A (en) Fuel cell
JP3385554B2 (en) Polymer solid electrolyte composition and electrochemical cell using the composition
JP3459615B2 (en) Electrode for fuel cell and fuel cell
JP2002164057A (en) Solid high molecular fuel cell and method of manufacturing the same
JP2000195527A (en) Fuel cell
JP3962548B2 (en) Polymer electrolyte fuel cell
JP4880131B2 (en) Gas diffusion electrode and fuel cell using the same
JP4438283B2 (en) Membrane electrode assembly
JP2002100367A (en) Solid high polymer molecule type fuel cell
JP2001093544A (en) Electrode of fuel cell, method for manufacturing and fuel cell
JP2000251901A (en) Cell for fuel cell and fuel cell using it
JP2003272637A (en) Electrode junction body for solid polymer fuel cell
JP3495668B2 (en) Fuel cell manufacturing method
JP2004349180A (en) Membrane electrode assembly
JP2000277130A (en) Method for producing solid polymer type fuel cell and electrolyte film
JP2002216780A (en) Electrode member, battery using the same and electrode member producing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees