JPH06109693A - Biosensor and measurement method using the same - Google Patents

Biosensor and measurement method using the same

Info

Publication number
JPH06109693A
JPH06109693A JP4261184A JP26118492A JPH06109693A JP H06109693 A JPH06109693 A JP H06109693A JP 4261184 A JP4261184 A JP 4261184A JP 26118492 A JP26118492 A JP 26118492A JP H06109693 A JPH06109693 A JP H06109693A
Authority
JP
Japan
Prior art keywords
electrode system
electrode
layer
main electrode
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4261184A
Other languages
Japanese (ja)
Other versions
JP3024394B2 (en
Inventor
Toshihiko Yoshioka
俊彦 吉岡
Shiro Nankai
史朗 南海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4261184A priority Critical patent/JP3024394B2/en
Publication of JPH06109693A publication Critical patent/JPH06109693A/en
Application granted granted Critical
Publication of JP3024394B2 publication Critical patent/JP3024394B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a biosensor which can determine the specific constituent in a sample liquid rapidly and speedily by providing a reaction layer, a main electrode system, and a sub electrode system on an insulation substrate and further a hydrophilic macromolecular layer between both electrode systems. CONSTITUTION:A silver paste is printed on an insulation substrate 1 by screen printing, thus forming leads 2-5. Then, a conductive carbon paste containing resin binder is printed for forming a main electrode system measurement electrode 6 and a sub electrode system (a measuring electrode 8 and a counter electrode 9). The measurement electrode 6, the measurement electrode 8, and the counter electrode 9 contact the lead 2, the lead 4, and the lead 5, respectively. An insulation layer 10 is formed by printing an insulation paste, the insulation layer 10 covers the outer-periphery part of the measurement electrode 6, thus covering the leads 2-5 partially and the measurement electrode 8 and the counter electrode 9 completely. A conductive carbon paste containing the resin binder is printed so that it contacts the lead 3, thus forming a main electrode system counter electrode 7. A reaction layer 31 of hydrophilic macromolecule, oxygen, and electron receptor mixed liquid is formed on the main electrode system, a hydrophilic macromolecular layer 32 is formed between both electrodes, and then a cover 22 and a spacer 21 are adhered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料中の特定成分につ
いて、迅速かつ高精度な定量を簡便に実施することので
きるバイオセンサおよびそれを用いた基質濃度の測定方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biosensor capable of easily and rapidly quantifying a specific component in a sample and a method for measuring a substrate concentration using the biosensor.

【0002】[0002]

【従来の技術】試料中の特定成分について、試料液の希
釈や撹拌などを行なう事なく簡易に定量しうる方式とし
て、以下のようなバイオセンサが提案されている(特開
平2−310457号公報)。
2. Description of the Related Art The following biosensor has been proposed as a method for easily quantifying a specific component in a sample without diluting or stirring the sample solution (Japanese Patent Application Laid-Open No. 2-310457). ).

【0003】このバイオセンサは、絶縁性の基板上に形
成した電極系上に親水性高分子と酵素および電子受容体
からなる酵素反応層を形成し、さらに妨害物質除去用の
電極部を付加したものである。
In this biosensor, an enzyme reaction layer composed of a hydrophilic polymer, an enzyme and an electron acceptor is formed on an electrode system formed on an insulating substrate, and an electrode portion for removing interfering substances is further added. It is a thing.

【0004】以下、上記バイオセンサの動作を、グルコ
ースセンサを例にして説明する。グルコースを含む試料
液を上記バイオセンサへ供給すると、妨害物質除去用の
電極部で試料液中に存在する還元性の物質は電解酸化さ
れる。この後に酵素反応層が溶解し、酵素反応層中の酸
化還元酵素であるグルコースオキシダーゼによってグル
コースは酸化される。この時、酵素反応層中の電子受容
体が還元される。試料液中の還元性の物質は予め妨害物
質除去用の電極部で除去されるために、電子受容体を還
元させるなどの妨害を避けることができる。
The operation of the biosensor will be described below by taking a glucose sensor as an example. When a sample solution containing glucose is supplied to the biosensor, the reducing substance existing in the sample solution is electrolytically oxidized at the electrode portion for removing interfering substances. After this, the enzyme reaction layer is dissolved, and glucose is oxidized by glucose oxidase which is a redox enzyme in the enzyme reaction layer. At this time, the electron acceptor in the enzyme reaction layer is reduced. Since the reducing substance in the sample solution is previously removed by the electrode portion for removing the interfering substance, it is possible to avoid interference such as reducing the electron acceptor.

【0005】試料液中のグルコースが全て反応した段階
で、電極系を構成する測定極と対極間に適当な一定電圧
を印加すると、電子受容体の還元体が酸化される。この
酸化電流値を測定することにより、試料液中のグルコー
ス濃度を定量することができる。
When an appropriate constant voltage is applied between the measuring electrode and the counter electrode constituting the electrode system at the stage where all glucose in the sample solution has reacted, the reduced form of the electron acceptor is oxidized. By measuring this oxidation current value, the glucose concentration in the sample solution can be quantified.

【0006】[0006]

【発明が解決しようとする課題】上記のような従来の妨
害物質除去用の電極を有するバイオセンサを用いて、還
元性の物質を多量に含有する試料液中の特定基質を定量
する場合には、以下のような課題を有していた。
When quantifying a specific substrate in a sample solution containing a large amount of a reducing substance by using a biosensor having a conventional electrode for removing an interfering substance as described above, , Had the following problems.

【0007】試料液中の還元性の物質濃度が高い場合に
は、前記還元性の物質が妨害物質除去用の電極部におい
て全て電解酸化される前に試料液が酵素反応層に到達
し、電子受容体を還元させるかあるいは電極で直接酸化
されるなどして、センサ応答に影響を与え、測定精度が
低下するといった問題があった。
When the concentration of the reducing substance in the sample solution is high, the sample solution reaches the enzyme reaction layer before the reducing substance is completely electrolytically oxidized in the electrode portion for removing the interfering substance, and the electron There is a problem that the sensor response is affected by reducing the receptor or directly oxidizing it at the electrode, and the measurement accuracy is reduced.

【0008】[0008]

【課題を解決するための手段】本発明おいては、絶縁性
の基板上に反応層と、主電極系と副電極系とを設け、さ
らに前記主電極系と副電極系の間に親水性高分子層を設
けたバイオセンサを構成する。
In the present invention, a reaction layer, a main electrode system and a sub electrode system are provided on an insulating substrate, and a hydrophilic layer is provided between the main electrode system and the sub electrode system. A biosensor provided with a polymer layer is constructed.

【0009】さらに前記副電極系により試料液中に含ま
れる還元性の物質濃度を定量し、正確な基質濃度を定量
する測定方法を用いる。
Further, a measuring method is used in which the concentration of the reducing substance contained in the sample solution is quantified by the auxiliary electrode system and the concentration of the substrate is accurately quantified.

【0010】[0010]

【作用】この構成により、測定対象基質および還元性の
物質を含む試料液をバイオセンサに供給すると、副電極
系において試料液中の還元性の物質を定量することがで
きる。一方、主電極系においては、試料液に溶解した反
応層中の酵素と測定対象となる基質との間で酵素反応が
進行し、電子受容体が還元される。前記電子受容体は、
同時に試料液中の還元性の物質によっても還元される。
従って、主電極系上における電子受容体の還元体の生成
量は、測定対象となる基質濃度と還元性の物質との和に
依存する。
With this configuration, when the sample liquid containing the substrate to be measured and the reducing substance is supplied to the biosensor, the reducing substance in the sample liquid can be quantified in the auxiliary electrode system. On the other hand, in the main electrode system, the enzyme reaction proceeds between the enzyme in the reaction layer dissolved in the sample solution and the substrate to be measured, and the electron acceptor is reduced. The electron acceptor is
At the same time, it is also reduced by the reducing substance in the sample solution.
Therefore, the amount of the reduced product of the electron acceptor produced on the main electrode system depends on the sum of the concentration of the substrate to be measured and the reducing substance.

【0011】本発明のバイオセンサによると、主電極系
と副電極系との間に形成された親水性高分子層が試料液
を含み膨潤し、拡散などによる主電極系と副電極系間の
物質移動を最小限に抑制する効果が得られる。反応層を
構成する酵素が副電極系上に存在すると、副電極系上で
測定対象基質が酵素と反応し、還元性の物質を正確に定
量することが困難となる。したがって、前記親水性高分
子層によって副電極系上に反応層中の酵素が移動するこ
とを最大限防御することができ、その結果高精度なセン
サ応答を得ることが可能となる。
According to the biosensor of the present invention, the hydrophilic polymer layer formed between the main electrode system and the sub electrode system is swollen by containing the sample liquid, and is swelled between the main electrode system and the sub electrode system by diffusion or the like. The effect of suppressing the mass transfer to the minimum can be obtained. If the enzyme forming the reaction layer is present on the sub-electrode system, the substrate to be measured reacts with the enzyme on the sub-electrode system, making it difficult to accurately quantify the reducing substance. Therefore, the hydrophilic polymer layer can maximally prevent the enzyme in the reaction layer from moving onto the auxiliary electrode system, and as a result, it becomes possible to obtain a highly accurate sensor response.

【0012】[0012]

【実施例】以下、本発明を実施例により説明する。EXAMPLES The present invention will be described below with reference to examples.

【0013】(実施例1)バイオセンサの一例として、
グルコースセンサについて説明する。
(Example 1) As an example of a biosensor,
The glucose sensor will be described.

【0014】図1は本発明のバイオセンサの一実施例と
して作製したグルコースセンサの分解斜視図、図2は同
グルコースセンサのうち反応層を除いた分解斜視図、図
3は同グルコースセンサのベース平面図である。
FIG. 1 is an exploded perspective view of a glucose sensor manufactured as an embodiment of the biosensor of the present invention, FIG. 2 is an exploded perspective view of the glucose sensor without a reaction layer, and FIG. 3 is a base of the glucose sensor. It is a top view.

【0015】ポリエチレンテレフタレートからなる絶縁
性の基板1に、スクリーン印刷により銀ペ−ストを印刷
し、リ−ド2、3、4、5を形成した。つぎに樹脂バイ
ンダーを含む導電性カーボンペーストを印刷して主電極
系の測定極6と副電極系(測定極8、対極9)を形成し
た。測定極6はリード2と、測定極8はリード4と、対
極9はリード5とそれぞれ接触している。
Silver paste was printed on the insulating substrate 1 made of polyethylene terephthalate by screen printing to form leads 2, 3, 4, and 5. Next, a conductive carbon paste containing a resin binder was printed to form a measurement electrode 6 of the main electrode system and a sub electrode system (measurement electrode 8 and counter electrode 9). The measuring electrode 6 is in contact with the lead 2, the measuring electrode 8 is in contact with the lead 4, and the counter electrode 9 is in contact with the lead 5.

【0016】つぎに絶縁性ペーストを印刷して絶縁層1
0を形成した。絶縁層10は、測定極6の外周部を覆っ
ており、これによって測定極6の露出部分の面積を一定
に保っている。さらに、絶縁層6は、リード2、3、
4、5を部分的に覆っている。副電極系(測定極8、対
極9)は絶縁層10によって完全には覆われていない。
Next, the insulating layer 1 is printed by printing an insulating paste.
Formed 0. The insulating layer 10 covers the outer peripheral portion of the measurement electrode 6, and thereby keeps the area of the exposed portion of the measurement electrode 6 constant. Further, the insulating layer 6 includes the leads 2, 3,
It partially covers 4,5. The auxiliary electrode system (measurement electrode 8, counter electrode 9) is not completely covered by the insulating layer 10.

【0017】つぎに、樹脂バインダーを含む導電性カー
ボンペーストをリード3と接触するように印刷して主電
極系の対極7を形成した。以上により図3に示すベース
11を作製した。
Next, a conductive carbon paste containing a resin binder was printed so as to come into contact with the leads 3 to form the counter electrode 7 of the main electrode system. As described above, the base 11 shown in FIG. 3 was produced.

【0018】つぎに、上記主電極系上に酵素としてグル
コースオキシダーゼ(EC1.1.3.4;以下GOD
と略す)および電子受容体としてフェリシアン化カリウ
ムを親水性高分子としてカルボキシメチルセルロ−ス
(以下CMCと略す)の0.5wt%水溶液に溶解させた
混合水溶液を滴下し、乾燥させて反応層31を形成し
た。
Next, glucose oxidase (EC 1.1.3.4; hereinafter referred to as GOD) was used as an enzyme on the main electrode system.
And a ferricyanide potassium as an electron acceptor dissolved in a 0.5 wt% aqueous solution of carboxymethyl cellulose (hereinafter abbreviated as CMC) as a hydrophilic polymer are added dropwise and dried to form the reaction layer 31. Formed.

【0019】このように親水性高分子、酵素および電子
受容体の混合溶液を一度に滴下、乾燥させることによっ
て製造工程を簡略化させることができる。
As described above, the manufacturing process can be simplified by dropping the mixed solution of the hydrophilic polymer, the enzyme and the electron acceptor at once and drying.

【0020】つぎに、1wt%CMC水溶液を絶縁性の基
板1上の主電極系と副電極系の間に滴下、乾燥させてC
MCからなる親水性高分子層32を形成した。
Next, a 1 wt% CMC aqueous solution is dropped between the main electrode system and the sub electrode system on the insulating substrate 1 and dried to form C.
A hydrophilic polymer layer 32 made of MC was formed.

【0021】上記のようにして反応層を形成した後、カ
バー22およびスペーサー21を図2中、一点鎖線で示
すような位置関係をもって接着した。カバーおよびスペ
ーサーに高分子などの透明な材料を用いると、反応層の
状態や試料液の導入状況を外部から極めて容易に確認す
ることが可能である。
After forming the reaction layer as described above, the cover 22 and the spacer 21 were adhered to each other in a positional relationship shown by a chain line in FIG. When a transparent material such as a polymer is used for the cover and the spacer, the state of the reaction layer and the introduction state of the sample solution can be confirmed very easily from the outside.

【0022】また、カバーを装着するとカバーとスペー
サーによって出来る空間部の毛細管現象によって、試料
液はセンサ先端の試料供給孔23に接触させるだけの簡
易操作で容易に反応層部分および副電極系部分へ導入さ
れる。
Further, when the cover is attached, due to the capillarity of the space formed by the cover and the spacer, the sample liquid can be easily transferred to the reaction layer portion and the sub-electrode system portion by simply bringing the sample liquid into contact with the sample supply hole 23 at the sensor tip. be introduced.

【0023】なお、試料液の供給をより一層円滑にする
ためには、カバーおよびスペーサーを接着する前に、レ
シチンの有機溶媒溶液を試料供給部(センサ先端部)か
ら反応層31にわたる部位に展開し、乾燥させることで
レシチン層を形成するとよい。
In order to make the supply of the sample solution even smoother, an organic solvent solution of lecithin is spread over the reaction layer 31 from the sample supply section (sensor tip) before the cover and the spacer are bonded. Then, the lecithin layer may be formed by drying.

【0024】前記レシチン層を設けた場合には、絶縁性
の基板1とカバー22とスペーサー21によって生じる
空間部が毛細管現象を発現し得ない程度の大きさとなる
場合においても、試料液の供給が可能となる。
When the lecithin layer is provided, the sample liquid can be supplied even when the space formed by the insulating substrate 1, the cover 22 and the spacer 21 is of a size that cannot cause the capillary phenomenon. It will be possible.

【0025】上記のように作製したグルコースセンサに
試料液としてグルコースとアスコルビン酸の混合水溶液
3μlを試料供給孔23より供給し、10秒後に副電極
系の対極7を基準にして測定極8に+1Vを印加し、5
秒後の電流値を測定したところ、試料液中のアスコルビ
ン酸濃度に対応した値が得られた。
3 μl of a mixed aqueous solution of glucose and ascorbic acid was supplied as a sample solution to the glucose sensor prepared as described above through the sample supply hole 23, and after 10 seconds, +1 V was applied to the measurement electrode 8 with the counter electrode 7 of the auxiliary electrode system as a reference. And apply 5
When the current value after the second was measured, a value corresponding to the ascorbic acid concentration in the sample solution was obtained.

【0026】さらに、試料液を供給してから1分後に主
電極系の対極7を基準にして測定極6に+0.5Vを印
加し、5秒後の電流値Iを測定した。Iはフェリシアン
化カリウムがアスコルビン酸によって還元されて生成し
たフェロシアン化カリウムの酸化電流と、グルコースが
GODによって酸化された際に還元されて生成したフェ
ロシアン化カリウムの酸化電流の和である。
Further, 1 minute after supplying the sample solution, +0.5 V was applied to the measuring electrode 6 with reference to the counter electrode 7 of the main electrode system, and the current value I was measured after 5 seconds. I is the sum of the oxidation current of potassium ferrocyanide produced by reducing potassium ferricyanide with ascorbic acid and the oxidation current of potassium ferrocyanide produced by reducing glucose when it is oxidized by GOD.

【0027】副電極系によりアスコルビン酸濃度が既知
であるため、主電極系において得られた酸化電流値よ
り、試料液中のグルコース濃度を算出することができ
た。
Since the ascorbic acid concentration is known by the auxiliary electrode system, the glucose concentration in the sample solution could be calculated from the oxidation current value obtained by the main electrode system.

【0028】試料液をグルコースセンサに供給すると、
親水性高分子層32および反応層31が溶解する。反応
層31中のGODおよびフェリシアン化カリウムは特に
主電極系上に固定化されたものではないため、反応層が
試料液に溶解すると試料液中に拡散する。一方、本発明
の親水性高分子層32は試料液に溶解すると膨潤し、主
電極系と副電極系の間の物質拡散を抑制する効果が得ら
れる。したがって、短時間では反応層構成物質が副電極
系上へ移動することを防ぐことができ、その結果試料液
中のグルコース濃度を精度よく定量することができた。
When the sample solution is supplied to the glucose sensor,
The hydrophilic polymer layer 32 and the reaction layer 31 are dissolved. Since GOD and potassium ferricyanide in the reaction layer 31 are not particularly immobilized on the main electrode system, when the reaction layer dissolves in the sample solution, they diffuse into the sample solution. On the other hand, the hydrophilic polymer layer 32 of the present invention swells when dissolved in the sample liquid, and an effect of suppressing substance diffusion between the main electrode system and the sub electrode system is obtained. Therefore, it was possible to prevent the reaction layer constituents from moving onto the auxiliary electrode system in a short time, and as a result, the glucose concentration in the sample solution could be quantified with high accuracy.

【0029】(実施例2)ポリエチレンテレフタレート
からなる絶縁性基板1上に、実施例1と同様にしてスク
リーン印刷により図3に示したベース11を形成した。
この主電極系(測定極6、対極7)上に実施例1と同様
にして、GODとフェリシアン化カリウムとCMCの混
合水溶液を滴下した。
(Example 2) On the insulating substrate 1 made of polyethylene terephthalate, the base 11 shown in FIG. 3 was formed by screen printing in the same manner as in Example 1.
A mixed aqueous solution of GOD, potassium ferricyanide, and CMC was dropped onto this main electrode system (measurement electrode 6, counter electrode 7) in the same manner as in Example 1.

【0030】つぎに、副電極系(測定極8、対極9)上
にフェリシアン化カリウムとCMCの混合水溶液を滴下
し、さらに、主電極系と副電極系の間に親水性高分子と
してポリビニルピロリドン(以後、PVPと略す)の2
wt%水溶液を滴下、乾燥させて主電極系上に反応層を、
副電極系上にフェリシアン化カリウム−CMC層を、主
電極系と副電極系の間にPVPからなる親水性高分子層
をそれぞれ形成した。
Next, a mixed aqueous solution of potassium ferricyanide and CMC was dropped onto the sub electrode system (measurement electrode 8 and counter electrode 9), and polyvinyl pyrrolidone (hydrophilic polymer) was added as a hydrophilic polymer between the main electrode system and the sub electrode system. Hereafter, abbreviated as PVP) 2
A wt% aqueous solution is dropped and dried to form a reaction layer on the main electrode system.
A potassium ferricyanide-CMC layer was formed on the sub electrode system, and a hydrophilic polymer layer made of PVP was formed between the main electrode system and the sub electrode system.

【0031】さらに実施例1と同様にして、カバーおよ
びスペーサーと共に一体化してグルコースセンサを作製
した。
Further, in the same manner as in Example 1, a glucose sensor was manufactured by integrating it with a cover and a spacer.

【0032】上記のように作製したグルコースセンサに
試料液としてグルコースとアスコルビン酸の混合水溶液
3μlを試料供給孔より供給すると、副電極系上のフェ
リシアン化カリウム−CMC層、PVPからなる親水性
高分子層、主電極系上の反応層が順次溶解した。
When 3 μl of a mixed aqueous solution of glucose and ascorbic acid was supplied as a sample solution to the glucose sensor prepared as described above through the sample supply hole, potassium ferricyanide-CMC layer on the sub-electrode system and hydrophilic polymer layer composed of PVP. , The reaction layers on the main electrode system were sequentially dissolved.

【0033】実施例1と同様に、試料液を供給して10
秒後に副電極系の対極を基準にして副電極系の作用極に
+0.5Vを印加し、5秒後の酸化電流値を測定し、I
0とした。
As in Example 1, the sample solution was supplied to
After 0.5 seconds, +0.5 V was applied to the working electrode of the sub electrode system with reference to the counter electrode of the sub electrode system, and the oxidation current value after 5 seconds was measured.
It was set to 0 .

【0034】副電極系上のフェリシアン化カリウムはア
スコルビン酸によって還元され、フェロシアン化カリウ
ムが生成する。前記+0.5Vの印加によって得られる
酸化電流I0はこのフェロシアン化カリウムの酸化によ
るものである。従って、試料液中のアスコルビン酸濃度
に比例する。
Potassium ferricyanide on the secondary electrode system is reduced by ascorbic acid to produce potassium ferrocyanide. The oxidation current I 0 obtained by applying +0.5 V is due to the oxidation of potassium ferrocyanide. Therefore, it is proportional to the ascorbic acid concentration in the sample solution.

【0035】さらに、試料液を供給してから1分後に主
電極系の対極を基準にして主電極系の作用極に+0.5
Vを印加し、5秒後の電流値I1を測定した。I1はアス
コルビン酸による還元で生成したフェロシアン化カリウ
ムの酸化電流と、グルコースがGODによって酸化され
た際の還元で生成したフェロシアン化カリウムの和の酸
化電流である。I0よりアスコルビン酸濃度を定量し、
その結果とI1より試料液中のグルコース濃度を算出す
ることができた。
Further, one minute after supplying the sample solution, +0.5 is applied to the working electrode of the main electrode system with reference to the counter electrode of the main electrode system.
V was applied and the current value I 1 after 5 seconds was measured. I 1 is an oxidation current of potassium ferrocyanide produced by reduction with ascorbic acid and a sum of potassium ferrocyanide produced by reduction when glucose is oxidized by GOD. Quantifying the ascorbic acid concentration from I 0 ,
The glucose concentration in the sample solution could be calculated from the result and I 1 .

【0036】PVPからなる親水性高分子層は、実施例
1と同様に反応層中のGODが副電極系上に移動するの
を防御する効果を持つものである。
The hydrophilic polymer layer made of PVP has the effect of preventing the GOD in the reaction layer from moving onto the sub-electrode system, as in Example 1.

【0037】(実施例3)ポリエチレンテレフタレート
からなる絶縁性基板1上に、実施例1と同様にしてスク
リーン印刷により図3に示したベース11を形成した。
この主電極系(測定極6、対極7)上に、GODとCM
Cの混合水溶液を滴下した。さらに、主電極系と副電極
系の間に親水性高分子としてヒドロキシエチルセルロー
ス(以後、HECと略す)水溶液を滴下、乾燥させて主
電極系上に反応層を、主電極系と副電極系の間にHEC
からなる親水性高分子層をそれぞれ形成した。さらに実
施例1と同様にして、カバーおよびスペーサーと共に一
体化してグルコースセンサを作製した。
Example 3 The base 11 shown in FIG. 3 was formed on the insulating substrate 1 made of polyethylene terephthalate by screen printing in the same manner as in Example 1.
GOD and CM on this main electrode system (measurement electrode 6, counter electrode 7)
The mixed aqueous solution of C was added dropwise. Further, an aqueous solution of hydroxyethyl cellulose (hereinafter abbreviated as HEC) as a hydrophilic polymer is dropped between the main electrode system and the sub electrode system and dried to form a reaction layer on the main electrode system, and a reaction layer of the main electrode system and the sub electrode system. In between
A hydrophilic polymer layer composed of was formed. Further, in the same manner as in Example 1, the glucose sensor was manufactured by integrating it with the cover and the spacer.

【0038】上記のように作製したグルコースセンサに
試料液としてグルコースとアスコルビン酸の混合水溶液
3μlを試料供給孔より供給すると、HECからなる親
水性高分子層および主電極系上の反応層が順次溶解し
た。
When 3 μl of a mixed aqueous solution of glucose and ascorbic acid was supplied as a sample solution to the glucose sensor prepared as described above through the sample supply hole, the hydrophilic polymer layer made of HEC and the reaction layer on the main electrode system were sequentially dissolved. did.

【0039】試料液を供給して10秒後に副電極系の対
極を基準にして副電極系の作用極に+1Vを印加し、5
秒後の電流値を測定したところ、試料液中のアスコルビ
ン酸濃度に対応した値が得られた。
10 seconds after supplying the sample liquid, +1 V was applied to the working electrode of the sub-electrode system with reference to the counter electrode of the sub-electrode system, and 5
When the current value after the second was measured, a value corresponding to the ascorbic acid concentration in the sample solution was obtained.

【0040】つぎに、試料液を供給してから1分後に主
電極系の対極を基準にして主電極系の作用極に+1Vを
印加し、5秒後の電流値Iを測定した。試料液中のグル
コースはGODの作用で酸素と反応して過酸化水素を生
成する。生成した過酸化水素は、上記一定電圧の印加に
より酸化され、酸化電流が得られる。さらに、試料液中
のアスコルビン酸も上記一定電圧の印加により酸化さ
れ、酸化電流が得られる。従って、主電極系の電流値I
はグルコース濃度とアスコルビン酸濃度の両方に依存す
るため、主電極系の電流値Iと副電極系で得たアスコル
ビン酸濃度より、グルコース濃度を算出することができ
た。
Then, 1 minute after supplying the sample solution, +1 V was applied to the working electrode of the main electrode system with reference to the counter electrode of the main electrode system, and the current value I after 5 seconds was measured. Glucose in the sample solution reacts with oxygen by the action of GOD to generate hydrogen peroxide. The generated hydrogen peroxide is oxidized by applying the above-mentioned constant voltage, and an oxidizing current is obtained. Further, ascorbic acid in the sample solution is also oxidized by applying the above-mentioned constant voltage, and an oxidizing current is obtained. Therefore, the current value I of the main electrode system
Depends on both the glucose concentration and the ascorbic acid concentration, the glucose concentration could be calculated from the current value I of the main electrode system and the ascorbic acid concentration obtained by the auxiliary electrode system.

【0041】上記測定において、GODが副電極系上へ
移動すると正確な測定ができなくなるが、本発明のHE
Cからなる親水性高分子層が試料液により膨潤し、主電
極系と副電極系間の物質移動を抑制したために、GOD
の副電極系上への移動を阻止し、その結果グルコースの
定量を高精度に実施することが可能となる。
In the above measurement, if the GOD moves onto the sub-electrode system, accurate measurement cannot be performed.
The hydrophilic polymer layer made of C swelled with the sample solution and suppressed mass transfer between the main electrode system and the sub electrode system.
Is prevented from moving onto the auxiliary electrode system, and as a result, glucose can be quantified with high accuracy.

【0042】なお、上記実施例においては反応層31、
親水性高分子層32、フェリシアン化カリウム−CMC
層は電極系表面に接して形成する方法について述べた
が、必ずしもその必要はない。カバーおよびスペーサー
と一体化する場合には、カバーとスペーサーと絶縁性の
基板とによって電極系上部に空間部が形成される。前記
カバー、スペーサー、絶縁性の基板の前記空間部の壁面
に相当する部位であれば適当な場所に反応層、親水性高
分子層、フェリシアン化カリウム−CMC層を形成する
ことができる。センサに供給された試料液は前記空間部
を満たすため、上記効果を得ることができる。
In the above embodiment, the reaction layer 31,
Hydrophilic polymer layer 32, potassium ferricyanide-CMC
Although the method of forming the layer in contact with the surface of the electrode system has been described, it is not always necessary. When integrated with the cover and the spacer, the cover, the spacer, and the insulating substrate form a space above the electrode system. The reaction layer, the hydrophilic polymer layer, and the potassium ferricyanide-CMC layer can be formed in appropriate places as long as they are the portions corresponding to the walls of the space of the cover, the spacer, and the insulating substrate. Since the sample liquid supplied to the sensor fills the space, the above effect can be obtained.

【0043】上記実施例ではグルコースセンサについて
示したが、本発明はスクロースセンサや、フルクトース
センサ、乳酸センサ、コレステロールセンサ、アルコー
ルセンサ、アミノ酸センサなど酵素の関与する反応系に
広く用いることができる。
Although the glucose sensor is shown in the above embodiments, the present invention can be widely used in a reaction system involving an enzyme such as a sucrose sensor, a fructose sensor, a lactic acid sensor, a cholesterol sensor, an alcohol sensor, and an amino acid sensor.

【0044】上記実施例では親水性高分子としてカルボ
キシメチルセルロース、ポリビニルピロリドンおよびヒ
ドロキシエチルセルロースを用いたが、これらに限定さ
れることはなく、ポリビニルアルコール、ゼラチンおよ
びその誘導体、アクリル酸およびその塩、メタアクリル
酸およびその塩、スターチおよびその誘導体、無水マレ
イン酸およびその塩、そして、セルロース誘導体、具体
的には、ヒドロキシプロピルセルロース、メチルセルロ
ース、エチルセルロース、エチルヒドロキシエチルセル
ロース、カルボキシメチルエチルセルロースを用いても
同様の効果が得られた。
Although carboxymethylcellulose, polyvinylpyrrolidone and hydroxyethylcellulose were used as the hydrophilic polymer in the above-mentioned examples, the hydrophilic polymer is not limited to them, and polyvinyl alcohol, gelatin and its derivatives, acrylic acid and its salts, and methacryl. Acid and its salt, starch and its derivative, maleic anhydride and its salt, and cellulose derivative, specifically, hydroxypropyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl ethyl cellulose, the same effect can be obtained. Was obtained.

【0045】一方、電子受容体としては、上記実施例に
示したフェリシアン化カリウム以外に、p−ベンゾキノ
ン、フェナジンメトサルフェート、メチレンブルー、フ
ェロセン誘導体なども使用できる。
On the other hand, as the electron acceptor, in addition to potassium ferricyanide shown in the above examples, p-benzoquinone, phenazine methosulfate, methylene blue, ferrocene derivative and the like can be used.

【0046】さらに、酵素としてはグルコースオキシダ
ーゼ以外に、フルクトースデヒドロゲナーゼ、インベル
ターゼ、ムタロターゼ、乳酸オキシダーゼ、コレステロ
ールオキシダーゼ、アルコールオキシダーゼ、キサンチ
ンオキシダーゼ、アミノ酸オキシダーゼ等も用いること
ができる。
Further, in addition to glucose oxidase, fructose dehydrogenase, invertase, mutarotase, lactate oxidase, cholesterol oxidase, alcohol oxidase, xanthine oxidase, amino acid oxidase and the like can be used as the enzyme.

【0047】また、上記実施例では、測定極と対極のみ
の二極電極系について述べたが、参照極を加えた三電極
方式にすれば、より正確な測定が可能である。
Further, in the above embodiment, the bipolar electrode system having only the measuring electrode and the counter electrode was described, but more accurate measurement is possible by using the three-electrode system in which the reference electrode is added.

【0048】[0048]

【発明の効果】以上のように本発明のバイオセンサによ
ると、センサ応答に妨害を与えるような還元性の物質が
含まれる試料液についても、妨害物除去の前処理をする
ことなく高精度な測定をすることができる。
As described above, according to the biosensor of the present invention, even a sample solution containing a reducing substance that interferes with the sensor response can be processed with high accuracy without pretreatment for removing the interferent. You can take measurements.

【0049】さらに、本発明のバイオセンサを用いた基
質濃度の測定方法によると、センサ応答のばらつきを極
めて小さくすることができる。
Further, according to the substrate concentration measuring method using the biosensor of the present invention, the variation in sensor response can be made extremely small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のバイオセンサの実施例のグルコースセ
ンサの分解斜視図
FIG. 1 is an exploded perspective view of a glucose sensor of an embodiment of a biosensor of the present invention.

【図2】同グルコースセンサの反応層を除いた分解斜視
FIG. 2 is an exploded perspective view of the glucose sensor excluding a reaction layer.

【図3】同グルコースセンサのベース平面図FIG. 3 is a base plan view of the glucose sensor.

【符号の説明】[Explanation of symbols]

1 絶縁性の基板 2、3、4、5 リード 6 主電極系の測定極 7 主電極系の対極 8 副電極系の測定極 9 副電極系の対極 10 絶縁層 11 ベース 21 スペーサー 22 カバー 23 試料供給孔 24 空気孔 31 反応層 32 親水性高分子層 1 Insulating substrate 2, 3, 4, 5 Lead 6 Measurement electrode of main electrode system 7 Counter electrode of main electrode system 8 Measurement electrode of auxiliary electrode system 9 Counter electrode of auxiliary electrode system 10 Insulating layer 11 Base 21 Spacer 22 Cover 23 Sample Supply hole 24 Air hole 31 Reaction layer 32 Hydrophilic polymer layer

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7235−2J G01N 27/46 336 B Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 7235-2J G01N 27/46 336 B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】絶縁性の基板と、前記絶縁性の基板上に形
成された主電極系および副電極系と、親水性高分子層
と、酵素を含む反応層とから構成され、前記反応層は前
記主電極系上に直接または間接的に形成され、前記親水
性高分子層が前記主電極系と副電極系との間に配置され
たことを特徴とするバイオセンサ。
1. A reaction layer comprising an insulating substrate, a main electrode system and a sub electrode system formed on the insulating substrate, a hydrophilic polymer layer, and a reaction layer containing an enzyme. Is formed directly or indirectly on the main electrode system, and the hydrophilic polymer layer is arranged between the main electrode system and the sub electrode system.
【請求項2】反応層が電子受容体を含有することを特徴
とする請求項1記載のバイオセンサ。
2. The biosensor according to claim 1, wherein the reaction layer contains an electron acceptor.
【請求項3】副電極系上に電子受容体を含有することを
特徴とする請求項2記載のバイオセンサ。
3. The biosensor according to claim 2, further comprising an electron acceptor on the auxiliary electrode system.
【請求項4】請求項1記載のバイオセンサを用い、主電
極系および副電極系それぞれの電気出力の差に基づいて
基質濃度を定量することを特徴とする測定方法。
4. A measuring method, which comprises using the biosensor according to claim 1 and quantifying a substrate concentration based on a difference in electric output between the main electrode system and the auxiliary electrode system.
JP4261184A 1992-09-30 1992-09-30 Biosensor and measurement method using the same Expired - Lifetime JP3024394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4261184A JP3024394B2 (en) 1992-09-30 1992-09-30 Biosensor and measurement method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4261184A JP3024394B2 (en) 1992-09-30 1992-09-30 Biosensor and measurement method using the same

Publications (2)

Publication Number Publication Date
JPH06109693A true JPH06109693A (en) 1994-04-22
JP3024394B2 JP3024394B2 (en) 2000-03-21

Family

ID=17358303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4261184A Expired - Lifetime JP3024394B2 (en) 1992-09-30 1992-09-30 Biosensor and measurement method using the same

Country Status (1)

Country Link
JP (1) JP3024394B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051974A1 (en) * 1998-04-02 1999-10-14 Matsushita Electric Industrial Co., Ltd. Substrate determining method
US6212417B1 (en) 1998-08-26 2001-04-03 Matsushita Electric Industrial Co., Ltd. Biosensor
US6850790B2 (en) 1998-05-13 2005-02-01 Cygnus, Inc. Monitoring of physiological analytes
US7041210B2 (en) 1997-03-25 2006-05-09 Lifescan, Inc. Method of filling an amperometric cell
JP2006184270A (en) * 2004-12-03 2006-07-13 Sumitomo Electric Ind Ltd Sensor chip and manufacturing method therefor
JP2007108104A (en) * 2005-10-17 2007-04-26 Sumitomo Electric Ind Ltd Sensor chip and manufacturing method therefor
JP2007121018A (en) * 2005-10-26 2007-05-17 Sumitomo Electric Ind Ltd Sensor chip and its manufacturing method
WO2009060849A1 (en) * 2007-11-05 2009-05-14 Nippon Kayaku Kabushiki Kaisha Biosensor
JP2016095319A (en) * 2007-12-10 2016-05-26 バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC Method of depositing reagent material in test sensor
JP2018013400A (en) * 2016-07-20 2018-01-25 アークレイ株式会社 Ascorbic acid response electrode and biosensor
JP2018013385A (en) * 2016-07-20 2018-01-25 アークレイ株式会社 Ascorbic acid response electrode and biosensor
JP2019078638A (en) * 2017-10-25 2019-05-23 アークレイ株式会社 Ascorbic acid measurement electrode and biosensor
CN115078508A (en) * 2022-06-21 2022-09-20 爱森斯(江苏)生物科技有限公司 Electrochemical biosensor and preparation method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041210B2 (en) 1997-03-25 2006-05-09 Lifescan, Inc. Method of filling an amperometric cell
US6340428B1 (en) 1998-04-02 2002-01-22 Matsushita Electric Industrial Co., Inc. Device and method for determining the concentration of a substrate
US6790327B2 (en) 1998-04-02 2004-09-14 Matsushita Electric Industrial Co., Ltd. Device and method for determining the concentration of a substrate
WO1999051974A1 (en) * 1998-04-02 1999-10-14 Matsushita Electric Industrial Co., Ltd. Substrate determining method
US7873399B2 (en) 1998-05-13 2011-01-18 Animas Corporation Monitoring of physiological analytes
US6850790B2 (en) 1998-05-13 2005-02-01 Cygnus, Inc. Monitoring of physiological analytes
US7174199B2 (en) 1998-05-13 2007-02-06 Animas Technologies, Llc Monitoring a physiological analytes
US6212417B1 (en) 1998-08-26 2001-04-03 Matsushita Electric Industrial Co., Ltd. Biosensor
JP2006184270A (en) * 2004-12-03 2006-07-13 Sumitomo Electric Ind Ltd Sensor chip and manufacturing method therefor
JP2007108104A (en) * 2005-10-17 2007-04-26 Sumitomo Electric Ind Ltd Sensor chip and manufacturing method therefor
JP2007121018A (en) * 2005-10-26 2007-05-17 Sumitomo Electric Ind Ltd Sensor chip and its manufacturing method
WO2009060849A1 (en) * 2007-11-05 2009-05-14 Nippon Kayaku Kabushiki Kaisha Biosensor
JP5068825B2 (en) * 2007-11-05 2012-11-07 日本化薬株式会社 Biosensor
US8951395B2 (en) 2007-11-05 2015-02-10 Nippon Kayaku Kabushiki Kaisha Biosensor
JP2016095319A (en) * 2007-12-10 2016-05-26 バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC Method of depositing reagent material in test sensor
JP2018013400A (en) * 2016-07-20 2018-01-25 アークレイ株式会社 Ascorbic acid response electrode and biosensor
JP2018013385A (en) * 2016-07-20 2018-01-25 アークレイ株式会社 Ascorbic acid response electrode and biosensor
JP2019078638A (en) * 2017-10-25 2019-05-23 アークレイ株式会社 Ascorbic acid measurement electrode and biosensor
CN115078508A (en) * 2022-06-21 2022-09-20 爱森斯(江苏)生物科技有限公司 Electrochemical biosensor and preparation method thereof
CN115078508B (en) * 2022-06-21 2024-01-19 爱森斯(江苏)生物科技有限公司 Electrochemical biosensor and preparation method thereof

Also Published As

Publication number Publication date
JP3024394B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
JP3267936B2 (en) Biosensor
JP3375040B2 (en) Substrate quantification method
JP2760234B2 (en) Substrate concentration measurement method
JP3297630B2 (en) Biosensor
JP2001183330A (en) Biosensor
JP2001201479A (en) Biosensor
JP2658769B2 (en) Biosensor
JPH05340915A (en) Biosensor and measuring method using the same
JP2001330581A (en) Substrate concentration determination method
JP3024394B2 (en) Biosensor and measurement method using the same
JPH0816664B2 (en) Biosensor and manufacturing method thereof
JP3267933B2 (en) Substrate quantification method
JP3437016B2 (en) Biosensor and method of quantifying substrate using the same
JP3529081B2 (en) Cholesterol sensor and method for producing the same
JPH02245650A (en) Biosensor
JP3267907B2 (en) Biosensor and Substrate Quantification Method Using It
JP3611268B2 (en) Biosensor and manufacturing method thereof
JP3862779B2 (en) Biosensor
JP2702818B2 (en) Biosensor and manufacturing method thereof
JP2001201480A (en) Biosensor
JP3245103B2 (en) Biosensor and Substrate Quantification Method Using It
JP3370414B2 (en) Manufacturing method of biosensor
JPH02157646A (en) Biosensor
JP3115167B2 (en) Biosensor
JPH10227755A (en) Biosensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 13