JPH06105581A - Vector controller for induction motor - Google Patents

Vector controller for induction motor

Info

Publication number
JPH06105581A
JPH06105581A JP4255149A JP25514992A JPH06105581A JP H06105581 A JPH06105581 A JP H06105581A JP 4255149 A JP4255149 A JP 4255149A JP 25514992 A JP25514992 A JP 25514992A JP H06105581 A JPH06105581 A JP H06105581A
Authority
JP
Japan
Prior art keywords
voltage
current
torque
control
induction motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4255149A
Other languages
Japanese (ja)
Other versions
JP3057925B2 (en
Inventor
Yoshinori Nakano
義則 中野
Tadashi Ashikaga
正 足利
Yasuo Kataoka
康夫 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP4255149A priority Critical patent/JP3057925B2/en
Publication of JPH06105581A publication Critical patent/JPH06105581A/en
Application granted granted Critical
Publication of JP3057925B2 publication Critical patent/JP3057925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To enhance the response of a torque control while securing the stability of a current control system. CONSTITUTION:A vector control for an induction motor obtains a torque shaft voltage VQ and an exciting shaft voltage VD by a current control system of a digital calculation from a torque current command IT and an exciting current command IO, PWM-controls it from the voltage, and obtains a primary voltage V1 from the voltages VQ, VD. The control comprises a limiter 11e for correcting a previous value stored in 1/Z with deviations VDerr, VQerr when the voltage V1 exceeds a maximum voltage (control ratio 1) Vmax of the PWM-control, limits the integrated value of an integrating item to the voltages VD, VQ corresponding to the Vmax, and fastens the return of the integrated value when the primary voltage becomes low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘導電動機のベクトル
制御装置に係り、特に電流制御系を有するベクトル制御
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction motor vector controller, and more particularly to a vector controller having a current control system.

【0002】[0002]

【従来の技術】図4に従来例のベクトル制御装置を示
す。誘導電動機1の速度制御部2の出力をトルク電流指
令ITとし、これに直交させる励磁電流指令IOから極座
標変換部3によって電流I1と位相角φを求める。ま
た、トルク電流指令ITと励磁電流指令IOと誘導電動機
1の二次時定数τ2からすべり周波数演算部4にすべり
周波数ωSを求める。
2. Description of the Related Art FIG. 4 shows a conventional vector control device. The output of the speed control unit 2 of the induction motor 1 is used as the torque current command I T, and the polar coordinate conversion unit 3 calculates the current I 1 and the phase angle φ from the exciting current command I O that is orthogonal to this. Further, the slip frequency ω S is obtained by the slip frequency calculation unit 4 from the torque current command I T , the exciting current command I O, and the secondary time constant τ 2 of the induction motor 1.

【0003】すべり周波数ωSは、誘導電動機1の速度
検出部5の検出速度ωnと加算されて一次角速度ω0に変
換し、この角速度ω0と位相角φから正弦波発生部6に
二相の正弦波を得る。
The slip frequency ω S is added to the detection speed ω n of the speed detection unit 5 of the induction motor 1 to be converted into a primary angular velocity ω 0 , and the angular velocity ω 0 and the phase angle φ are fed to the sine wave generator 6. Get the sine wave of the phase.

【0004】D/A変換部7は電流指令I1と二相の正
弦波から二相の電流指令ia,icを求め、この電流指令
と検出電流から比例積分演算を行う電流制御部8を経て
二相の電圧指令Va,Vcとして求め、二相からb相の電
圧指令Vbも求めてPWM変換部9に三相のPWM電圧
出力を得る。
The D / A converter 7 obtains two-phase current commands i a and i c from the current command I 1 and the two-phase sine wave, and a current controller 8 which performs a proportional-integral calculation from the current command and the detected current. To obtain the two-phase voltage commands V a and V c , the two-phase voltage command V b from the two phases, and obtain the three-phase PWM voltage output to the PWM conversion unit 9.

【0005】[0005]

【発明が解決しようとする課題】従来のベクトル制御装
置において、誘導電動機の速度ωnの上昇に従って該電
動機の誘起電圧も増大し、高速域で過大なトルク負荷が
加えられたときに一次電圧がPWM制御の最大電圧V
max(=直流電源電圧VDC/2)を越えてしまう。
In the conventional vector control device, the induced voltage of the induction motor also increases as the speed ω n of the induction motor increases, and the primary voltage is increased when an excessive torque load is applied in the high speed range. Maximum voltage V of PWM control
It exceeds max (= DC power supply voltage V DC / 2).

【0006】そこで、従来からPWM変換部9内にはリ
ミッタ回路が設けられている。例えば、PWM変換部9
内では制御電圧Va,Vb,Vcと三角波(搬送波)のレ
ベル比較によってPWM波形を生成しており、一次電圧
a,Vb,Vcが最大電圧Vmaxを越える制御率1以上に
なるときにも正確な正弦波PWM波形を得られるよう該
電圧Va,Vb,Vcをリミッタ回路を通して三角波のレ
ベルを越えないようにしている。
Therefore, conventionally, a limiter circuit is provided in the PWM converter 9. For example, the PWM converter 9
Control voltage V a is the inner, V b, and generates a PWM waveform by the level comparison of V c and the triangular wave (carrier wave), the primary voltage V a, V b, V c is controlled rate 1 or more exceeding the maximum voltage V max In order to obtain an accurate sine wave PWM waveform, the voltages V a , V b and V c are prevented from exceeding the triangular wave level through the limiter circuit.

【0007】このようなPWM波形生成の段階での電圧
制限は、電圧制限中には電流制御部8による積分量が過
大な量まで上昇してしまう。このため、負荷トルクの軽
減後にも電流制御部8の積分量の戻りが遅れ、PWM変
換部9のリミッタ動作時間が長くなって、トルク制御の
応答性向上を阻害する。
In the voltage limitation at the stage of generating the PWM waveform as described above, the integral amount by the current controller 8 increases to an excessive amount during the voltage limitation. Therefore, even after the reduction of the load torque, the return of the integration amount of the current control unit 8 is delayed, the limiter operation time of the PWM conversion unit 9 becomes long, and the improvement of the torque control responsiveness is impeded.

【0008】この問題には電流制御部8の積分時定数を
小さくすることが考えられるが、電流制御系を不安定に
する。
To solve this problem, it is conceivable to reduce the integral time constant of the current control unit 8, but it makes the current control system unstable.

【0009】本発明の目的は、電流制御系の安定性を確
保しながらトルク制御の応答性を高めるベクトル制御装
置を提供することにある。
An object of the present invention is to provide a vector control device which enhances the responsiveness of torque control while ensuring the stability of the current control system.

【0010】[0010]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、誘導電動機のトルク電流指令ITと励磁
電流指令IOからディジタル演算の積分項を含む電流制
御系によって誘導電動機のトルク軸電圧VQと励磁軸電
圧VDを得、この電圧VQ,VDからPWM制御によって
誘導電動機をベクトル制御するベクトル制御装置におい
て、前記電流制御系は、前記トルク軸電圧VQと励磁軸
電圧VDから一次電圧V1を求め、この電圧V1がPWM
制御のための最大電圧Vmaxを越えたときの偏差をトル
ク軸成分及び励磁軸成分のエラー分VQerr及びVDerr
して求め、このエラー分で前記積分項の前回値を補正す
るリミッタ部を備えたことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an induction motor with a current control system including a digital operation integral term from a torque current command I T and an exciting current command I O of the induction motor. In the vector control device that obtains the torque axis voltage V Q and the excitation axis voltage V D , and vector-controls the induction motor from the voltages V Q and V D by PWM control, the current control system includes the torque axis voltage V Q and the excitation. The primary voltage V 1 is obtained from the axial voltage V D , and this voltage V 1 is PWM
A deviation when the maximum voltage V max for control is exceeded is obtained as error components V Qerr and V Derr of the torque axis component and the excitation axis component, and a limiter unit is provided to correct the previous value of the integral term by this error amount. It is characterized by that.

【0011】[0011]

【作用】誘導電動機の一次電圧が過大になったときに電
流制御系の積分項の値を最大電圧Vmaxに相当するトル
ク軸電圧と励磁軸電圧に制限しておき、一次電圧V1
最大電圧Vmaxより低くなったときに積分項のリミッタ
値からの戻り動作を早くする。
When the primary voltage of the induction motor becomes excessive, the value of the integral term of the current control system is limited to the torque axis voltage and the excitation axis voltage corresponding to the maximum voltage V max so that the primary voltage V 1 becomes maximum. When the voltage becomes lower than the voltage V max, the return operation from the limiter value of the integral term is accelerated.

【0012】ディジタル演算の電流制御系は、積分演算
には前回値に今回の偏差分を加算するとき、前回値をエ
ラー分で補正しておくことで一次電圧V1が最大電圧V
maxを越えないように制限する。
In the current control system of digital operation, when adding the deviation of this time to the previous value in the integration operation, the previous voltage is corrected by the error so that the primary voltage V 1 becomes the maximum voltage V 1.
Limit not to exceed max .

【0013】[0013]

【実施例】図1は本発明の一実施例を示す装置構成図で
あり、図4と同等のものは同じ符号で示す。本実施例は
制御演算をコンピュータで行うディジタル演算の場合で
示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of an apparatus showing an embodiment of the present invention. This embodiment shows a case of digital calculation in which control calculation is performed by a computer.

【0014】電流制御部11は、トルク電流指令IT
び励磁電流指令IOに対して夫々のトルク電流検出値I
TFB及び励磁電流検出値IOFBとの偏差から比例積分演算
による演算を行い、回転座標のトルク軸電圧VQと励磁
軸電圧VDを得る。
The current control section 11 responds to the torque current command I T and the exciting current command I O by detecting the respective torque current values I.
The deviation between the TFB and the exciting current detection value I OFB is calculated by proportional integral calculation to obtain the torque axis voltage V Q and the exciting axis voltage V D at the rotational coordinates.

【0015】トルク電流検出値ITFB及び励磁電流検出
値IOFBの検出は、誘導電動機1の二相電流Ia,Ib
A/D変換部12で夫々ディジタル値に変換し、両者の
加算によってC相の電流Icも求め、各電流値Ia
b,Icから三相/二相変換部13で固定座標の二相電
流に変換し、これを座標変換部14で回転座標のトルク
電流ITFBと励磁電流IOFBに変換する。
The detection of the torque current detection value I TFB and the excitation current detection value I OFB is performed by converting the two-phase currents I a and I b of the induction motor 1 into digital values by the A / D converter 12, and adding them. The C-phase current I c is also calculated by the following, and each current value I a ,
I b, is converted into two-phase currents of the fixed coordinates in the three-phase / two-phase conversion unit 13 from the I c, which is converted to the torque current I TFB rotational coordinate by the coordinate transformation unit 14 to the exciting current I OFB.

【0016】電流制御部11からの電圧制御信号VD
Qは座標変換部15によって回転座標から固定座標の
二相電圧V1D,V1Qに変換し、二相/三相変換部16に
よって三相の電圧信号Va,Vb,Vcに変換する。
The voltage control signal V D from the current controller 11
V Q is converted from two-dimensional voltages V 1D and V 1Q of fixed coordinates by the coordinate conversion unit 15, and three-phase voltage signals V a , V b and V c are converted by the two-phase / three-phase conversion unit 16. To do.

【0017】座標変換部14,15の変換のための位相
角θ0は積分部17によって角速度ω0を積分演算するこ
とで得る。
The phase angle θ 0 for conversion by the coordinate conversion units 14 and 15 is obtained by integrating the angular velocity ω 0 by the integrating unit 17.

【0018】ここで、電流制御部11は図2に示す構成
にされる。同図中、11aはトルク電流の比例積分演算
手段になり、11bは第1の干渉項補償手段になり、1
1cは励磁電流の比例積分演算手段になり、11dは第
2の干渉項補償手段になる。
Here, the current control unit 11 has the configuration shown in FIG. In the figure, 11a is a torque current proportional-integral calculation means, 11b is a first interference term compensation means, and
1c serves as a proportional-integral calculation means for the exciting current, and 11d serves as a second interference term compensating means.

【0019】干渉項補償手段11b,11dは、誘導電
動機1のベクトル制御状態で電動機内で励磁電流とトル
ク電流に互いに速度ω0の情報を含んだ干渉項が発生
し、この干渉項によって低速域と高速域で電流制御系の
応答性が変化するのを補償する。
The interference term compensating means 11b and 11d generate an interference term in which the exciting current and the torque current include information of the speed ω 0 in the electric motor in the vector control state of the induction motor 1, and the interference term causes a low speed range. And compensate for the change in the response of the current control system in the high speed range.

【0020】次に、リミッタ部11eは、電流制御系の
リミッタ制御を行う。このリミッタ制御は、電圧VD
Qから一次電圧V1
Next, the limiter section 11e performs limiter control of the current control system. This limiter control is based on the voltage V D ,
From V Q to primary voltage V 1

【0021】[0021]

【数1】 [Equation 1]

【0022】を求め、この一次電圧V1と制御率1の最
大電圧Vmax(=VDC/2)の比較を行い、一次電圧V1
が最大電圧Vmaxを越えたときにD軸とQ軸のエラー分
Derr,VQerrを次式から求める。
Then, the primary voltage V 1 is compared with the maximum voltage V max (= V DC / 2) of the control rate 1 to obtain the primary voltage V 1
When V exceeds the maximum voltage V max , the error components V Derr and V Qerr of the D axis and the Q axis are calculated from the following equations.

【0023】[0023]

【数2】VDerr=(V1−Vmax)cos θ0 …(2)[ Formula 2] V Derr = (V 1 −V max ) cos θ 0 (2)

【0024】[0024]

【数3】VQerr=(V1−Vmax)sin θ0 …(3) このエラー分VDerr,VQerrと一次電圧V1,Vmaxの関
係を図3に示す。このエラー分は比例積分演算手段11
a,11cの積分項の前回値補正値とすることで一次電
圧V1が最大電圧Vmaxを越えないようにする。
## EQU3 ## V Qerr = (V 1 −V max ) sin θ 0 (3) FIG. 3 shows the relationship between the error components V Derr and V Qerr and the primary voltages V 1 and V max . This error is proportional to the integral calculation means 11
The primary voltage V 1 is prevented from exceeding the maximum voltage V max by using the previous value correction value of the integral terms of a and 11c.

【0025】積分項は比例項と同様にディジタル演算で
行うことから、その1/Zは比例積分演算周期で前回演
算値を格納して積分演算を行う。例えば、トルク電流制
御には今回値VQQ(n)に対し、1/Zは前回値V
QQ(n−1)を格納しておいて今回値VQQ(n)との加
算によってトルク電流偏差の積分を行う。同様に、励磁
電流制御には、今回値VDD(n)に対し1/Zは前回値
DD(n−1)を格納しておく。
Since the integral term is digitally calculated in the same manner as the proportional term, 1 / Z thereof is the proportional integral calculation cycle and the previous calculated value is stored to perform the integral calculation. For example, for torque current control, the current value V QQ (n) is compared with 1 / Z by the previous value V QQ (n).
QQ (n-1) is stored, and the current value V QQ (n) is added to integrate the torque current deviation. Similarly, in the excitation current control, the previous value V DD (n-1) is stored as 1 / Z for the current value V DD (n).

【0026】従って、リミッタ部11eによるリミッタ
動作は一次電圧V1がVmaxを越えたときにそのD軸とQ
軸のエラー分を求め、このエラー分で前回の積分値VQQ
(n−1),VDD(n−1)を補正することにより一次
電圧V1がVmaxを越えないようにする。このときの前回
値VDD(n−1),VQQ(n−1)は
Therefore, the limiter operation by the limiter section 11e is such that when the primary voltage V 1 exceeds V max , its D axis and Q
Calculate the axis error and use this error to calculate the previous integrated value V QQ
(N-1), V DD (n-1) is corrected so that the primary voltage V 1 does not exceed V max . The previous values V DD (n-1) and V QQ (n-1) at this time are

【0027】[0027]

【数4】VDD(n−1)=VDD(n)−VDerr ## EQU4 ## V DD (n-1) = V DD (n) -V Derr

【0028】[0028]

【数5】VQQ(n−1)=VQQ(n)−VQerr の演算によって前回値として格納する。[ Formula 5] V QQ (n-1) = V QQ (n) -V Qerr is stored as the previous value by calculation.

【0029】上述の電流制御部のリミッタ処理により、
一次電圧V1がPWM制御の最大電圧Vmaxを越えたとき
にも積分項の積分量は最大電圧Vmaxに保持されてお
り、V1>Vmaxの継続時間が長くなるときにも積分量が
過大になるのを無くし、負荷トルクの軽減時に直ちにリ
ミッタ動作から抜けた通常動作に戻り、トルク制御の応
答性を向上する。また、積分時定数は電流制御系を十分
に安定にする大きさにすることができる。
By the limiter processing of the current control section described above,
Even when the primary voltage V 1 exceeds the maximum voltage V max for PWM control, the integral amount of the integral term is held at the maximum voltage V max, and the integral amount is maintained even when the duration of V 1 > V max becomes long. Is prevented from becoming excessively large, and when the load torque is reduced, the limiter operation is immediately returned to the normal operation, and the responsiveness of torque control is improved. Further, the integration time constant can be set to a value that makes the current control system sufficiently stable.

【0030】[0030]

【発明の効果】以上のとおり、本発明によれば、誘導電
動機のトルク軸電圧と励磁軸電圧を得る電流制御系に、
一次電圧V1がPWM制御の最大電圧Vmaxを越えたとき
のエラー分をトルク軸成分と励磁軸成分として求め、こ
のエラー分で積分項の前回値を夫々補正するようにした
ため、誘導電動機の一次電圧が過大になったときにも電
流制御系の積分量を最大電圧に相当する値に制限し、リ
ミット値からの抜けを早くしてトルク制御の応答性を高
めることができる。
As described above, according to the present invention, the current control system for obtaining the torque axis voltage and the excitation axis voltage of the induction motor,
An error component when the primary voltage V 1 exceeds the maximum voltage V max for PWM control is obtained as a torque axis component and an excitation axis component, and the previous value of the integral term is corrected by this error component. Even when the primary voltage becomes excessive, the integrated amount of the current control system can be limited to a value corresponding to the maximum voltage, and the deviation from the limit value can be accelerated to improve the responsiveness of torque control.

【0031】また、電流制御系の積分時定数は系の安定
に十分な値とすることができる。
Further, the integration time constant of the current control system can be set to a value sufficient for stabilizing the system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】実施例における電流制御部の構成図。FIG. 2 is a configuration diagram of a current control unit in the embodiment.

【図3】一次電圧V1と最大電圧Vmaxによるエラー分の
関係図。
FIG. 3 is a relational diagram of an error amount due to the primary voltage V 1 and the maximum voltage V max .

【図4】従来例のベクトル制御装置構成図。FIG. 4 is a block diagram of a conventional vector control device.

【符号の説明】[Explanation of symbols]

1…誘導電動機 11…電流制御部 11a…トルク電流の比例積分演算手段 11b…第1の干渉項補償手段 11c…励磁電流の比例積分演算手段 11d…第2の干渉項補償手段 11e…リミッタ部 DESCRIPTION OF SYMBOLS 1 ... Induction motor 11 ... Current control part 11a ... Torque current proportional-integral calculation means 11b ... 1st interference term compensation means 11c ... Excitation current proportional-integration calculation means 11d ... 2nd interference term compensation means 11e ... Limiter part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 誘導電動機のトルク電流指令ITと励磁
電流指令IOからディジタル演算の積分項を含む電流制
御系によって誘導電動機のトルク軸電圧VQと励磁軸電
圧VDを得、この電圧VQ,VDからPWM制御によって
誘導電動機をベクトル制御するベクトル制御装置におい
て、前記電流制御系は、前記トルク軸電圧VQと励磁軸
電圧VDから一次電圧V1を求め、この電圧V1がPWM
制御のための最大電圧Vmaxを越えたときの偏差をトル
ク軸成分及び励磁軸成分のエラー分VQerr及びVDerr
して求め、このエラー分で前記積分項の前回値を補正す
るリミッタ部を備えたことを特徴とする誘導電動機のベ
クトル制御装置。
1. A torque axis voltage V Q and an excitation axis voltage V D of the induction motor are obtained from a torque current instruction I T of the induction motor and an excitation current instruction I O by a current control system including an integral term of a digital operation. In a vector controller for vector-controlling an induction motor from V Q and V D by PWM control, the current control system obtains a primary voltage V 1 from the torque axis voltage V Q and the excitation axis voltage V D , and this voltage V 1 Is PWM
A deviation when the maximum voltage V max for control is exceeded is obtained as error components V Qerr and V Derr of the torque axis component and the excitation axis component, and a limiter unit is provided to correct the previous value of the integral term by this error amount. A vector control device for an induction motor.
JP4255149A 1992-09-25 1992-09-25 Induction motor vector control device Expired - Fee Related JP3057925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4255149A JP3057925B2 (en) 1992-09-25 1992-09-25 Induction motor vector control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4255149A JP3057925B2 (en) 1992-09-25 1992-09-25 Induction motor vector control device

Publications (2)

Publication Number Publication Date
JPH06105581A true JPH06105581A (en) 1994-04-15
JP3057925B2 JP3057925B2 (en) 2000-07-04

Family

ID=17274762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4255149A Expired - Fee Related JP3057925B2 (en) 1992-09-25 1992-09-25 Induction motor vector control device

Country Status (1)

Country Link
JP (1) JP3057925B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208861A (en) * 2015-05-26 2016-12-07 Ls产电株式会社 Control the system of induction machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208861A (en) * 2015-05-26 2016-12-07 Ls产电株式会社 Control the system of induction machine
KR20160139103A (en) * 2015-05-26 2016-12-07 엘에스산전 주식회사 System of controlling induction motor
JP2016226268A (en) * 2015-05-26 2016-12-28 エルエス産電株式会社Lsis Co., Ltd. System of controlling induction electric motor
US9806652B2 (en) 2015-05-26 2017-10-31 Lsis Co., Ltd. System of controlling induction electric motor
CN106208861B (en) * 2015-05-26 2019-07-19 Ls 产电株式会社 The system for controlling induction machine

Also Published As

Publication number Publication date
JP3057925B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
US4767976A (en) Control system for PWM inverter
US4800327A (en) Three-phase induction motor control method
US20030090232A1 (en) Current ripple reduction by harmonic current regulation
EP1100191A2 (en) Inverter control apparatus and method for controlling an inverter
EP1035645B1 (en) Control device of induction motor
EP0490024B1 (en) Induction motor vector control
US6528966B2 (en) Sensorless vector control apparatus and method thereof
JP3064671B2 (en) Control circuit of power converter
JPH07250500A (en) Variable speed controller for induction motor
JP2579119B2 (en) Vector controller for induction motor
JP2943377B2 (en) Vector controller for induction motor
JPH07170799A (en) Method and apparatus for controlling a.c. motor and correcting method for motor current
JPH06105581A (en) Vector controller for induction motor
JP3252634B2 (en) Inverter circuit output voltage control method
JPH0697880B2 (en) Excitation control device for synchronous machine
JPH0568391A (en) Slip compensation circuit in vector control of induction motor
JP2940167B2 (en) Controlling device for vector of induction motor
JPS6330236Y2 (en)
JP3124019B2 (en) Induction motor control device
JPH07123800A (en) Vector control system for induction motor
JPH06225573A (en) Vector controller for induction motor
JPH09266700A (en) Stable operation method of vector controller
JPH0356093A (en) Induction motor controller
JP2549126B2 (en) Power converter
JPH0638573A (en) Vector controller for induction motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees