JPH06104569B2 - Alumina powder manufacturing method - Google Patents

Alumina powder manufacturing method

Info

Publication number
JPH06104569B2
JPH06104569B2 JP61102736A JP10273686A JPH06104569B2 JP H06104569 B2 JPH06104569 B2 JP H06104569B2 JP 61102736 A JP61102736 A JP 61102736A JP 10273686 A JP10273686 A JP 10273686A JP H06104569 B2 JPH06104569 B2 JP H06104569B2
Authority
JP
Japan
Prior art keywords
alumina
alumina powder
gibbsite
particle size
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61102736A
Other languages
Japanese (ja)
Other versions
JPS62230615A (en
Inventor
興一 山田
真郎 吉原
卓雄 原戸
三郎 鍋島
俊樹 古林
Original Assignee
住友化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学工業株式会社 filed Critical 住友化学工業株式会社
Publication of JPS62230615A publication Critical patent/JPS62230615A/en
Publication of JPH06104569B2 publication Critical patent/JPH06104569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates
    • C01F7/144Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by precipitation due to cooling, e.g. as part of the Bayer process
    • C01F7/145Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by precipitation due to cooling, e.g. as part of the Bayer process characterised by the use of a crystal growth modifying agent other than aluminium hydroxide seed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/447Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by wet processes
    • C01F7/448Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by wet processes using superatmospheric pressure, e.g. hydrothermal conversion of gibbsite into boehmite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はアルミナ粉末の製造法に関し、更に詳細には焼
成コストが低く一次粒子が微細でかつ粉砕後の粒径が小
さく、粒度分布の狭いアルミナ粉末の製造法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method for producing alumina powder, and more specifically, it has low firing cost, fine primary particles, small particle size after pulverization, and narrow particle size distribution. The present invention relates to a method for producing alumina powder.

<従来の技術> アルミナは化学的に安定で融点が高く、機械的強度、硬
度、電気絶縁性などの物理的性質にも優れているため、
セラミック材料や研磨剤、充填剤として汎用されてい
る。
<Prior Art> Alumina is chemically stable, has a high melting point, and has excellent physical properties such as mechanical strength, hardness, and electrical insulation.
It is widely used as a ceramic material, abrasive, and filler.

また、各種機械部品や電気部品等の分野においてはアル
ミナ粉末にMgO等の粒成長抑制剤を添加することにより
得た焼結組織が均一で透光性に優れたアルミナ焼結体も
使用されているが、これら焼結体の特性は原料であるア
ルミナ粉末の平均粒径、粒径及び粒子形状のばらつき、
更には純度に著しく影響されるため、微粒で粒度分布が
狭く、高純度のアルミナ粉末が要求されている。
Further, in the field of various mechanical parts and electric parts, an alumina sintered body having a uniform sintered structure and excellent translucency obtained by adding a grain growth inhibitor such as MgO to alumina powder is also used. However, the characteristics of these sintered bodies are that the average particle diameter of the alumina powder, which is the raw material, the variation in particle diameter and particle shape,
Further, since it is significantly affected by the purity, there is a demand for high-purity alumina powder having fine particles and a narrow particle size distribution.

このようなアルミナ粉末の製造方法としては、従来アン
モニウムミョウバンの熱分解法や有機アルミニウムの加
水分解法があるが、これらの方法はコストが高いため自
ずとバイヤー法より得られる水酸化アルミニウムを濾
過、乾燥、焼成後粉砕して得られるアルミナ粉末が適用
されているが、該方法においては水酸化アルミニウムの
α−アルミナへの転移に高温度での焼成を必要とするた
め、焼成時に一次粒子の結晶成長を生起し、結果として
得られるアルミナ粉末の平均粒径が大きく、これを粉砕
操作により微粒化しようとする場合には長時間の粉砕を
必要とするばかりでなく、粉砕後のアルミナ粉末も粒径
のばらつきが大きいという欠点を有する。
As a method for producing such alumina powder, there are conventional thermal decomposition methods of ammonium alum and hydrolysis methods of organic aluminum, but since these methods are expensive, the aluminum hydroxide obtained by the Bayer method is naturally filtered and dried. Alumina powder obtained by calcination and pulverization is applied. However, since the transition of aluminum hydroxide to α-alumina requires calcination at a high temperature in this method, crystal growth of primary particles during calcination is performed. The resulting alumina powder has a large average particle size, and when it is pulverized by a pulverizing operation, it requires not only long time pulverization but also the alumina powder after pulverization has a particle size. Has the drawback of large variation.

<発明が解決しようとする問題点> かかる事情下に鑑み、本発明者らはバイヤー法からα−
アルミナ粉末を製造する方法において、焼成コストが低
く、また平均粒径が小さく、粒径及び粒形のばらつきの
少ないα−アルミナ粉末を得るべく鋭意検討した結果、
アルミン酸アルカリ溶液から水酸化アルミニウムを析出
せしめる時、種子としてα−アルミナ粉末を用い、更に
析出したギブサイトをベーマイトに転化後焼成する場合
には上記物性が著しく改良されることを見出し、本発明
法を完成するに至った。
<Problems to be Solved by the Invention> In view of these circumstances, the present inventors have found that the Bayer method allows α-
In the method for producing alumina powder, the firing cost is low, the average particle size is small, as a result of earnestly studying to obtain α-alumina powder with little variation in particle size and particle shape,
When precipitating aluminum hydroxide from an alkaline aluminate solution, using α-alumina powder as seeds, it was found that the above physical properties are remarkably improved when the precipitated gibbsite is converted to boehmite and then baked, and the method of the present invention is used. Has been completed.

<問題点を解決するための手段> すなわち本発明は、バイヤー法によるアルミン酸アルカ
リ溶液よりギブサイトを析出せしめ、濾過、乾燥、焼成
することによるアルミナ粉末の製造方法において、アル
ミン酸アルカリ溶液に種子としてα−アルミナ粉末を添
加してギブサイトを析出せしめ、次いで該ギブサイトを
ベーマイトに転化せしめた後焼成することを特徴とする
アルミナ粉末の製造法を提供するにある。
<Means for Solving the Problems> That is, the present invention is a method for producing alumina powder by precipitating gibbsite from an alkali aluminate solution by the Bayer method, filtering, drying, and firing, in the alkali aluminate solution as seeds. Another object of the present invention is to provide a method for producing an alumina powder, which comprises adding α-alumina powder to precipitate gibbsite, then converting the gibbsite into boehmite, and then firing.

以下、本発明法を更に詳細に説明する。Hereinafter, the method of the present invention will be described in more detail.

本発明法の実施に際し、使用するアルミン酸アルカリ溶
液は一般にはボーキサイト等のアルミナ含有鉱石をアル
カリ液に浸漬し、アルミナを抽出した後抽出残渣(赤
泥)を分離除去した静澄アルミン酸アルカリ溶液が用い
られる。
In carrying out the method of the present invention, the alkaline aluminate solution used is generally a calcined alkaline aluminate solution obtained by immersing an alumina-containing ore such as bauxite in an alkaline solution, extracting alumina, and then separating and removing the extraction residue (red mud). Is used.

アルミン酸アルカリ溶液に種子として使用するα−アル
ミナ粉末はX線回折でα−アルミナのピークが存在する
ものをいい、好ましくは焼成後のα化率が約50%以上、
好ましくは約80%以上のアルミナであればよく、これを
そのまま、或いは粉砕して、平均粒径約1μm以下、好
ましくは約0.5μm以下の粉砕として用いる。
The α-alumina powder used as seeds in the alkaline aluminate solution means one having a peak of α-alumina in X-ray diffraction, and preferably the α-alumination rate after firing is about 50% or more,
Preferably, it is about 80% or more of alumina, and it is used as it is or after being crushed to have a mean particle size of about 1 μm or less, preferably about 0.5 μm or less.

X線回折においてα−アルミナのピークが見られないア
ルミナ、或いはアルミナ水和物等を種子として用いる場
合にはα化転移時の焼成温度の低下が見られないととも
に得られたギブサイトをベーマイトに転化し、その後焼
成、更に必要に応じて粉砕しても微粒でかつ粒度分布が
狭く、特性に優れるα−アルミナ粉末を得ることはでき
ない。
When alumina, which does not show a peak of α-alumina in X-ray diffraction, or alumina hydrate, etc. is used as seeds, no decrease in the firing temperature at the α-transition and conversion of the obtained gibbsite into boehmite are performed. However, it is not possible to obtain α-alumina powder which is fine and has a narrow particle size distribution and excellent characteristics even if it is fired and then pulverized if necessary.

アルミン酸アルカリ溶液に対するα−アルミナ粉末の添
加量としては析出するギブサイト100重量部に対して約
0.1〜約50重量部、好ましくは約3〜約15重量部の範囲
で使用される。
The amount of α-alumina powder added to the alkaline aluminate solution is about 100 parts by weight of gibbsite to be precipitated.
It is used in the range of 0.1 to about 50 parts by weight, preferably about 3 to about 15 parts by weight.

添加量が約0.1重量部に満たないと、α−アルミナへの
転移に高温で長時間の焼成を必要とするため焼成コスト
が高くなり、また得られるα−アルミナも粒成長を生起
し、目的とする微粒のα−アルミナ粉末を得ることはで
きない。
If the addition amount is less than about 0.1 parts by weight, the conversion to α-alumina requires high-temperature and long-time calcination, so the calcination cost becomes high, and the resulting α-alumina also causes grain growth, Therefore, it is impossible to obtain fine α-alumina powder.

他方、50重量部を越える場合には添加量に見合う効果が
なく、経済的ではないばかりか、種子としてのα−アル
ミナ粉末が凝集、焼結し、目的とする物性のα−アルミ
ナ粉末を得ることができない。
On the other hand, if the amount exceeds 50 parts by weight, there is no effect corresponding to the amount added and it is not economical, and the α-alumina powder as seeds aggregates and sinters to obtain the α-alumina powder having the desired physical properties. I can't.

α−アルミナ粉末を添加することによるアルミン酸アル
カリ溶液からのギブサイトの析出条件はバイヤー法にお
ける種子として水酸化アルミニウムを添加する場合と何
等変わるものではなく、通常50〜70℃温度条件下、20〜
150時間保持し、析出せしめればよい。
The conditions for precipitating gibbsite from the alkaline aluminate solution by adding α-alumina powder are not different from the case where aluminum hydroxide is added as seeds in the Bayer method, and are usually 50 to 70 ° C. temperature conditions, 20 to 70 ° C.
It may be held for 150 hours to allow precipitation.

析出せしめるギブサイトの粒径は種々調整し得るが、平
均粒径約1μm以下が最終のα−アルミナの粉砕が容易
であり、粒子形状も球状に近く望ましい。
The particle size of gibbsite to be precipitated can be adjusted variously, but the average particle size of about 1 μm or less is preferable because the final α-alumina can be crushed easily and the particle shape is close to spherical.

析出させたα−アルミナ含有のギブサイトは次いでベー
マイトへ転化される。
The precipitated α-alumina-containing gibbsite is then converted to boehmite.

ギビサイトからベーマイトへの転化は、通常の水熱処理
でよく、ギブサイトをアルカリ性水性媒体中、または水
中に保持し、オートクレーブ中200〜300℃の温度で数分
〜10時間、好ましくは210〜250℃の温度で数分〜3時間
加熱処理すればよい。
The conversion of gibbsite to boehmite may be carried out by ordinary hydrothermal treatment, in which the gibbsite is kept in an alkaline aqueous medium or in water, and the autoclave is heated at a temperature of 200 to 300 ° C for several minutes to 10 hours, preferably at 210 to 250 ° C. The heat treatment may be performed at a temperature for several minutes to 3 hours.

このようにして得られたベーマイト体アルミナ水和物は
常法によって濾過、水洗され、ロータリーキルン、電気
炉、シャトルキルン、トンネルキルン等を用いて焼成す
ればよく、焼成条件は通常1000〜1400℃の温度で10分〜
6時間焼成すればよい。
The boehmite-type alumina hydrate thus obtained may be filtered by a conventional method, washed with water, and calcined using a rotary kiln, an electric furnace, a shuttle kiln, a tunnel kiln, or the like, and the calcining condition is usually 1000 to 1400 ° C. 10 minutes at temperature
It may be fired for 6 hours.

また、焼成後のα−アルミナ粉末を更に粉砕する場合に
は、当業分野で常用の粉砕機、例えばジェットミル、ミ
クロンミル、ボールミル、振動ミル、メディアミル等の
粉砕機を用いればよく、粉砕時間は粉砕に用いる粉砕機
種、粉砕条件、所望の平均粒子径等により異なるので一
義的に決めることはできないが、通常数分〜数時間粉砕
すればよい。
Further, when the α-alumina powder after firing is further pulverized, a pulverizer commonly used in the art, for example, a jet mill, a micron mill, a ball mill, a vibration mill, a media mill or the like may be used. The time cannot be uniquely determined because it varies depending on the crushing model used for crushing, the crushing conditions, the desired average particle size, etc., but it is usually several minutes to several hours.

本発明法により粉砕後得られるα−アルミナ粉末は約1
μm以下、定常的には約0.7μm以下の平均粒径を有
し、積算重量16%の径と84%の径の比σ2が2.5以下、常
には2.2以下の極めて粒径及び粒形のばらつきの小さい
もので、高密度或いは優れた透光性を有する焼結体用減
量として好適である。
The α-alumina powder obtained after pulverization by the method of the present invention is about 1
It has an average particle size of less than μm, or about 0.7 μm in a steady state, and the ratio σ 2 of the cumulative weight of 16% to the diameter of 84% is 2.5 or less, always 2.2 or less. It has a small variation and is suitable as a weight loss for a sintered body having a high density or excellent translucency.

本発明法を実施することにより何故従来の種子水酸化ア
ルミニウム添加法に比較し、焼成コストが低く、得られ
るα−アルミナ粉末の一次粒子が微細で、更に粉砕後得
られるα−アルミナ粉末の平均粒径が小さくかつ、粒度
分布が狭いのか、その理由は詳らかではないが、焼成時
アルミナ水和物中のα−アルミナがα化転移促進剤とし
て作用し、α化転移温度が低下し、結果として一次粒成
長及び凝集粒の少ないα−アルミナ粉末が得られるとと
もに、ギブサイトをベーマイトに転化することにより従
来のギブサイトのα化アルミナへの転化系列がx→k→
αとベーマイト→γ→δ→θ→αの2系列であったもの
がベーマイト→γ→δ→θ→αの1系列にし得るので、
α−アルミナの種効果とあいまって上述の効果が更に改
良され、後の粉砕によっても容易に微粒化されるととも
に粒径及び粒形のばらつきも少ないものが得られるとす
いそくされる。
Compared to the conventional seed aluminum hydroxide addition method by carrying out the method of the present invention, the firing cost is low, the primary particles of the α-alumina powder obtained are fine, and the average of the α-alumina powder obtained after further pulverization It is not clear why the particle size is small and the particle size distribution is narrow, but α-alumina in the alumina hydrate at the time of firing acts as an α-transition accelerator, and the α-transition temperature is lowered. As a result, an α-alumina powder having a small amount of primary grain growth and agglomerated grains can be obtained, and by converting gibbsite into boehmite, the conventional conversion sequence of gibbsite into α-alumina is x → k →
Since two series of α and boehmite → γ → δ → θ → α can be changed to one series of boehmite → γ → δ → θ → α,
The above-mentioned effect is further improved in combination with the seed effect of α-alumina, and it is believed that a particle which can be easily atomized by subsequent pulverization and has a small variation in particle diameter and particle shape can be obtained.

なお、本発明法においてアルミル酸アルカリ溶液に添加
するα−アルミナ粉末はα−アルミナ以外の種子水酸化
アルミニウムまたはアルミナゲル等と併用してもよい。
The α-alumina powder added to the alkaline aluminate solution in the method of the present invention may be used in combination with seed aluminum hydroxide or alumina gel other than α-alumina.

また添加方法も粉末状は勿論、予め溶液中に分散せしめ
た後添加することもできる。
As for the addition method, it is of course possible to add it after it has been dispersed in the solution in advance, as well as in powder form.

<実施例> 以下、実施例により本発明方法を更に詳細に説明する
が、実施例は本発明方法を限定するものではない。
<Example> Hereinafter, the method of the present invention will be described in more detail with reference to examples, but the examples do not limit the method of the present invention.

実施例−1 アルミン酸ソーダ溶液(Na2O/Al2O3モル比1.5,Na2O110
g/l)に析出するギブサイト100重量部に対し平均粒径0.
2μmのα−アルミナ粉末5重量部とアルミナゲル10重
量部とを種子として添加し、50℃の温度下48時間攪拌
し、0.5μmのギブサイト構造を有する水酸化アルミニ
ウムを析出させた。
Example-1 Sodium aluminate solution (Na 2 O / Al 2 O 3 molar ratio of 1.5, Na 2 O110
(g / l) 100 parts by weight of gibbsite precipitates with an average particle size of 0.
5 parts by weight of 2 μm α-alumina powder and 10 parts by weight of alumina gel were added as seeds, and stirred at a temperature of 50 ° C. for 48 hours to deposit 0.5 μm of aluminum hydroxide having a gibbsite structure.

次いで濾過、水洗後得られたギブサイトをオートクレー
ブ中200℃の温度で2時間水熱処理してベーマイトを乾
燥し、シャトルキルンを用いて空気中、1200℃の温度で
4時間焼成し、次いで振動ミルで1時間粉砕した。
Then, the gibbsite obtained after filtration and washing with water is hydrothermally treated in an autoclave at a temperature of 200 ° C for 2 hours to dry the boehmite, which is then calcined in a shuttle kiln in the air at a temperature of 1200 ° C for 4 hours, and then in a vibration mill. Crushed for 1 hour.

このようにして得られた粉末は、平均粒径0.2μmで粒
径のばらつきσ2が1.5と均一であった。
The powder thus obtained had an average particle size of 0.2 μm and a particle size variation σ 2 of 1.5.

また、焼成後の粉体のα化率は93%であった。The α-conversion rate of the powder after firing was 93%.

得られたα−アルミナ粉末をラバープレスを用いて20mm
φ×5mmの大きさに成形し、1400℃の温度で焼結したと
ころ、焼結密度は3.9g/cm3であり、また1600℃で焼結し
た焼結体の組織も均一であった。
20 mm of the obtained α-alumina powder was applied using a rubber press.
When molded into a size of φ × 5 mm and sintered at a temperature of 1400 ° C., the sintered density was 3.9 g / cm 3 , and the sintered body sintered at 1600 ° C. had a uniform structure.

比較例−1 実施例−1においてギブサイトをベーマイトに転化処理
しない以外は実施例−1と同一条件で焼成、粉砕処理し
た。
Comparative Example-1 Firing and pulverization were performed under the same conditions as in Example-1, except that gibbsite was not converted to boehmite in Example-1.

このようにして得られたアルミナは平均粒径0.5μm
で、粒径のばらつきはσ2=2.0であり、焼結後のα化率
は90%であった。
The alumina thus obtained has an average particle size of 0.5 μm.
The variation in grain size was σ 2 = 2.0, and the α conversion after sintering was 90%.

また1400℃の焼結体の密度は3.7g/cm3で、1600℃の温度
での焼結体の組織は均一であったが、実施例−1のもの
よりは若干悪かった。
The density of the sintered body at 1400 ° C. was 3.7 g / cm 3 , and the structure of the sintered body at the temperature of 1600 ° C. was uniform, but slightly worse than that of Example-1.

比較例−2 実施例−1においてα−アルミナ分に代えてアルミナゲ
ル15重量部を種子として用い、ギブサイトをベーマイト
に転化処理しない他の実施例−1と同一条件で焼成、粒
砕処理した。
Comparative Example-2 In Example-1, 15 parts by weight of alumina gel was used as seeds instead of the α-alumina content, and calcination and granulation were performed under the same conditions as in Example-1 in which gibbsite was not converted to boehmite.

このようにして得られたアルミナは凝集粒子が多く混じ
っており、平均粒径0.6μmと大きく、粒径のばらつき
はσ2=4.8であった。
The alumina thus obtained contained a large amount of agglomerated particles and had a large average particle size of 0.6 μm, and the variation in particle size was σ 2 = 4.8.

また1400℃の焼結体の密度は3.0g/cm3で、焼成後の粉体
のα化率は60%であった。
Further, the density of the sintered body at 1400 ° C. was 3.0 g / cm 3 , and the α-conversion rate of the powder after firing was 60%.

実施例−2 高純度のアルミン酸ソーダ溶液(Na2O/Al2O3モル比1.
5,Na2O110g/l)に、析出するギブサイト100重量部に対
し平均粒径0.2μmの高純度α−アルミナ粉末10重量部
とアルミナゲル5重量部とを種子として添加し、50℃の
温度で48時間攪拌し、0.5μmのギブサイトを析出させ
た。
Example-2 High-purity sodium aluminate solution (Na 2 O / Al 2 O 3 molar ratio 1.
5, Na 2 O 110 g / l), 10 parts by weight of high-purity α-alumina powder having an average particle size of 0.2 μm and 5 parts by weight of alumina gel were added as seeds to 100 parts by weight of gibbsite to be precipitated, and the temperature was 50 ° C. After stirring for 48 hours, 0.5 μm gibbsite was deposited.

次いで濾過、水洗後得られたギブサイトをオートクレー
ブ中220℃の温度で2時間水熱処理してベーマイト化し
た後、得られたベーマイトを乾燥し、シャトルキルンを
用いて空気中、1200℃の温度で4時間焼成し、次いで振
動ミルで1時間粉砕した。
Then, the gibbsite obtained after filtration and washing with water was hydrothermally treated in an autoclave at a temperature of 220 ° C. for 2 hours to form a boehmite, and then the obtained boehmite was dried, and then dried in air using a shuttle kiln at a temperature of 1200 ° C. for 4 hours. It was calcined for an hour and then ground in a vibrating mill for 1 hour.

このようにして得られたα−アルミナの粉末特性及び焼
結体の物性は平均粒径0.2μmで粒径のばらつきσ2が1.
5と均一であり、α化率は93%、1400℃の温度の焼結密
度は3.9g/cm3であった。
The powder characteristics of the α-alumina thus obtained and the physical properties of the sintered body were 0.2 μm in average particle diameter and σ 2 was 1.
The ratio was α, and the sinter density at a temperature of 1400 ° C was 3.9 g / cm 3 .

次いで該α−アルミナの粉末にMgOを0.05重量%添加、
混合して成形し、水素気流中で1800℃で焼結した。
Then, 0.05% by weight of MgO was added to the α-alumina powder,
It was mixed and molded, and sintered at 1800 ° C in a hydrogen stream.

このようにして得られた焼結体の光透過率は60%(イン
ライン)であった。
The light transmittance of the sintered body thus obtained was 60% (in-line).

尚、比較のためベーマイト化しない他は実施例−2と全
く同一方法で処理して得たα−アルミナ粉末を用い、同
一方法で成形、焼結したところ得られた焼結体の光透過
率は46%であった。
For comparison, the light transmittance of a sintered body obtained by molding and sintering the same method using α-alumina powder obtained by the same method as in Example-2 except that it was not converted into boehmite. Was 46%.

実施例−3 実施例−1の方法において、種子として用い0.2μmの
α−アルミナ粉末0.5重量部とアルミナゲル15重量部を
用いた他は実施例−1と同様にしてギブサイトを析出さ
せベーマイト化した後乾燥、焼成し、次いで粉砕した。
Example 3 In the same manner as in Example 1, except that 0.5 parts by weight of 0.2 μm α-alumina powder and 15 parts by weight of alumina gel were used as seeds and gibbsite was precipitated and boehmite formed in the same manner as in Example 1. After that, it was dried, calcined, and then ground.

このようにして得られた粉末は平均粒径0.4μmで粒径
のばらつきσ2が2.0と均一であった。
The powder thus obtained had an average particle size of 0.4 μm and a uniform particle size variation σ 2 of 2.0.

また、焼結後の粉体のα化率は90%であった。The α-conversion rate of the powder after sintering was 90%.

また1400℃の焼結体の密度は3.6g/cm3で1600℃の温度で
の焼結体の組織は均一であった。
The density of the sintered body at 1400 ° C was 3.6 g / cm 3 , and the structure of the sintered body at a temperature of 1600 ° C was uniform.

比較例−3 実施例−3においてギブサイトをベーマイトに転化処理
しない以外は実施例−3と同一条件で焼成粉砕処理し
た。
Comparative Example-3 The calcination and pulverization treatment was carried out under the same conditions as in Example-3 except that the gibbsite was not converted to boehmite in Example-3.

このようにして得られたアルミナは平均粒径0.5μmで
粒径のばらつきはσ2=2.5であり、焼結後のα化率は85
%であった。
The alumina thus obtained has an average particle size of 0.5 μm and a particle size variation of σ 2 = 2.5.
%Met.

また1400℃の焼結体の密度は3.5g/cm3で1600℃の温度で
の焼結体の組織は均一であったが、実施例−3のものよ
りは若干悪かった。
The density of the sintered body at 1400 ° C. was 3.5 g / cm 3 , and the structure of the sintered body at the temperature of 1600 ° C. was uniform, but slightly worse than that of Example-3.

<発明の効果> 以上詳述した本発明方法によれば、アルミン酸アルカリ
溶液中より水酸化アルミニウムを析出せしめるに際し、
種子としてα−アルミナ粉末を用い、得られたギブサイ
トをベーマイトに転移した後焼成するという簡単な方法
で、α化転移時の焼成コストを低下し、得られる粉末の
一次粒子が微細で、更に粒砕後の平均粒径が小さく、粒
度分布の狭いα−アルミナ粉末を得ることを可能ならし
めたもので、その工業的価値は頗る大なるものである。
<Effects of the Invention> According to the method of the present invention described in detail above, when aluminum hydroxide is precipitated from an alkaline aluminate solution,
Using α-alumina powder as seeds, a simple method of transferring the obtained gibbsite to boehmite and then baking, reduces the baking cost at the time of converting to α, and the primary particles of the obtained powder are fine and further It is possible to obtain an α-alumina powder having a small average particle size after crushing and a narrow particle size distribution, and its industrial value is extremely large.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鍋島 三郎 大阪府大阪市東区北浜5丁目15番地 住友 化学工業株式会社内 (72)発明者 古林 俊樹 愛媛県新居浜市惣開町5番1号 住友化学 工業株式会社内 (56)参考文献 特開 昭62−128918(JP,A) 特開 昭58−36923(JP,A) 特開 昭61−254685(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Saburo Nabeshima, 5-15 Kitahama, Higashi-ku, Osaka City, Osaka Prefecture Sumitomo Chemical Co., Ltd. Incorporated (56) Reference JP 62-128918 (JP, A) JP 58-36923 (JP, A) JP 61-254685 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】バイヤー法によるアルミン酸アルカリ溶液
よりギブサイトを析出せしめ、濾過、乾燥、焼成するこ
とによるアルミナ粉末の製造方法において、アルミン酸
アルカリ溶液に種子としてα−アルミナ粉末を添加して
ギブサイトを析出せしめ、次いで該ギブサイトをベーマ
イトに転化せしめた後焼成することを特徴とするアルミ
ナ粉末の製造法。
1. A method for producing an alumina powder by precipitating gibbsite from an alkali aluminate solution according to the Bayer method, filtering, drying and firing the mixture, and adding α-alumina powder as seeds to the alkali aluminate solution to give gibbsite. A method for producing an alumina powder, which comprises: precipitating, converting the gibbsite into boehmite, and then firing.
【請求項2】種子としてのα−アルミナ粉末の添加量が
析出させるギブサイト100重量部に対し、0.1〜50重量部
である特許請求の範囲第1項記載のアルミナ粉末の製造
法。
2. The method for producing an alumina powder according to claim 1, wherein the addition amount of the α-alumina powder as seeds is 0.1 to 50 parts by weight with respect to 100 parts by weight of gibbsite to be precipitated.
JP61102736A 1985-12-06 1986-05-02 Alumina powder manufacturing method Expired - Fee Related JPH06104569B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP27439285 1985-12-06
JP60-274392 1985-12-06

Publications (2)

Publication Number Publication Date
JPS62230615A JPS62230615A (en) 1987-10-09
JPH06104569B2 true JPH06104569B2 (en) 1994-12-21

Family

ID=17541027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61102736A Expired - Fee Related JPH06104569B2 (en) 1985-12-06 1986-05-02 Alumina powder manufacturing method

Country Status (1)

Country Link
JP (1) JPH06104569B2 (en)

Also Published As

Publication number Publication date
JPS62230615A (en) 1987-10-09

Similar Documents

Publication Publication Date Title
EP0384603B1 (en) Process for the production of magnesium oxide
JPH04500947A (en) Small α-alumina particles and plates
JPH05194026A (en) Method for producing sintered material consisting of alpha-aluminum oxide particularly for use in polishing material
US5284809A (en) Method for the preparation of α-aluminum oxide powder
JPH013008A (en) Method for producing easily crushable alumina
US5149520A (en) Small sized alpha alumina particles and platelets
CN103910368A (en) Preparation method of axiolitic, approximate hexagonal plate sheet-shaped, or drum-shaped primary particles or alpha-aluminum oxide powder composed of aggregate of approximate hexagonal plate sheet-shaped, or drum-shaped primary particles
JPH05117636A (en) Polycrystalline sintered abrasive particle based on alpha-aluminum trioxide, abrasive comprising the abrasive particle, preparation of the abrasive particle and preparation of fire-resistant ceramic product
JPH06305726A (en) Production of powdery oxide of rare earth element
JPH06104570B2 (en) Method for producing alumina powder
KR20010046015A (en) Manufacturig method of alumina powder
JPH06104569B2 (en) Alumina powder manufacturing method
JPH06500068A (en) Manufacturing method of submicron alumina particles
JPH09315865A (en) Production of transparent yttrium oxide sintered compact
JPH01275421A (en) Production of boehmite
JPH06144830A (en) Production of extremely easily sinterable alumina
JPH07101723A (en) Production of alpha alumina powder
JPS6345118A (en) Production of sintered abrasive alumina grain
JPH06144831A (en) Production of easily sinterable alumina fine particle
JPH0712927B2 (en) Method for producing easily sinterable alumina powder
JP3394071B2 (en) Method for producing rare earth oxide fine powder
JPH04159387A (en) Production of alumina abrasive grain for polishing
KR100302229B1 (en) Method for producing silica radome using slip casting process
JPS6355114A (en) Alpha alumina and manufacture
JPH10139424A (en) Low temperature transition alpha-alumina and its production

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees