KR20010046015A - Manufacturig method of alumina powder - Google Patents

Manufacturig method of alumina powder Download PDF

Info

Publication number
KR20010046015A
KR20010046015A KR1019990049581A KR19990049581A KR20010046015A KR 20010046015 A KR20010046015 A KR 20010046015A KR 1019990049581 A KR1019990049581 A KR 1019990049581A KR 19990049581 A KR19990049581 A KR 19990049581A KR 20010046015 A KR20010046015 A KR 20010046015A
Authority
KR
South Korea
Prior art keywords
alumina
alumina powder
aluminum hydroxide
bayer
firing
Prior art date
Application number
KR1019990049581A
Other languages
Korean (ko)
Inventor
이건직
전용진
김윤성
장현태
김원배
Original Assignee
김원배
인성파우더 테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김원배, 인성파우더 테크 주식회사 filed Critical 김원배
Priority to KR1019990049581A priority Critical patent/KR20010046015A/en
Publication of KR20010046015A publication Critical patent/KR20010046015A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Abstract

PURPOSE: A preparation method of alpha-alumina powder from aluminum hydroxide by Bayer method, which is characterized by adding a grinding step to a conventional method before thermal-treating, Accordingly, the resultant alumina powder used as an abrasive has a homogeneous particle distribution and very fine particle size(0.05- 0.5micrometer). CONSTITUTION: The method comprises the steps of: grinding Al(OH)3 from Bayer method or intermediate Al2O3 obtained by presintering Al(OH)3 at 400-1100deg.C to 0.3-3micrometer; soaking intermediate Al2O3 in HCl, filtering and washing to gain an alumina cake that Na is removed; mixing it with (NH4)OH, HCl or AlCl3 to remove Na effectively, in a form of NaCl; sintering at 1150-1350deg.C to get alpha-Al2O3; filtering and washing to remove Na again, which results in low Na-grade alumina powder.

Description

알루미나 분말의 제조방법{Manufacturig method of alumina powder}Manufacturing method of alumina powder {Manufacturig method of alumina powder}

본 발명은 Bayer법 수산화 알루미늄으로부터 연마제용 및 세라믹스용의 미세하고 균일한 알루미나 분말을 제조하는 방법에 관한 것으로 기존의 Bayer법 수산화 알루미늄으로부터 α- 알루미나 분말제조 방법을 이용하여 만든 제품에 비해 균일한 입자크기를 갖는 알루미나 분말을 제조 할 수 있으며 평균입자 크기도 0.05㎛∼0.5㎛까지의 작은 입자를 얻을 수 있다.The present invention relates to a method for producing fine and uniform alumina powder for abrasives and ceramics from Bayer method aluminum hydroxide, which is more uniform than a product made by using the α-alumina powder manufacturing method from conventional Bayer method aluminum hydroxide. Alumina powder having a size can be prepared and small particles having an average particle size of 0.05 µm to 0.5 µm can be obtained.

기존의 Bayer법 수산화 알루미늄을 이용하여 α-알루미나를 만들어서 연마제용 및 세라믹스용등의 미세 알루미나 분말을 만드는 공정에서는 열처리를 통해 알루미나를 α-알루미나로 안정화시키는 동안 입자성장이 일어나서 α-알루미나 거대입자가 생겨나기 쉽다. 이를 방지하기 위해서는 일반적으로 Mg성분 등의 입자성장 방지제를 첨가하여 열처리를 함으로서 미세한 α-알루미나의 1차 입자로 이루어진 응집체를 합성하고 이를 1차 입자 크기로 분쇄하여 미세한 α-알루미나 입자를 제조한다. 그러나 이와 같은 방법으로는 평균입자크기 약0.3㎛이하의 α-알루미나 입자를 만들기가 어렵고 공정중에서 불균일한 입자성장을 완전히 제어하기 힘들다. 따라서 본 발명은 기존의 방법으로는 만들기 어려운 평균입자크기 0.05㎛∼0.5㎛까지의 초미분 α-알루미나 분말을 불균일한 입자성장이 일어나지 않도록 제조하는 방법에 관한 것으로 입자크기 분포도 균일한 α-알루미나 분말을 만들 수 있는 방법에 관한 것이다.In the process of making α-alumina using conventional Bayer method aluminum hydroxide to make fine alumina powders such as abrasives and ceramics, grain growth occurs during stabilization of alumina to α-alumina through heat treatment, resulting in α-alumina macroparticles. It is easy to occur. In order to prevent this, generally, by adding a particle growth inhibitor such as Mg component and performing heat treatment, agglomerates composed of fine primary particles of α-alumina are synthesized and pulverized to primary particle sizes to prepare fine α-alumina particles. However, it is difficult to produce α-alumina particles having an average particle size of about 0.3 μm or less, and it is difficult to completely control uneven particle growth during the process. Accordingly, the present invention relates to a method for preparing ultrafine α-alumina powder having an average particle size of 0.05 μm to 0.5 μm, which is difficult to make by conventional methods, so that non-uniform particle growth does not occur. It's about how you can make it.

본 발명의 상세한 내용은 다음과 같다. 본 발명에서의 핵심은 Bayer법 수산화 알루미늄을 α-알루미나 상태로 안정화시키기 위한 최종열처리를 행하기 이전 단계에서 입자상태를 최종입자의 원하는 크기에 따라 어느 정도 미리 분쇄를 하여 최종적인 열처리를 통해 α-알루미나를 제조해야 한다는 점이다. 이 같은 이유는 기존의 Bayer법 수산화 알루미늄을 사용하여 중간단계에서 분쇄공정을 거치지 않고 최종열처리를 행하는 경우 약50㎛∼100㎛에 이르는 Bayer법 수산화 알루미늄이 α-알루미나로 전이해가는 동안 고온에서 수산화 알루미늄에 존재하는 불순물과 내부응력등의 작용으로 과도한 입자성장과 불균일 입자생성 및 성장을 유발하게된다. 좀더 자세히 설명하면 α-알루미나상이 안정화되는 동안 수산화 알루미늄에 존재하는 불순물과 내부응력의 영향을 최소화하기 위해서는 원료인 Bayer법 수산화 알루미늄을 분쇄하여 사용하거나 α-알루미나상이 안정화되기 전인 중간단계에서 분쇄하여 최종열처리를 통해 α-알루미나상을 안정화시킴으로서 원료인 50㎛∼100㎛ Bayer법 수산화 알루미늄의 거대입자 내부에서 불순물이나 내부응력등의 영향이 과도하게 집중됨으로서 유발되는 입자성장과 불균일 입자생성 및 성장을 방지할 수 있다. 본 방법으로 α-알루미나를 제조할 경우 평균입자크기 0.05㎛∼0.5㎛까지의 미세한 입자크기와 균일한 입도분포를 갖는 제품을 얻을 수 있으며 이를 연마제로 사용할 경우 α-알루미나가 갖는 우수한 연마특성과 함께 균일한 입자크기에 따른 연마력 향상과 거대입자가 존재치 않음으로서 스크래치 발생이 거의 없다는 장점이 있다. 따라서 본 발명으로 제조한 α-알루미나는 반도체웨이퍼 가공공정(CMP공정)이나 비디오테입 및 콤팩트디스크 등의 연마제로서 사용될 경우 매우 우수한 특성을 나타낼 수 있다.Details of the present invention are as follows. The key point of the present invention is that before the final heat treatment for stabilizing the Bayer method aluminum hydroxide to α-alumina state, the particle state is ground to some extent according to the desired size of the final particles, and the final heat treatment is performed. Alumina must be prepared. The reason for this is that when the final heat treatment is performed without using a conventional Bayer aluminum hydroxide in the middle stage without undergoing grinding, the Bayer aluminum hydroxide, which is about 50 to 100 µm, is hydrated at high temperatures during the transition to α-alumina. Impurities and internal stress in aluminum cause excessive grain growth, non-uniform grain formation and growth. In more detail, in order to minimize the influence of impurities and internal stress in aluminum hydroxide during stabilization of the α-alumina phase, Bayer method aluminum hydroxide, which is a raw material, may be pulverized or crushed in an intermediate stage before the α-alumina phase is stabilized. Stabilization of α-alumina phase through heat treatment prevents excessive growth of impurities, internal stress, etc. in the large particles of raw material 50㎛ ~ 100㎛ Bayer's aluminum hydroxide. can do. When the α-alumina is produced by this method, it is possible to obtain a product having a fine particle size and uniform particle size distribution with an average particle size of 0.05 μm to 0.5 μm. Improved polishing force and uniform particle size do not exist due to the uniform particle size has almost no scratch. Therefore, the α-alumina produced by the present invention can exhibit very excellent properties when used as an abrasive for semiconductor wafer processing (CMP process), videotape and compact discs.

α-알루미나 제품의 사용분야 및 목적에 따라서는 불순물 특히 나트륨성분의 함량이 낮은 저 소다(Low Na)급 제품이 요구되는데 본 발명의 제품을 저소다급 제품으로 얻으려고 할 경우에는 간단한 공정의 추가만으로도 쉽게 Na2O함량 0.05%이하의 저소다급 제품을 얻을 수 있는데 방법은 다음과 같다.Depending on the field of use and purpose of the α-alumina product, a low soda (Low Na) product having a low content of impurities, especially sodium, is required. In order to obtain the product of the present invention as a low soda product, a simple process is added. You can easily obtain low soda grade products with Na 2 O content of 0.05% or less.

즉, α-알루미나를 안정화시키기 위한 열처리를 행할 때 입자성장이나 이상 입자생성 및 성장을 방지하기위해 원료인 Bayer법 수산화 알루미늄이나 알루미나 중간체를 분쇄하여 최종적인 열처리를 하는데 저소다급 알루미나를 만들기 위해서는 첫 번째 방법으로는 분쇄상태의 원료 수산화 알루미늄이나 알루미나 중간체를 Na성분과 반응하기 쉬운 Cl성분이 함유된 물질과 혼합하여 최종열처리 단계를 거쳐 α-알루미나를 만들고 생성된 NaCl성분을 침출시키고 여과 세척을 통해 Na성분을 제거할 수 있다. 이때 Cl성분을 함유한 물질로는 염산, 염화암모늄, 염화 알루미늄, 염기성 염화 알루미늄 및 이들의 혼합물들을 사용할 수 있다. 이 같은 방법으로는 Na2O성분 함유량이 약 0.03%까지의 저소다급 제품을 얻을 수 있다. 두 번째 방법으로는 분쇄한 후의 Bayer법 수산화 알루미늄이나 알루미나 중간체를 묽은 염산과 반응시켜 Na성분을 용존시켜 제거한 후 최종열처리를 행하여 α-알루미나를 제조한 후 분쇄하기 전에 세척공정을 통해 생성된 NaCl성분을 제거하여 저소다급 α-알루미나를 만들 수 있다. 이 방법으로는 대개 0.05%정도까지의 저소다급 α-알루미나를 만들 수 있다. 세 번째 방법으로는 분쇄한 후의 Bayer법 수산화 알루미늄이나 알루미나 중간체를 묽은 염산과 반응시켜 Na성분을 용출하여 Na성분을 간단히 제거한 후 첫 번째 방법과 같은 첨가제를 다시 혼합하여 최종열처리를 행하고 침출, 여과, 세척을 통해 Na성분을 제거한다. 이 같은 방법으로는 Na2O함량이 약0.01%까지의 저소다급 알루미나를 제조할 수 있다.In other words, when performing heat treatment to stabilize α-alumina, the final heat treatment is performed by grinding Bayer method aluminum hydroxide or alumina intermediate, which is a raw material, to prevent particle growth, abnormal particle generation and growth. In the second method, the raw material aluminum hydroxide or alumina intermediate in the pulverized state is mixed with a material containing Cl component which is easy to react with Na component to make α-alumina through the final heat treatment step, and the produced NaCl component is leached and filtered. Na component can be removed. In this case, as a material containing Cl, hydrochloric acid, ammonium chloride, aluminum chloride, basic aluminum chloride, and mixtures thereof may be used. In this way, a low soda product having a Na 2 O component content of up to about 0.03% can be obtained. In the second method, the Bayer method aluminum hydroxide or alumina intermediate after pulverization is reacted with dilute hydrochloric acid to dissolve the Na component, and then subjected to final heat treatment to prepare α-alumina. Can be removed to form a low soda α-alumina. This method usually produces low soda grade α-alumina up to 0.05%. In the third method, the Bayer method aluminum hydroxide or alumina intermediate after pulverization is reacted with dilute hydrochloric acid to elute the Na component, and then the Na component is simply removed. Then, the additives are mixed again as in the first method, followed by leaching, filtration, Na component is removed by washing. In this way, low soda-grade alumina with Na 2 O content of up to about 0.01% can be produced.

[실시예1]Example 1

아래의 표1은 본 발명으로 제조한 알루미나 분말 및 기존 방법으로 제조한 알루미나에 관한 내용들이다.Table 1 below shows the contents of the alumina powder prepared by the present invention and the alumina prepared by the conventional method.

제조방법은 먼저 Bayer법 수산화 알루미늄을 예비소성 한 후 분쇄한 것을 실시 예#1부터#4번에, Bayer법 수산화 알루미늄을 분쇄하여 사용한 것을 실시 예#5번 나타내었으며 결과는 표와 같다.In the manufacturing method, the Bayer method aluminum hydroxide was pre-fired and then pulverized. Examples # 1 to # 4 were used to pulverize the Bayer method aluminum hydroxide, Example # 5, and the results are shown in the table.

비교예는 기존의 Bayer법 수산화 알루미늄을 그대로 소성한 것을 나타내고 있다.The comparative example shows that the existing Bayer method aluminum hydroxide was calcined as it is.

표1에서 보는 것처럼 본 발명의 방법으로 기존의 방법보다 낮은 온도에서도 α-알루미나 분말을 얻을 수 있었으며 입자크기도 작은 것을 얻을 수 있었다.As shown in Table 1, the method of the present invention was able to obtain α-alumina powder even at a lower temperature than the conventional method, and to obtain a small particle size.

[실시예2]Example 2

저소다급 α-알루미나 분말을 제조하기 위해서 평균입자크기 75㎛이고 Na2O함량이 0.25%인 Bayer법 수산화 알루미늄을 700℃에서 예비소성한 후 평균입자크기 1㎛로 분쇄하고 0.2노르말 농도의 묽은 염산에 고형분 농도 30%가 되도록 투입하여 1시간동안 잘 교반하여 알루미나중의 나트륨성분을 침출한다. 이를 필터프레스를 통해 여과, 세척하여 나트륨성분을 제거한다. 얻어진 필터케이크와 알루미늄 클로라이드 용액을 필터케이크중의 알루미나 대비 AlCl3로 무게비 0.5%가 되도록 잘 혼합하여 1200℃에서 3시간 소성하였다. 실온까지 냉각된후에 다시 여과세척을 거쳐 잔류하고 있던 나트륨 성분을 추가로 제거한다. 최종적으로 습식분쇄를 통하여 평균입경 0.10㎛이고 최대입자크기 0.7㎛의 α-알루미나 분말을 얻었으며 Na2O함량은 0.008%이었다.To prepare a low soda-grade alumina powder, Bayer method aluminum hydroxide having an average particle size of 75 μm and a Na 2 O content of 0.25% was prebaked at 700 ° C., and then ground to an average particle size of 1 μm, and diluted to 0.2 normal concentration. It is added to hydrochloric acid so that solid content concentration is 30% and stirred well for 1 hour to leach the sodium component in alumina. This is filtered through a filter press and washed to remove sodium. The obtained filter cake and the aluminum chloride solution were mixed well so as to have a weight ratio of 0.5% by weight of AlCl 3 to alumina in the filter cake, and calcined at 1200 ° C for 3 hours. After cooling to room temperature, the remaining sodium component is further removed by filtration and washing. Finally, α-alumina powder having an average particle size of 0.10 μm and a maximum particle size of 0.7 μm was obtained through wet grinding, and the Na 2 O content was 0.008%.

..

..

Claims (4)

Bayer법 수산화 알루미늄으로부터 미세한 α-알루미나 분말을 제조함에 있어서 소성시의 불순물의 영향이나 내부응력의 영향이 과도하게 집중되는 것을 막기 위하여 원료인 수산화 알루미늄을 분쇄하거나 또는 예비 소성을 통해 만들어진 중간상태의 알루미나를 분쇄한 후 다시 최종소성을 통해 α-알루미나를 만드는 것을 특징으로 하는 α-알루미나 분말의 제조방법.In the production of fine α-alumina powder from Bayer's aluminum hydroxide, intermediate alumina made by grinding or preliminary firing of aluminum hydroxide as a raw material to prevent excessive concentration of impurities during firing or influence of internal stress. After pulverizing the method of producing an α-alumina powder, characterized in that the final firing to make a-alumina again. 청구항1에 있어서 원료인 Bayer법 수산화 알루미늄이나 이를 예비소성한 중간상태의 알루미나를 분쇄할 때 평균입자크기가 0.3㎛∼3㎛범위인 것을 특징으로 하는 α-알루미나 분말의 제조방법.The method for producing α-alumina powder according to claim 1, wherein the average particle size is in the range of 0.3 µm to 3 µm when the Bayer method aluminum hydroxide as a raw material or an intermediate state of alumina pre-fired is pulverized. 청구항1에 있어서 예비소성온도는 400℃에서부터 1100℃의 범위이고 최종소성온도는 1150℃에서부터1350℃범위인 것을 특징으로 하는 α-알루미나 분말의 제조방법.The method of claim 1, wherein the preliminary firing temperature is in the range of 400 ° C to 1100 ° C and the final firing temperature is in the range of 1150 ° C to 1350 ° C. 청구항1에 있어서 예비소성으로 얻어진 중간상태의 알루미나를 염산으로 침출하여 여과, 세척공정을 거쳐 나트륨성분을 1차로 제거한 후 얻어진 중간상태의 알루미나 케이크와 염화암모늄, 염산, 염화알루미늄 또는 염기성 염화알루미늄과 함께 혼합하여 최종소성처리하고 얻어진 α-알루미나를 다시 여과, 세척하므로서 2차로 나트륨성분을 추가로 제거하여 저소다α-알루미나를 제조하는 것을 특징으로 하는 α-알루미나 분말의 제조방법.The intermediate alumina obtained by pre-firing with hydrochloric acid, filtered and washed to remove sodium components first, and the intermediate alumina cake obtained with ammonium chloride, hydrochloric acid, aluminum chloride or basic aluminum chloride. A method of producing α-alumina powder, characterized in that the low-sodium α-alumina is prepared by additionally removing the sodium component by mixing and final firing and filtering and washing the obtained α-alumina again.
KR1019990049581A 1999-11-09 1999-11-09 Manufacturig method of alumina powder KR20010046015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990049581A KR20010046015A (en) 1999-11-09 1999-11-09 Manufacturig method of alumina powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990049581A KR20010046015A (en) 1999-11-09 1999-11-09 Manufacturig method of alumina powder

Publications (1)

Publication Number Publication Date
KR20010046015A true KR20010046015A (en) 2001-06-05

Family

ID=19619310

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990049581A KR20010046015A (en) 1999-11-09 1999-11-09 Manufacturig method of alumina powder

Country Status (1)

Country Link
KR (1) KR20010046015A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449491A (en) * 2012-12-27 2013-12-18 深圳信息职业技术学院 Alumina nano-rod and preparation method thereof
CN104628023A (en) * 2015-02-13 2015-05-20 山东长基化工新材料有限公司 Method for preparing ultralow-sodium high-temperature alpha-phase alumina
KR101694975B1 (en) 2015-07-03 2017-01-11 한국알루미나 주식회사 Method for preparing low-temperature sinterable alumina and low-soda alumina
CN108862405A (en) * 2017-05-15 2018-11-23 江苏凯力克钴业股份有限公司 A kind of preparation method and device of low sodium cobaltosic oxide
KR20190131724A (en) * 2018-05-17 2019-11-27 한국알루미나 주식회사 Preparation method of high purity alumina
KR20210040540A (en) * 2019-10-04 2021-04-14 (주)석경에이티 MANUFACTURING METHOD Of LOW SODA ALUMINA POWDER
CN115259191A (en) * 2022-08-27 2022-11-01 三门峡义翔铝业有限公司 Production process of micro-sodium alpha-alumina
CN115340114A (en) * 2022-09-13 2022-11-15 三门峡义翔铝业有限公司 Production device and production process of ultralow-sodium aluminide
KR102517803B1 (en) * 2022-02-03 2023-04-05 주식회사 씨아이에스케미칼 High purity alumina, preparation thereof and slurry for coating a separator of a secondary battery comprising the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449491A (en) * 2012-12-27 2013-12-18 深圳信息职业技术学院 Alumina nano-rod and preparation method thereof
CN104628023A (en) * 2015-02-13 2015-05-20 山东长基化工新材料有限公司 Method for preparing ultralow-sodium high-temperature alpha-phase alumina
KR101694975B1 (en) 2015-07-03 2017-01-11 한국알루미나 주식회사 Method for preparing low-temperature sinterable alumina and low-soda alumina
CN108862405A (en) * 2017-05-15 2018-11-23 江苏凯力克钴业股份有限公司 A kind of preparation method and device of low sodium cobaltosic oxide
KR20190131724A (en) * 2018-05-17 2019-11-27 한국알루미나 주식회사 Preparation method of high purity alumina
KR20210040540A (en) * 2019-10-04 2021-04-14 (주)석경에이티 MANUFACTURING METHOD Of LOW SODA ALUMINA POWDER
KR102517803B1 (en) * 2022-02-03 2023-04-05 주식회사 씨아이에스케미칼 High purity alumina, preparation thereof and slurry for coating a separator of a secondary battery comprising the same
CN115259191A (en) * 2022-08-27 2022-11-01 三门峡义翔铝业有限公司 Production process of micro-sodium alpha-alumina
CN115259191B (en) * 2022-08-27 2023-11-03 三门峡义翔铝业有限公司 Production process of micro sodium alpha-alumina
CN115340114A (en) * 2022-09-13 2022-11-15 三门峡义翔铝业有限公司 Production device and production process of ultralow-sodium aluminide

Similar Documents

Publication Publication Date Title
JP3262301B2 (en) Silica carbide wire sintered abrasive particles and method for producing the same
US5665127A (en) Process for producing sintered α-Al2 O3 bodies and their use
US5259147A (en) Granular abrasive material
KR101229611B1 (en) Magnesium oxide particle aggregate, and method for production thereof
JP2523776B2 (en) Composition for zirconia ceramic material
US4019914A (en) Method of manufacturing α-alumina
US5236471A (en) Process for the production of sintered material based on α-aluminum oxide, especially for abrasives
RU2414427C2 (en) Glass polishing composition based on cerium dioxide and preparation process thereof
EP0429548B1 (en) Small sized alpha alumina particles and platelets
US5284809A (en) Method for the preparation of α-aluminum oxide powder
JPS638260A (en) Praparation of zirconia mixture and zirconia mixture thereby
DE3633030A1 (en) ALUMINUM OXIDE-TITANIUM DIOXIDE COMPOSITE POWDER AND METHOD FOR THE PRODUCTION THEREOF
KR20010046015A (en) Manufacturig method of alumina powder
JP3280056B2 (en) Sintered microcrystalline ceramic material and method for producing the same
JP2002361110A (en) Improved grinding medium
JP2673161B2 (en) Method for manufacturing yttrium aluminum garnet
JPH06305726A (en) Production of powdery oxide of rare earth element
JP2003206137A (en) Partially stabilized or stabilized zirconia fine powder, precursor thereof and production method therefor
JP3284244B2 (en) Zirconium oxide powder and method for producing the same
JP2790951B2 (en) Method for producing plate-like alumina particles
JP2883522B2 (en) Method for producing rare earth oxide fine powder
KR102497278B1 (en) Method for manufacturing high putity alumina using pesudo-boehmite with chloride compound additives
JPH06104570B2 (en) Method for producing alumina powder
JP3531678B2 (en) Method for producing zirconia powder containing solid solution of stabilizer
KR20060102928A (en) Manufacturing method of barium titanate powder

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application