JPS6345118A - Production of sintered abrasive alumina grain - Google Patents

Production of sintered abrasive alumina grain

Info

Publication number
JPS6345118A
JPS6345118A JP61187893A JP18789386A JPS6345118A JP S6345118 A JPS6345118 A JP S6345118A JP 61187893 A JP61187893 A JP 61187893A JP 18789386 A JP18789386 A JP 18789386A JP S6345118 A JPS6345118 A JP S6345118A
Authority
JP
Japan
Prior art keywords
alumina
silica
abrasive grains
silica source
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61187893A
Other languages
Japanese (ja)
Inventor
Kunihiro Miyazaki
宮崎 国弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61187893A priority Critical patent/JPS6345118A/en
Publication of JPS6345118A publication Critical patent/JPS6345118A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/447Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by wet processes
    • C01F7/448Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by wet processes using superatmospheric pressure, e.g. hydrothermal conversion of gibbsite into boehmite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To produce the titled abrasive grain having high sintered density and excellent abrasive performance, by adding an acid to a specific alumina hydrate, subjecting to hydrothermal treatment and drying and calcining the treated product. CONSTITUTION:An Al salt (e.g. AlCl3.6H2O) is added with 2-4mol% metallic aluminum and 1-8wt% (in terms of oxide) modifying component of sintered alumina (e.g. MgCl2.6H2O) and optionally a silica source (e.g. colloidal silica) and the components are made to react with each other at 80-100 deg.C. The obtained aqueous solution of basic aluminum salt is added with an alkaline neutralizing agent [e.g. (NH4)2CO3] to obtain a hydrated alumina containing a reforming component and optionally a silica source. The hydrated product is optionally added with a silica source and subjected to hydrothermal treatment at 120-300 deg.C for >=1hr in the presence of 0.02-0.20ml of an acid (e.g. nitric acid) per 1g of solid component. The obtained treatment product is dried at <=150 deg.C without agitation, crushed, preliminarily calcined at 600-800 deg.C, calcined at 1,100-1,500 deg.C and quenched to obtain the objective grain.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高い研削性能、特に研磨ベルト、研磨ジスク、
オフセット砥石、フレキシブル砥石などに好適なアルミ
ナ質焼結砥粒に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides high grinding performance, especially polishing belts, polishing disks,
This invention relates to alumina sintered abrasive grains suitable for offset grindstones, flexible grindstones, etc.

(従来の技術) 従来大量に使用されている焼結砥粒としては、バイヤー
アルミナ粉末やボーキサイト粉末にバインダーを加えて
成形した後、1600℃以上の高温で焼結したものがあ
るが、性能面から使用される用途範囲は限定されている
。その後ゾル−ゲル法を用いて1500℃以下の低温で
焼結するという新しいタイプの焼結砥粒の製造方法が開
示された。この方法による砥粒の研削性能は市販の溶融
アルミナ砥粒よりはるかにすぐれ、また市販の溶融アル
ミナ−ジルコニア砥粒と同等もしくはよりすぐれている
と記述されている。
(Prior technology) Conventionally, sintered abrasive grains that have been used in large quantities include those made by adding a binder to Bayer alumina powder or bauxite powder, molding it, and then sintering it at a high temperature of 1,600°C or higher, but it has poor performance. The range of applications for which it is used is limited. Thereafter, a new type of method for producing sintered abrasive grains was disclosed, in which sintering was performed at a low temperature of 1500° C. or lower using a sol-gel method. The grinding performance of the abrasive grains produced by this method is said to be far superior to commercially available fused alumina abrasive grains, and to be comparable or superior to commercially available fused alumina-zirconia abrasive grains.

これら開示された以下の特許に示す方法は全てアルミナ
l水利物(A1203−820で示されるが、これに相
ちする実際の製品は1.5〜1.7水和物である)であ
る商品名r DISPERAL■」或いはr CATA
PAL@Jのコロイド状分散液(いわゆるアルミナゾル
)を原料としている。
All of the methods disclosed in the following patents are products of alumina hydrate (denoted as A1203-820, but the actual product corresponding to this is 1.5-1.7 hydrate). Name r DISPERAL ■” or r CATA
The raw material is a colloidal dispersion (so-called alumina sol) of PAL@J.

公開特許公報 昭58−32369では、前記コロイド
状分散液に改質成分、たとえばマグネシアやジルコニア
を混合した後ゲル化させ、次いで1250℃以上の温度
で数時間ゆっくり焼結するという方法であるが、この場
合カルシウムおよびアルカリ金属を実質上含有してはな
らない(約O,OS重量%より少なく含有する)として
いる。
Published Patent Publication No. 58-32369 discloses a method in which a modifying component, such as magnesia or zirconia, is mixed with the colloidal dispersion and then gelled, and then slowly sintered at a temperature of 1250° C. or higher for several hours. In this case, calcium and alkali metals must not be substantially contained (containing less than about O, OS weight %).

公開特許公報 昭57−207672も同様の方法であ
るが、この場合カルシウムは0−1.8重量%、ナトリ
ウムはO−0,4重量%含有させており、それは120
0℃より高い温度に10分間より短い時間に急速に加熱
し焼結させるということにより許容されるとしている。
Published Patent Publication No. 57-207672 is a similar method, but in this case calcium is contained in 0-1.8% by weight and sodium is contained in O-0.4% by weight, which is 120% by weight.
It is said that it is acceptable if the material is rapidly heated to a temperature higher than 0° C. for a period of less than 10 minutes and sintered.

公開特許公報 昭59−742Hおよび昭59−807
85は、ともに電気泳動法に関するものであり、前記改
質成分を含むコロイド状分散液を用意し、電気泳動によ
り陰極および/または股上に付着した物を乾燥後、12
00℃以上に急速に加熱し焼結させるという方法である
Published Patent Publications 1987-742H and 1982-807
No. 85 both relate to electrophoresis, in which a colloidal dispersion containing the above-mentioned modifying component is prepared, and after drying what has adhered to the cathode and/or crotch due to electrophoresis, 12
This method involves rapidly heating the material to 00°C or higher and sintering it.

公開特許公報 昭59−83932は、閉塞された孔性
の、ドープされていない高純度のアルミナ粒子の製造法
であり、ゾル−ゲル法または電気泳動法によって得られ
たゲルまたは付着物を乾燥後、1200℃以上に急速に
加熱し焼結させるという方法である。
Published Patent Publication No. 59-83932 describes a method for producing undoped, high-purity alumina particles with closed pores, in which gels or deposits obtained by a sol-gel method or an electrophoresis method are dried and then This method involves rapidly heating the material to 1200°C or higher and sintering it.

(発明が解決しようとする問題点) しかし、これら開示された方法は、次の様な問題点を有
している。即ち、 まず、原料として使用されるアルミナ1水和物はコロイ
ド状に分散させ得るには、−次粒子径が0.11L11
以下の超微粉でなければならず、通常はr D l5P
ERAL@Jの如くアルキルアルミニウムやアルミニウ
ムアルコキシドといった壱機アルミニウム化合物を高温
加水分解することによって得られるために高価であり、
このため砥粒としては非常に高価なものになる。
(Problems to be Solved by the Invention) However, these disclosed methods have the following problems. That is, first, in order for alumina monohydrate used as a raw material to be dispersed in a colloidal form, the -order particle size must be 0.11L11.
It must be an ultrafine powder, usually r D l5P
Like ERAL@J, it is expensive because it is obtained by high-temperature hydrolysis of aluminum compounds such as alkyl aluminum and aluminum alkoxide.
This makes the abrasive grains very expensive.

次に、アルミナl水和物のコロイド状分散液のみから純
粋の 100%近いアルミナ焼結砥粒を作ってみても、
砥粒としては性能が大幅に劣ることが確められており、
そのために結晶の異常粒成長を押え、組織を微細化、緻
密化するなどの目的でマグネシア(前駆体としてのマグ
ネシウム塩の形で)や靭性を増すなどの目的でジルコニ
ア(ジルコニウム塩の形で)などの改質成分を添加する
ことが行なわれている。しかし、これらの塩はゲル化促
進の効果を有しているために、コロイド状分散液に添加
すると速やかにゲル化が開始して著しい粘度上昇を起す
、このため、改質成分の均質混合が難しく、装置や操作
に多大の工夫を要し、時には細かい組織迄の均一分散が
出来ずに不均質な部分が生じて性能の劣化をもたらす。
Next, even if we try to make nearly 100% pure alumina sintered abrasive grains from only a colloidal dispersion of alumina l hydrate,
It has been confirmed that the performance as an abrasive grain is significantly inferior.
For this purpose, magnesia (in the form of magnesium salt as a precursor) is used to suppress abnormal grain growth and to make the structure finer and denser, and zirconia (in the form of zirconium salt) is used to increase toughness. Addition of modifying components such as However, since these salts have the effect of promoting gelation, when added to a colloidal dispersion, gelation immediately begins and a significant increase in viscosity occurs, making it difficult to homogeneously mix the modifying components. It is difficult and requires a great deal of ingenuity in equipment and operation, and sometimes even fine tissues cannot be uniformly dispersed, resulting in non-uniform areas and deterioration of performance.

また、この粘度上昇はアルミナl水和物の濃度が高くな
る程大なる傾向にあるので、改質成分の均質混合のため
にはアルミナ1木和物の濃度に上限があり、r DIS
PERAL@Jの如き1.5〜1.7水和物では通常2
5重量%以下、好ましくは20%前後である。この固形
分濃度は生産性とゲル密度に関連し、濃度が高い程経済
的にも性情的にも望まれることであるが、前記理由のた
めに制限を受ける。
In addition, this increase in viscosity tends to increase as the concentration of alumina monohydrate increases, so there is an upper limit to the concentration of alumina monohydrate for homogeneous mixing of the modifying components, and rDIS
For 1.5-1.7 hydrates such as PERAL@J, usually 2
It is 5% by weight or less, preferably around 20%. This solid content concentration is related to productivity and gel density, and although a higher concentration is economically and emotionally desirable, it is subject to limitations for the reasons mentioned above.

本発明の目的は、安価な原料を出発物質とし、高濃度の
アルミナ質溶液を得、これから高害度で高性能のアルミ
ナ質焼結砥粒を経済的に製造することにある。
An object of the present invention is to obtain a highly concentrated alumina solution using an inexpensive raw material as a starting material, and to economically produce highly harmful and high performance alumina sintered abrasive grains from the solution.

(問題点を解決するための手段) 本発明者は上記した徒来のゾル−ゲル法等の欠点を改善
する方法として改質成分を含む塩基性アルミニウム塩を
出発原料とする方法が有効であることを発見し特許出願
した。その後さらに研究した結果、これにシリカを添加
することにより、砥粒の焼結密度が上り、研削性能が一
層向上すること及び焼結温度を低くすることができるこ
とを発見した。
(Means for Solving the Problems) The present inventor has proposed that a method using a basic aluminum salt containing a modifying component as a starting material is effective as a method for improving the drawbacks of the above-mentioned conventional sol-gel method, etc. He discovered this and applied for a patent. As a result of further research, it was discovered that by adding silica to this, the sintered density of the abrasive grains increased, the grinding performance was further improved, and the sintering temperature could be lowered.

即ち、本発明はアルミナ焼結体の改質成分であるマグネ
シア源、ジルコニア源等又は改質成分及びシリカ源を含
むIIX基性アルミニウム塩に中和剤を加え、前記成分
を含むアルミナ水和物を生成させ、この水和物にシリカ
源が含まれてない場合はシリカ源を添加し、次いでこの
改質成分及びシリカ源を含む水和物に酸を添加して水熱
処理をし、得られた処理物を乾燥後焼成することからな
るアルミナ質焼結砥粒の製造方法である。
That is, the present invention adds a neutralizing agent to an IIX-based aluminum salt containing a magnesia source, a zirconia source, etc., which is a modifying component of an alumina sintered body, or a modifying component and a silica source, and produces an alumina hydrate containing the above components. If this hydrate does not contain a silica source, add a silica source, then add an acid to the hydrate containing the modifying component and silica source, and perform hydrothermal treatment to obtain the hydrate. This is a method for producing alumina sintered abrasive grains, which comprises drying and then firing a treated product.

上記した従来のゾル−ゲル法ではシリカを含有させたも
のは全く見当らない、一般のアルミナ質焼結砥粒、例え
ばボーキサイト焼結砥粒は多量のシリカが含有しており
、またバイヤーアルミナにシリカを少量含有させたアル
ミナ質焼結砥粒もあるが、これらの乾式法によるものと
本発明のように湿式法によるものは木質的に相違し、砥
粒の性佳が著しく異なるものであることは上記した通り
である。
In the conventional sol-gel method described above, no silica is found in general alumina sintered abrasive grains, such as bauxite sintered abrasive grains, which contain a large amount of silica, and Bayer alumina contains silica. There are also alumina sintered abrasive grains that contain a small amount of abrasive grains, but those produced by the dry method and those produced by the wet method as in the present invention are different in wood quality, and the properties of the abrasive grains are significantly different. is as described above.

本発明の方法によって前記開示されたゾル−ゲル法より
高密度のアルミナ質焼結砥粒が得られ、これは市販の溶
融アルミナ質砥粒や溶融アルミナ−ジルコニア賀砥粒よ
りもはるかにすぐれた研削性能を有することが判明した
The method of the present invention provides higher density alumina sintered abrasive grains than the sol-gel method disclosed above, which are far superior to commercially available fused alumina abrasive grains and fused alumina-zirconia abrasive grains. It was found that it has good grinding performance.

次に、本発明を工程順に詳しく説明する。Next, the present invention will be explained in detail in the order of steps.

a、 11!ノ1性アルミニウムI42の合成塩基性ア
ルミニウムmをつくる方法はいろいろあるが、高濃度の
水溶液が得られるなど好Iしい方法としては、各種のア
ルミニウムjlに金属アルミニウムを添加する方法であ
る。使用されるアルミニウム塩は、通常塩化アルミニウ
ム(AlCl2−8820)や硝Waフルミ:ウム(A
I(No3)3・9H20) であるが、酢酸アルミニ
ウム(At2(CH3COO)4・4H20)、硫酸ア
ルミニウム+AI、、(S04)、3自18)120)
の使用も可能である。出発濃度としては特に制限はない
が、適度な反応速度を持たせるために2〜4モル%が用
いられる。
a, 11! Synthesis of Basic Aluminum I42 There are various methods for producing basic aluminum m, but a preferred method for obtaining a highly concentrated aqueous solution is the method of adding metallic aluminum to various types of aluminum jl. The aluminum salts used are usually aluminum chloride (AlCl2-8820) and nitrate Wafuluminum (A
I(No3)3・9H20), but aluminum acetate (At2(CH3COO)4・4H20), aluminum sulfate + AI, , (S04), 3-18)120)
It is also possible to use Although there are no particular limitations on the starting concentration, 2 to 4 mol% is used in order to provide an appropriate reaction rate.

添加する改質成分1j、水可溶性のマグネシウム化合物
、ジルコニウム化合物、亜鉛化合物、ニッケル化合物、
クロム化合物、コバルト化合物などアルミナの異常粒成
長を押えたり、靭性を増す効果を持つアルミナ焼結体の
改質成分として一般的に知られたものが使用できるが、
性能上、コスト上、マグネシウム化合物が好ましい、マ
グネシウム化合物には各種マグネシウム塩が用いられる
が、性能上は塩化マグネシウム(MgCI2−6)1.
.0)や硝酸マグネシウム()Ig(NO3)2 Φ6
8201が好ましい、添加量(総量に対する含有量)は
砥粒の性能上焼成後の酸化物換算で1〜8重量%になる
量が適し、4〜6重量%になる量が好ましい、但し、後
工程でのロスがある場合もあるので理論値より予め多く
添加したり、不足分を次に説明する水熱処理時に添加し
たりして調整することも可能である。
Modifying component 1j to be added, water-soluble magnesium compound, zirconium compound, zinc compound, nickel compound,
Commonly known modifying ingredients for alumina sintered bodies, such as chromium compounds and cobalt compounds, can be used to suppress abnormal grain growth in alumina and increase toughness.
In terms of performance and cost, magnesium compounds are preferred. Various magnesium salts are used as magnesium compounds, but magnesium chloride (MgCI2-6)1.
.. 0) and magnesium nitrate ()Ig(NO3)2 Φ6
8201 is preferred. The amount added (content relative to the total amount) is 1 to 8% by weight in terms of oxide after firing in view of the performance of the abrasive grains, and preferably 4 to 6% by weight. Since there may be losses in the process, it is possible to adjust by adding more than the theoretical value in advance, or by adding the insufficient amount during the hydrothermal treatment described below.

添加するシリカ源としては、シリカとアルミナの両者が
微細組織まで均質に混合されることが大切であり、その
ためには粒子が細かく且つ分散性のよいコロイダルシリ
カやエチルシリケートが好ましい。
As the silica source to be added, it is important that both silica and alumina are mixed homogeneously down to the fine structure, and for this purpose colloidal silica and ethyl silicate, which have fine particles and good dispersibility, are preferred.

添加量は(改質成分及びシリカ源を酸化物として換算し
た総量中の重量%)は1重量%以上8重量%以下、好ま
しくは3〜6重量%である。 1重量%では殆んど効果
がなく、8重量%を越えるとムライト組織が多くなりす
ぎて粒強度が低下し、従って研削性能低下を起して好ま
しくない。
The amount added (weight % of the total amount of the modifying component and silica source calculated as oxides) is from 1% by weight to 8% by weight, preferably from 3 to 6% by weight. If it is 1% by weight, it has almost no effect, and if it exceeds 8% by weight, the mullite structure becomes too large, resulting in a decrease in grain strength and, therefore, a decrease in grinding performance, which is not preferable.

アルミニウム塩と金属アルミニウムとの反応はアルミニ
ウム塩水溶液に粒状、片状等のアルミニウムを加え、8
0〜100℃程度に加熱して行なう。
The reaction between aluminum salt and metallic aluminum is carried out by adding granular, flaky, etc. aluminum to an aqueous solution of aluminum salt, and
This is done by heating to about 0 to 100°C.

改質成分及びシリカ源の添加は反応前の原料に対して行
なってもよく、また反応後の塩基性アルミニウム水溶液
に対し行なってもよい、さらにシリカ源は改質成分と違
ってアルミナ水和物をゲル化させる作用がないので、次
に説明するアルミナ水和物のスラリーに添加することも
できる。得られる反応生成物は改質成分を別にして次の
一般式AI (OH)nX    (式中、XはC1、
No3ナトノ2      6−n 陰イオンを示し、 O< n< 8である)で表わされ
る塩基性アルミニウム塩である。 AIとXの比が2以
上の場合には灰色のカルメラ状固体となることがあるが
、所定の濃度になる様に水を添加することによって支障
なく使用することができる。その他、塩基性アルミニウ
ム塩をつくる方法としては1例えばAl(OH)3水溶
液にHCI、 H)103等の水溶液を所定の条件下で
加え、反応させることによって得ることができる。改質
成分の添加も上記と同様に行なうことt;できる。
The modifying component and the silica source may be added to the raw materials before the reaction, or to the basic aluminum aqueous solution after the reaction.Furthermore, the silica source, unlike the modifying component, is an alumina hydrate. Since it has no gelling effect, it can also be added to the slurry of alumina hydrate described below. The resulting reaction product, apart from the modifying component, has the following general formula AI (OH)nX (wherein, X is C1,
No3 Natono2 6-n is a basic aluminum salt represented by the anion (O<n<8). When the ratio of AI to X is 2 or more, a gray carmela-like solid may be formed, but it can be used without problems by adding water to a predetermined concentration. In addition, basic aluminum salts can be prepared by adding, for example, an aqueous solution of HCI, H)103, etc. to an aqueous solution of Al(OH)3 under predetermined conditions and reacting. Addition of modifying components can also be carried out in the same manner as described above.

b、中和 得られた塩基性アルミニウム塩水溶液(通常の濃度はA
l2O3換算で15〜25重量%)にアルカリを加えて
中和をし、改質成分又は改質成分とシリカ源を含むアル
ミナ水和物を得る。改質成分種によっては分解速度が遅
いために所定含有量に満たないことがあるが、その場合
には後工程のスラリーに添加して調整する。アルカリは
炭酸アンモニウム、炭酸ナトリウムなどの)欠隙塩、炭
酸水素アンモニウム、炭酸水素ナトリウムなどの重度酸
塩、アンモニア水、水酸化ナトリウムなどの水酸塩が用
いられるが、金属不純物の含有を避けるためにアンモニ
ウム塩が好ましい。
b. Neutralized basic aluminum salt aqueous solution (normal concentration is A)
(15 to 25% by weight (calculated as 12O3)) is neutralized by adding an alkali to obtain an alumina hydrate containing a modifying component or a modifying component and a silica source. Depending on the type of modifying component, the decomposition rate may be slow and the content may not reach the predetermined level. In that case, the content may be adjusted by adding it to the slurry in the subsequent process. As the alkali, pore salts such as ammonium carbonate and sodium carbonate, heavy acid salts such as ammonium bicarbonate and sodium bicarbonate, and hydroxides such as aqueous ammonia and sodium hydroxide are used, but in order to avoid the inclusion of metal impurities. Ammonium salts are preferred.

中和温度としては沸点以下であれば特に制限はないが、
生成物の結晶化を押え水熱処理温度の低下と時間の短縮
をはかるためには50℃以下の低温が好ましい。
There are no particular restrictions on the neutralization temperature as long as it is below the boiling point, but
In order to suppress crystallization of the product and reduce the hydrothermal treatment temperature and time, a low temperature of 50° C. or lower is preferable.

得られた改質成分又は改質成分とシリカ源を含むアルミ
ナ水和物(水和物の形は平均するとAl O・4 H2
O)は、必要に応じて熟成した@濾過、洗浄を嶽り返し
副生物を除去する。濾過には遠心脱水法、フィルタープ
レス法などが用いられる。
Alumina hydrate containing the obtained modifying component or modifying component and silica source (the form of the hydrate is, on average, AlO.4H2
O): If necessary, repeat the aging @filtration and washing to remove by-products. Centrifugal dehydration method, filter press method, etc. are used for filtration.

洗浄を充分に行なった後、スラリー中の固形分濃度を高
くするため、一旦150℃以下の温度で乾燥し粉砕して
乾粉とするのが好ましい、乾粉の粒度は水熱処理時間を
短縮するために細かい程好ましいが、 170メツシユ
以下であれば充分である。乾燥時に有機物を用いた共佛
乾繰を利用すれば粉砕は不要となる。乾燥温度が150
℃を越えると特性   。
After sufficient washing, in order to increase the solid content concentration in the slurry, it is preferable to dry it at a temperature of 150°C or less and grind it into a dry powder.The particle size of the dry powder is determined in order to shorten the hydrothermal treatment time. The finer it is, the better, but 170 meshes or less is sufficient. If a drying process using organic matter is used during drying, pulverization becomes unnecessary. Drying temperature is 150
Characteristics above ℃.

劣化を起し好ましくない。This is not desirable as it causes deterioration.

C0木熱処理 得られた乾粉に所定濃度になる様に水を加え、撹拌して
スラリーとした後、酸と必要に応じて濃度調整のために
改質成分を添加して水熱処理をする。このスラリーにシ
リカ源が含まれてない場合はその所定量を添加する。
C0 wood heat treatment Water is added to the resulting dry powder to a predetermined concentration, stirred to form a slurry, and then acid and, if necessary, a modifying component is added to adjust the concentration, followed by hydrothermal treatment. If this slurry does not contain a silica source, a predetermined amount thereof is added.

固形分濃度は、次工程の乾燥・固化のエネルギーを少な
くするために、高い程好ましいが、アルミナl水和物換
算で40重量%以上では解膠が不充分となり砥粒性能上
好ましくない、好ましくはアルミナl水和物換算で15
〜40重量%、最も好ましくは25〜35重量%が用い
られる。
The solid content concentration is preferably as high as possible in order to reduce the energy required for drying and solidification in the next step, but if it exceeds 40% by weight in terms of alumina l hydrate, peptization will be insufficient and this is not desirable in terms of abrasive grain performance. is 15 in terms of alumina hydrate
~40% by weight is used, most preferably 25-35% by weight.

使用される酸は、硝酸、塩酸などの無機酸、酢酸、ギ酸
などの有機酸で一価の酸が好ましい、硫酸、リン酸など
の多価の酸はアルミナの解膠作用が一価の酸より劣る。
The acids used are inorganic acids such as nitric acid and hydrochloric acid, and organic acids such as acetic acid and formic acid, preferably monovalent acids. Polyvalent acids such as sulfuric acid and phosphoric acid have a peptizing effect on alumina. Inferior.

酸の添加量は解膠が完全に行なわれるためには水熱処理
後の液のpHが1〜3になる量が好ましく、通常固形分
1gmす0.02〜0.20 m文が用いられる。
The amount of acid added is preferably such that the pH of the solution after hydrothermal treatment is 1 to 3 in order to achieve complete peptization, and usually an amount of 0.02 to 0.20 m is used per 1 gm of solid content.

水熱処理は、 120〜300℃で1時間以上、装置上
書エネルギー上杆ましくは150〜180℃で2〜8時
間が用いられる。
The hydrothermal treatment is performed at 120 to 300°C for 1 hour or more, and depending on the energy of the equipment, is preferably used at 150 to 180°C for 2 to 8 hours.

本発明において水熱処理は重要であり、これを行なわず
に、前工程で得られたアルミナ水和物スラリーをそのま
ま乾燥してもガラス状固体塊とならず粉化してしまう、
水熱処理することによって、非晶質アルミナ水和物が擬
ベーマイトとなり乾燥するとガラス状に固まる。これを
焼結することが必要となる。
Hydrothermal treatment is important in the present invention, and even if the alumina hydrate slurry obtained in the previous step is dried as it is without hydrothermal treatment, it will not become a glassy solid mass but will be powdered.
By hydrothermal treatment, amorphous alumina hydrate becomes pseudo-boehmite and hardens into a glass-like form when dried. It is necessary to sinter this.

d、乾燥・粉砕・分級 水熱処理した液を乾燥してガラス状固体塊とし、次いで
粉砕、分級して所定粒度に揃える。
d. Drying, Grinding, and Classification The hydrothermally treated liquid is dried to form a glassy solid mass, which is then ground and classified to a predetermined particle size.

乾燥は処理液をバットに数cpsの厚さになる様に広げ
、 150℃以下で静置乾燥する。好ましくはバットを
均熱ゾーン内でゆっくり移動させると乾燥効率がよく、
また乾燥ムラがなくてよい、乾燥温度は低温程砥粒の密
度が上がり性能上好ましいが、生産性を考慮して適当に
選択されるべきである。150℃以上では、不要粒度を
水に再分散させて再生することができなくなり好ましく
ない。
For drying, spread the treatment solution on a vat to a thickness of several cps, and leave to dry at 150°C or less. It is preferable to move the bat slowly within the soaking zone for better drying efficiency.
In addition, there is no need for uneven drying.The lower the drying temperature, the higher the density of the abrasive grains, which is preferable in terms of performance, but it should be selected appropriately in consideration of productivity. A temperature of 150° C. or higher is not preferable because unnecessary particle sizes cannot be redispersed in water and regenerated.

粉砕ハ、ロールクラッシャー、ハンマークラッシャー、
ボールミル、ロッドミルなどが用いられるが、針状粒が
発生し易いので緑り返し粉砕するとよい、粉砕を焼成前
の固化物について行なう理由は、焼成後の焼結体は極め
て硬いこと、不要粒度の回収再使用が困難なことなどに
よる。また砥粒に鋭いエツジをつくる上からも焼成前粉
砕が望ましい。
crusher, roll crusher, hammer crusher,
Ball mills, rod mills, etc. are used, but since acicular grains are likely to occur, it is better to regrind the solidified material before firing. This is because it is difficult to collect and reuse. It is also desirable to grind before firing in order to create sharp edges on the abrasive grains.

分級は、振動フルイなと通常の鋼フルイが用いられるが
、焼成時の収’E?rk見込んでフルイの目開きを決め
るべきである。
For classification, a vibrating sieve or a regular steel sieve is used, but the yield during firing is 'E? The opening of the sieve should be determined taking into account the rk.

e、焼成 所定粒度に揃えた粒は焼成して焼結される。焼成に先立
ち、 600〜800℃で予備焼成して結合水、残存す
る酸を予め除去しておくと都合がよいが、装置上問題が
なければ直接焼成してもよい。
e. Firing The grains adjusted to a predetermined grain size are fired and sintered. Prior to firing, it is convenient to perform preliminary firing at 600 to 800°C to remove bound water and residual acid, but direct firing may be used if there is no problem with the equipment.

焼成は、マツフル炉、台車炉などの電気炉やトンネル窯
、ロータリーキルンなと各種焼成炉が満では焼結が不充
分で砥粒強度が弱く、1500℃を越えると焼結が進み
すぎて砥粒の切れ刃自生作用が劣る。昇降温速度と保持
時間には特に制限はないが、砥粒性能上は急熱・急冷が
好ましい。
Firing is done in electric furnaces such as Matsufuru furnaces, bogie furnaces, tunnel kilns, rotary kilns, etc. If the firing furnace is full, sintering will be insufficient and the abrasive grain strength will be weak, and if the temperature exceeds 1500°C, sintering will progress too much and the abrasive grains will deteriorate. The self-sharpening effect of the cutting edge is poor. Although there are no particular restrictions on the rate of temperature rise and fall and the holding time, rapid heating and cooling are preferred from the viewpoint of abrasive grain performance.

(作用) 本発明によればシリカを比較的多量添加することにより
焼結条件等が同一でも無添加に較べて焼結密度が高くな
る。またシリカを添加すると焼結性がよいので、焼結温
度を下げることもできる。
(Function) According to the present invention, by adding a relatively large amount of silica, the sintered density becomes higher than when no additive is added even under the same sintering conditions. Furthermore, since sinterability is improved by adding silica, the sintering temperature can also be lowered.

これらの理由はアルミナとシリカの反応によるムライト
相の生成によるものと考えられるが詳細は今の所不明で
ある。
These reasons are thought to be due to the formation of a mullite phase due to the reaction between alumina and silica, but the details are currently unknown.

第1図は本発明によるアルミナ焼結砥粒におけるシリカ
添加量と密度の関係を示したものであり、シリカ添加に
よる密度増大を表わしている。
FIG. 1 shows the relationship between the amount of silica added and the density in the alumina sintered abrasive grains according to the present invention, and shows the increase in density due to the addition of silica.

第2図は同様に焼結温度と密度の関係を示したものであ
り、同一の密度で比較するとシリカ添加の場合の方がシ
リカ無添加の場合よりかなり焼結温度が低いことを表わ
している。
Figure 2 similarly shows the relationship between sintering temperature and density, and shows that when comparing the same density, the sintering temperature is considerably lower in the case of silica addition than in the case of no silica addition. .

いずれの場合も改質成分としてl’1gOを4.8重量
%含有している。
In either case, 4.8% by weight of l'1gO was contained as a modifying component.

(実施例) 次に、本発明を実施例によってさらに詳しく説明する。(Example) Next, the present invention will be explained in more detail by way of examples.

実施例 l 水800 ml ニktl化7 ルミニウム(AlCl
2−6820)200g、改質成分として硝酸マグネシ
ウム(xg(No3)、、・8)120) Bogを溶
解し、還流冷却しながら、80〜100℃に加温し、次
いで予め10%の塩酸で洗浄・乾燥して表面を活性にし
ておいた金属アルミニウムの旋盤切削片90gを加えて
反応させた0反応終了後、反応液を濾過し、炉液として
濃度40.3重量%の塩基性塩化アルミニウム水溶液を
得た。溶質を分析した結果、A12(OH)2.2CI
、8の分子式で表わされる塩基性塩化アルミニウムであ
り、マグネシアの含有量は酸化物換算(アルミナとマグ
ネシアの含量中のマグネシア)で4.8重量%であった
Example l 800 ml water 7-luminium chloride (AlCl
2-6820) 200g, magnesium nitrate (xg (No3), ・8) 120) Bog as a modifying component was dissolved, heated to 80 to 100°C while cooling under reflux, and then preliminarily treated with 10% hydrochloric acid. 90 g of lathe-cut pieces of metal aluminum whose surface had been activated by washing and drying were added and reacted. After the reaction was completed, the reaction solution was filtered and basic aluminum chloride with a concentration of 40.3% by weight was prepared as a furnace solution. An aqueous solution was obtained. As a result of solute analysis, A12(OH)2.2CI
, 8, and the magnesia content was 4.8% by weight in terms of oxide (magnesia in the alumina and magnesia contents).

次にこの水溶液150 gに水600腸文を加えて希釈
し、室温にて撹拌しながら15重量%の炭酸アンモニウ
ム水溶液130 mlをlO麺文/1nで滴下して中和
し、アルミナ水和物を生成した。途中アルミナ水和物の
生成量が増加するにつれて粘度が上昇したため、逐次水
を追加して最終の液量を2000S文にした。そのまま
1時間熟成した後、濾過、水洗を繰り返した。最後にア
七トンで洗浄後100℃で乾燥し、35gのアルミナ水
和物を得、ボールミルで解砕して 170メツシユアン
ダーとした。
Next, 150 g of this aqueous solution was diluted by adding 600 g of water, and while stirring at room temperature, 130 ml of a 15% by weight ammonium carbonate aqueous solution was added dropwise at 10 mn/1 n to neutralize the alumina hydrate. was generated. During the process, the viscosity increased as the amount of alumina hydrate increased, so water was added successively to make the final liquid volume 2000S. After aging for 1 hour, filtration and water washing were repeated. Finally, it was washed with A7T and dried at 100°C to obtain 35 g of alumina hydrate, which was crushed in a ball mill to form a 170 mesh under.

このアルミナ水和物はAl2O3含有量80重量%であ
り、マグネシアの含有量は酸化物換算で1.8i量%で
あった・ このアルミナ水和物の粉末30gを55gの水に分散さ
せ、固形分濃度35重量%(Al2O3濃度換算で21
.2重量%)のスラリーとした。このスラリーにシリカ
濃度20重量%のコロイダルシリカ3.3g、マグネシ
ア濃度調整のための硝酸マグネシウム4.2gおよび硝
酸2.01文を添加し、均質になる様充分に混合した後
、硝子製耐圧容器中でte。
This alumina hydrate had an Al2O3 content of 80% by weight, and the magnesia content was 1.8i% by weight in terms of oxide. 30g of this alumina hydrate powder was dispersed in 55g of water, and a solid concentration 35% by weight (21% in terms of Al2O3 concentration)
.. 2% by weight) to form a slurry. To this slurry, 3.3 g of colloidal silica with a silica concentration of 20% by weight, 4.2 g of magnesium nitrate to adjust the magnesia concentration, and 2.01 g of nitric acid were added, and after thoroughly mixing to make it homogeneous, the mixture was poured into a glass pressure-resistant container. Te inside.

℃、 3時間水熱処理をした。Hydrothermal treatment was performed at ℃ for 3 hours.

この様な方法と条件で得られた高粘性液体を100に、
単位で用意し、ホーローバットに2〜3c■の厚さにな
る様に移し、80℃の熱風乾燥嚢中で24時間かけて乾
燥してガラス状固体塊とした。この固体塊をロールクラ
ッシャーで粉砕し、500〜1000ル鳳に篩分けた。
The high viscosity liquid obtained by such method and conditions is 100,
It was prepared in units, transferred to a enamel vat to a thickness of 2 to 3 cm, and dried in a hot air drying bag at 80° C. for 24 hours to form a glassy solid mass. This solid mass was crushed with a roll crusher and sieved to a size of 500 to 1000 ml.

この篩分けた粒をアルミナルツボに納れ、マツフル炉中
で600℃、5時間予備焼成して結晶水、酸根を除去し
た後、5℃/winの昇温速度で1350℃まで昇温し
、 5時間保持した。室温に冷却後取り出し摩布用粒度
雰36に篩分けた。
The sieved grains were placed in an aluminum crucible, pre-calcined in a Matsufuru furnace at 600°C for 5 hours to remove crystal water and acid radicals, and then heated to 1350°C at a heating rate of 5°C/win. It was held for 5 hours. After cooling to room temperature, it was taken out and sieved into a particle size atmosphere for polishing cloth (36).

この試料を分析した結果、シリカ約4重量%、マグネシ
ア約5重量26であった。
Analysis of this sample revealed that it contained approximately 4% by weight of silica and approximately 5% by weight of magnesia.

実施例 2 実施例1で得た500〜1000 h yaに篩分けた
粒を白金ルツボに納れ、1350℃に保持したマツフル
炉中に即座に挿入して約5分間で1350℃とし、 5
分間保持した後直ちに室温中に取り出して冷却した0次
いで厚布用粒度136に篩分けた。
5
After being held for a minute, the mixture was immediately taken out to room temperature, cooled, and then sieved to a particle size of 136 for thick cloth.

シリカ含有量は実施例1と同様約4重量%であった。The silica content was about 4% by weight as in Example 1.

比較例 l シリカを添加することを除いて実施例1と同様の方法、
条件で摩布用粒度璽36の焼結砥粒を得た。
Comparative Example l Same method as Example 1 except for adding silica,
Under these conditions, sintered abrasive grains with a grain size of 36 for rubbing cloth were obtained.

比較例 2 シリカを添加することを除いて実施例2と同様の方法、
条件で厚布用粒度R3Bの焼結砥粒を得た。
Comparative Example 2 Same method as Example 2 except for adding silica,
Under these conditions, sintered abrasive grains having a particle size of R3B for thick cloth were obtained.

比較例 3 シリカを添加することを除いて実施例2と同様の操作で
1400℃で急熱して厚布用粒度13Bの焼結砥粒を得
た。
Comparative Example 3 Sintered abrasive grains having a particle size of 13B for thick cloth were obtained by rapidly heating at 1400° C. in the same manner as in Example 2 except for adding silica.

研削試験 実施例及び比較例で得た粒を用い、外径178φll1
1、穴径23φ厘鳳、厚さ0.85m5のパルカナイズ
ドファイバー板を基材として、通常の方法により研磨デ
ィスクを製作した。
Using the grains obtained in the grinding test examples and comparative examples, the outer diameter was 178φll1
1. Using a pulcanized fiber board with a hole diameter of 23φ and a thickness of 0.85 m5 as a base material, an abrasive disk was manufactured by a conventional method.

次いで、これを日立PDH−180B型電動式サングー
に装着し、被削材545C平板(38W X500文X
10t+ss)を荷重8Kgで20分間研削した。
Next, this was installed on the Hitachi PDH-180B electric type Sangoo, and the work material was a 545C flat plate (38W x 500mm x
10t+ss) was ground for 20 minutes with a load of 8kg.

その累植研削量を第1表に示す。The cumulative amount of grinding is shown in Table 1.

実施例1及び2の研磨ディスクはシリカ無添加の比較例
1及び2のそれの1.2〜1.3倍の研削性能を示し、
焼結温度が50℃高い比較例3のそれと同等であった。
The abrasive disks of Examples 1 and 2 exhibited grinding performance 1.2 to 1.3 times that of Comparative Examples 1 and 2 without silica added,
The sintering temperature was equivalent to that of Comparative Example 3, which was 50°C higher.

(以下余白) 第1表 (発明の効果ン 本発明によれば密度の高いアルミナ質焼結砥粒を安価な
原料から経済的に得ることができ、また従来と同様の焼
結密度ならば焼結温度を下げることができることも大き
な利点である。
(Leaving space below) Table 1 (Effects of the invention) According to the present invention, high-density alumina sintered abrasive grains can be obtained economically from inexpensive raw materials, and if the sintered density is the same as before, sintered Another great advantage is that the freezing temperature can be lowered.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシリカ添加量と密度の関係を示すグラフであり
、第2図は焼結温度と密度の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the amount of silica added and density, and FIG. 2 is a graph showing the relationship between sintering temperature and density.

Claims (4)

【特許請求の範囲】[Claims] (1)アルミナ焼結体の改質成分又は改質成分とシリカ
源を含む塩基性アルミニウム塩に中和剤を加え、該改質
成分又は改質成分とシリカ源を含むアルミナ水和物を生
成させ、この水和物にシリカ源が含まれてない場合はシ
リカ源を添加し、次いで改質成分及びシリカ源を含む水
和物に酸を添加して水熱処理をし、得られた処理物を乾
燥後焼成することを特徴とするアルミナ質焼結砥粒の製
造方法。
(1) A neutralizing agent is added to a basic aluminum salt containing a modifying component of an alumina sintered body or a modifying component and a silica source to produce an alumina hydrate containing the modifying component or modifying component and a silica source. If the hydrate does not contain a silica source, add a silica source, then add an acid to the hydrate containing the modifying component and the silica source, and perform hydrothermal treatment to obtain a treated product. A method for producing alumina sintered abrasive grains, which comprises drying and then firing.
(2)改質成分がMgO、ZrO_2である特許請求の
範囲第1項記載のアルミナ質焼結砥粒の製造方法。
(2) The method for producing alumina sintered abrasive grains according to claim 1, wherein the modifying components are MgO and ZrO_2.
(3)シリカの含有量が1〜8重量%である特許請求の
範囲第1項又は第2項記載のアルミナ質焼結砥粒の製造
方法。
(3) The method for producing alumina sintered abrasive grains according to claim 1 or 2, wherein the silica content is 1 to 8% by weight.
(4)焼成を1100〜1500℃で行なう特許請求の
範囲第1項又は第2項又は第3項記載のアルミナ質焼結
砥粒の製造方法。
(4) The method for producing alumina sintered abrasive grains according to claim 1, 2, or 3, wherein the firing is performed at 1,100 to 1,500°C.
JP61187893A 1986-08-12 1986-08-12 Production of sintered abrasive alumina grain Pending JPS6345118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61187893A JPS6345118A (en) 1986-08-12 1986-08-12 Production of sintered abrasive alumina grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61187893A JPS6345118A (en) 1986-08-12 1986-08-12 Production of sintered abrasive alumina grain

Publications (1)

Publication Number Publication Date
JPS6345118A true JPS6345118A (en) 1988-02-26

Family

ID=16214038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61187893A Pending JPS6345118A (en) 1986-08-12 1986-08-12 Production of sintered abrasive alumina grain

Country Status (1)

Country Link
JP (1) JPS6345118A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205475A (en) * 1989-09-11 1991-09-06 Norton Co Manufacture of bound product and particles of grinding material and improvement of grinding perearmance of said bound product
JPH0420845A (en) * 1990-05-15 1992-01-24 Jujo Paper Co Ltd Method for measuring gloss irregularity
US5432137A (en) * 1992-02-28 1995-07-11 Mitsubishi Materials Corporation Process for producing a highly crystalline, fine α-alumina powder
WO1997049647A1 (en) * 1996-06-26 1997-12-31 Minnesota Mining And Manufacturing Company Method for making ceramic materials from boehmite

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205475A (en) * 1989-09-11 1991-09-06 Norton Co Manufacture of bound product and particles of grinding material and improvement of grinding perearmance of said bound product
JP2509379B2 (en) * 1989-09-11 1996-06-19 ノートン カンパニー Abrasive binder, method for producing abrasive particles, and method for improving grinding performance of abrasive binder
JPH0420845A (en) * 1990-05-15 1992-01-24 Jujo Paper Co Ltd Method for measuring gloss irregularity
US5432137A (en) * 1992-02-28 1995-07-11 Mitsubishi Materials Corporation Process for producing a highly crystalline, fine α-alumina powder
WO1997049647A1 (en) * 1996-06-26 1997-12-31 Minnesota Mining And Manufacturing Company Method for making ceramic materials from boehmite
US5728184A (en) * 1996-06-26 1998-03-17 Minnesota Mining And Manufacturing Company Method for making ceramic materials from boehmite

Similar Documents

Publication Publication Date Title
JP2886725B2 (en) Method for producing colloidal boehmite
JP3694627B2 (en) Method for producing flaky boehmite particles
JP4579907B2 (en) Nanoporous ultrafine alpha-alumina powder and sol-gel method for preparing the powder
US20150315442A1 (en) Production Method of a Novel Polishing Alumina
JPH06104816B2 (en) Sintered alumina abrasive grains and method for producing the same
JPH0588915B2 (en)
JPH04500947A (en) Small α-alumina particles and plates
JPH013008A (en) Method for producing easily crushable alumina
JP4281943B2 (en) Method for producing plate-like alumina particles
CN100383047C (en) Method for preparing alumina powder with small particle diameter
JPH06510272A (en) Improved mixed metal oxide crystal powder and its synthesis method
JPH05117636A (en) Polycrystalline sintered abrasive particle based on alpha-aluminum trioxide, abrasive comprising the abrasive particle, preparation of the abrasive particle and preparation of fire-resistant ceramic product
JP2868176B2 (en) Method for producing rare earth element oxide powder
JPS6345118A (en) Production of sintered abrasive alumina grain
CN106517280A (en) Technology for preparing boehmite microcrystal powder only through adjusting pressure
EP2030950A1 (en) Particulate alumina composition and process for production thereof
JPS62275027A (en) Production of ferromagnetic fine powder for magnetic recording
JPH09315865A (en) Production of transparent yttrium oxide sintered compact
JPS6330314A (en) Production of sintered alumina abrasive grain
JPH02293371A (en) Sintered object of alpha-al203
EP0582644B1 (en) Process for preparing mixed oxides
CN115259189B (en) Method for synthesizing low-sodium pseudo-boehmite from industrial aluminum hydroxide
JPH0688794B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPS596812B2 (en) Pseudo-boehmite type alumina hydrate and its manufacturing method
JP4838953B2 (en) Method for producing YAG powder