JPS6330314A - Production of sintered alumina abrasive grain - Google Patents

Production of sintered alumina abrasive grain

Info

Publication number
JPS6330314A
JPS6330314A JP61171738A JP17173886A JPS6330314A JP S6330314 A JPS6330314 A JP S6330314A JP 61171738 A JP61171738 A JP 61171738A JP 17173886 A JP17173886 A JP 17173886A JP S6330314 A JPS6330314 A JP S6330314A
Authority
JP
Japan
Prior art keywords
hydrate
alumina
acid
abrasive grains
hydrothermal treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61171738A
Other languages
Japanese (ja)
Other versions
JPH078726B2 (en
Inventor
Kunihiro Miyazaki
宮崎 国弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61171738A priority Critical patent/JPH078726B2/en
Publication of JPS6330314A publication Critical patent/JPS6330314A/en
Publication of JPH078726B2 publication Critical patent/JPH078726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To economically obtain the titled powder having a high performance from an inexpensive starting material by forming an alumina hydrate contg. a reforming component of the sintered alumina by neutralizing a basic aluminum salt contg. the reforming component, followed by drying a treated material which is obtd. by adding an acid to said hydrate, and then by effecting a hydrothermal treatment of the obtd. hydrate, followed by calcination of the said hydrate. CONSTITUTION:A neutralizing agent, preferably, ammonium salt, is added to the basic aluminum salt contg. the reforming component of the sintered alumina resulted, in the formation of the alumina hydrate. subsequently, the hydrothermal treatment is effected after adding an acid (preferably, a monovalent acid such as hydrochloric acid and acetic acid, etc.) to the hydrate And, the obtd. treated material is dried, followed by calcining it. The reforming component is exemplified by preferably, MgO and ZrO2, and the calcining is effected preferably, at a temp. of 1,200-1,500 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高い研削性能、特に研磨ベルト、研磨ジスク、
オフセット砥石、フレキシブル砥石などに好適なアルミ
ナ質焼結砥粒に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides high grinding performance, especially polishing belts, polishing disks,
This invention relates to alumina sintered abrasive grains suitable for offset grindstones, flexible grindstones, etc.

(従来の技術) 従来大量に使用されている焼結砥粒としては、バイヤー
アルミナ粉末やボーキサイト粉末にバインダーを加えて
成形した後、 1800℃以上の高温で焼結したものが
あるが、性能面から使用される用途範囲は限定されてい
る。その後ゾル−ゲル法を用いて1500℃以下の低温
で焼結するという新しいタイプの焼結砥粒の製造方法が
開示された。この方法による砥粒の研削性能は市販の溶
融アルミナ砥粒よりはるかにすぐれ、また市販の溶融ア
ルミナ−ジルコニア砥粒と同等もしくはよりすぐれてい
ると記述されている。
(Conventional technology) Sintered abrasive grains that have been used in large quantities include those made by adding a binder to Bayer alumina powder or bauxite powder, molding it, and then sintering it at a high temperature of 1800°C or higher, but it has poor performance. The range of applications for which it is used is limited. Thereafter, a new type of method for producing sintered abrasive grains was disclosed, in which sintering was performed at a low temperature of 1500° C. or lower using a sol-gel method. The grinding performance of the abrasive grains produced by this method is said to be far superior to commercially available fused alumina abrasive grains, and to be comparable or superior to commercially available fused alumina-zirconia abrasive grains.

これら開示された以下の特許に示す方法は全てアルミナ
1水和物(A1203 ・H2Oで示されるが、これに
相当する実際の製品は1.5〜1.7水和物である)で
ある商品名rDIsPERAL@J或いはr CATA
PAL’ Jのコロイド状分散液(いわゆるアルミナゾ
ル)を原料としている。
All of the methods disclosed in the following patents are products of alumina monohydrate (denoted as A1203 ・H2O, but the actual product corresponding to this is 1.5-1.7 hydrate). NamerDIsPERAL@J or rCATA
The raw material is a colloidal dispersion (so-called alumina sol) of PAL' J.

公開特許公報 昭58−32389では、前記コロイド
状分散液に改質成分、たとえばマグネシアやジルコニア
を混合した後ゲル化させ、次いで1250℃以上の温度
で数時間ゆっくり焼結するという方法であるが、この場
合カルシウムおよびアルカリ金属を実質上含有してはな
らない(約0.05重量%より少なく含有する)として
いる。
Published Patent Publication No. 58-32389 discloses a method in which a modifying component, such as magnesia or zirconia, is mixed with the colloidal dispersion and then gelled, and then slowly sintered at a temperature of 1250° C. or higher for several hours. In this case, calcium and alkali metals must not be substantially contained (contained less than about 0.05% by weight).

公開特許公報 昭57−207872も同様の方法であ
るが、この場合カルシウムは0〜1.8重量%、ナトリ
ウムは0〜0.4重量%含有させており、それは120
0℃より高い温度に10分間より短い時間に急速に加熱
し焼結させるということにより許容されるとしている。
Published Patent Publication No. 57-207872 uses a similar method, but in this case calcium is contained in 0 to 1.8% by weight and sodium is contained in 0 to 0.4% by weight, which is 120% by weight.
It is said that it is acceptable if the material is rapidly heated to a temperature higher than 0° C. for a period of less than 10 minutes and sintered.

公開特許公報 昭59−74299および昭59−80
785は、ともに電気泳動法に関するものであり、前記
改質成分を含むコロイド状分散液を用意し、電気泳動に
より陰極および/または膜上に付着した物を乾燥後、1
200℃以上に急速に加熱し焼結させるという方法であ
る。
Published Patent Publications 1982-74299 and 1982-80
No. 785 both relate to an electrophoresis method, in which a colloidal dispersion containing the above-mentioned modifying components is prepared, and after drying the material adhered to the cathode and/or membrane by electrophoresis, 1
This method involves rapidly heating the material to 200°C or higher and sintering it.

公開特許公報 昭5f3−83932は、閉塞された孔
性の、ドープされていない高純度のアルミナ粒子の製造
法であり、ゾル−ゲル法または電気泳動法によって得ら
れたゲルまたは付着物を乾燥後、1200℃以上に急速
に加熱し焼結させるという方法である。
Published Patent Publication No. 5F3-83932 is a method for producing undoped, high-purity alumina particles with closed pores, in which gels or deposits obtained by a sol-gel method or an electrophoresis method are dried and This method involves rapidly heating the material to 1200°C or higher and sintering it.

(発明が解決しようとする問題点) しかし、これら開示された方法は、次の様な問題点を有
している。即ち、 まず、原料として使用されるアルミナ1水和物はコロイ
ド状に分散させ得るには、−次粒子径が0、IJLIl
以下の超微粉でなければならず、通常はr D l5P
ERAL@Jの如くアルキルアルミニウムやアルミニウ
ムアルコキシドといった有機アルミニウム化合物を高温
加水分解することによって得られるために高価であり、
このため砥粒としては非常に高価なものになる。
(Problems to be Solved by the Invention) However, these disclosed methods have the following problems. That is, first, in order for the alumina monohydrate used as a raw material to be dispersed in a colloidal state, the -order particle size must be 0, IJLII
It must be an ultrafine powder, usually r D l5P
Like ERAL@J, it is expensive because it is obtained by high-temperature hydrolysis of organoaluminum compounds such as alkyl aluminum and aluminum alkoxide.
This makes the abrasive grains very expensive.

次に、アルミナ1水和物のコロイド状分散液のみから純
粋の 100%近いアルミナ焼結砥粒を作ってみても、
砥粒としては性能が大幅に劣ることが確められており、
そのために結晶の異常粒成長を押え、組織を微細化、°
緻密化するなどの目的でマグネシア(前駆体としてのマ
グネシウム塩の形で)や靭性キ増すなどの目的でジルコ
ニア(ジルコニウム塩の形で)などの改質成分を添加す
ることが行なわれている。しかし、これらの塩はゲル化
促進の効果を有しているために、コロイド状分散液に添
加すると速やかにゲル化が開始して著しい粘度上昇を起
す、このため、改質成分の均質混合が難しく、装置や操
作に多大の工夫を要し、時には細かい組織迄の均一分散
が出来ずに不均質な部分が生じて性能の劣化をもたらす
Next, even if we try to make nearly 100% pure alumina sintered abrasive grains from only a colloidal dispersion of alumina monohydrate,
It has been confirmed that the performance as an abrasive grain is significantly inferior.
To this end, it suppresses abnormal grain growth of crystals, refines the structure, and
Modifiers such as magnesia (in the form of a magnesium salt as a precursor) for purposes such as densification and zirconia (in the form of a zirconium salt) for purposes such as increasing toughness have been added. However, since these salts have the effect of promoting gelation, when added to a colloidal dispersion, gelation immediately begins and a significant increase in viscosity occurs, making it difficult to homogeneously mix the modifying components. It is difficult and requires a great deal of ingenuity in equipment and operation, and sometimes even fine tissues cannot be uniformly dispersed, resulting in non-uniform areas and deterioration of performance.

また、この粘度上昇はアルミナ1水和物の濃度が高くな
る程大なる傾向にあるので、改質成分の均質混合のため
にはアルミナ1水和物の濃度に上限があり、r DIS
PERAL’ Jの如き1.5〜1.7水和物では通常
25重量%以下、好ましくは20%前後である。この固
形分濃度は生産性とゲル密度に関連し、濃度が高い程経
済的にも性能的にも望まれることであるが、前記理由の
ために制限を受ける。
In addition, this increase in viscosity tends to increase as the concentration of alumina monohydrate increases, so there is an upper limit to the concentration of alumina monohydrate for homogeneous mixing of the modifying components, and r DIS
For 1.5-1.7 hydrates such as PERAL' J, the content is usually 25% by weight or less, preferably around 20%. This solid content concentration is related to productivity and gel density, and although a higher concentration is desirable from an economical and performance standpoint, it is subject to limitations for the reasons mentioned above.

本発明の目的は、安価な原料を出発物質とし、高濃度の
アルミナ質溶液を得、これから高性能のアルミナ質焼結
砥粒を経済的に製造することにある。
An object of the present invention is to obtain a highly concentrated alumina solution using inexpensive raw materials as starting materials, and to economically produce high-performance alumina sintered abrasive grains from the solution.

(問題点を解決するための手段) 本発明は原料として、従来の微細なアルミナ1水和物に
代って塩基性アルミニウム塩を用いる。
(Means for Solving the Problems) The present invention uses a basic aluminum salt as a raw material in place of the conventional fine alumina monohydrate.

この塩基性アルミニウム塩は高濃度で水溶液とすること
が可能である。従って改質成分の均一添加も容易である
0次に改質成分を含む塩基性アルミニウム塩に中和剤を
加えてアルミナ水和物を生成させ、これに酸を加えて水
熱処理をし、得られたガラス状物質を所定粘度にした後
焼成することを特徴とする。これによって前記開示され
たゾル−ゲル法と類似の微細な組織のものが得られ、こ
れは市販の溶融アルミナ質砥粒や溶融アルミナ−ジルコ
ニア質砥粒よりもはるかにすぐれた研削性能を有するこ
とが判明した。
This basic aluminum salt can be made into an aqueous solution at high concentration. Therefore, it is easy to uniformly add the modifying component.A neutralizing agent is added to the basic aluminum salt containing the modifying component to form an alumina hydrate, which is then hydrothermally treated by adding an acid. The method is characterized in that the glassy material is made to a predetermined viscosity and then fired. This results in a fine structure similar to that of the sol-gel method disclosed above, which has much better grinding performance than commercially available fused alumina abrasive grains or fused alumina-zirconia abrasive grains. There was found.

次に、本発明を工程順に詳しく説明する。Next, the present invention will be explained in detail in the order of steps.

a、塩基性アルミニウム塩の合成 塩基性アルミニウム塩をつくる方法はいろいろあるが、
高濃度の水溶液が得られるなど好ましい方法としては、
各種のアルミニウム塩に金属アルミニウムを添加する方
法である。使用されるアルミニウム塩は、通常塩化アル
ミニウム(Allll:I  ・8HO)や硝酸アルミ
ニウム(AI(NO3)3−11)10) であるが、
酢酸アルミニウム(Al2(OH,C00)4Φ4HO
) 、硫酸アルミニウム(A12(S04)3・18H
20)の使用も可能である。出発濃度としては特に制限
はないが、適度な反応速度を持たせるために2〜4モル
%が用いられる。
a. Synthesis of basic aluminum salts There are various ways to make basic aluminum salts.
A preferred method that can obtain a highly concentrated aqueous solution is
This is a method of adding metallic aluminum to various aluminum salts. The aluminum salts used are usually aluminum chloride (Allll: I 8HO) and aluminum nitrate (AI(NO3)3-11)10).
Aluminum acetate (Al2(OH,C00)4Φ4HO
), aluminum sulfate (A12(S04)3・18H
20) is also possible. Although there are no particular limitations on the starting concentration, 2 to 4 mol% is used in order to provide an appropriate reaction rate.

添加する改質成分は、水可溶性のマグネシウム化合物、
ジルコニウム化合物、亜鉛化合物、ニッケル化合物、ク
ロム化合物、コバルト化合物などアルミナの異常粒成長
を押えたり、靭性を増す効果を持つアルミナ焼結体の改
質成分として一般的に知られたものが使用できるが、性
能上、コスト上、マグネシウム化合物が好ましい、マグ
ネシウム化合物には各種マグネシウム塩が用いられるが
、性能上は塩化マグネシウム(MgC12・8H20)
や硝酸マグネシウム(Mg(No3)2 ・8H20)
が好ましい、添加量(総量に対する含有量)は砥粒の性
能上焼成後の酸化物換算で1〜8重量%になる量が適し
、4〜B重量%になる量が好ましい、但し、後工程での
ロスがある場合もあるので理論値より予め多く添加した
り、不足分を次に説明する水熱処理時に添加したりして
調整することも可能である。
The modifying components added are water-soluble magnesium compounds,
Commonly known modifying ingredients for alumina sintered bodies, such as zirconium compounds, zinc compounds, nickel compounds, chromium compounds, and cobalt compounds, can be used to suppress abnormal grain growth of alumina and increase toughness. In terms of performance and cost, magnesium compounds are preferred. Various magnesium salts are used as magnesium compounds, but magnesium chloride (MgC12.8H20) is preferred in terms of performance.
and magnesium nitrate (Mg(No3)2 ・8H20)
The amount added (content relative to the total amount) is preferably 1 to 8% by weight in terms of oxide after firing due to the performance of the abrasive grains, and preferably 4 to 4% by weight. However, in the post-process In some cases, there may be a loss, so it is possible to adjust by adding more than the theoretical value in advance, or by adding the insufficient amount during hydrothermal treatment, which will be explained next.

次にアルミニウム塩と金属アルミニウムとを反応させる
0反応はアルミニウム塩水溶液に粒状、片状等のアルミ
ニウムを加え、80〜100℃程度に加熱して行なう、
改質成分の添加は反応前の原料に対して行なってもよく
、また反応後の塩基性アルミニウム水溶液に対し行なっ
てもよい、得られる反応生成物は改質成り ’−別にし
て次の一般式Al (OH)nX    (式中、Xは
C1,NO3ナトノロ−n 陰イオンを示し、 O< n< 8である)で表わされ
る塩基性アルミニウム塩である。AIとXの比が2以上
の場合には灰色のカルメラ状固体となることがあるが、
所定の濃度になる様に水を添加することによって支障な
く使用することができる。その他、塩基性アルミニウム
塩をつくる方法としては、例えばAI(0)1)  水
溶液に)ICI、 HNO3等の水溶液を所定の条件下
で加え1反応させることによって得ることができる。改
質成分の添加も上記と同様に行なうことができる。
Next, the reaction between the aluminum salt and metal aluminum is carried out by adding granular, flaky, etc. aluminum to the aluminum salt aqueous solution and heating it to about 80 to 100 ° C.
The modification component may be added to the raw materials before the reaction, or to the basic aluminum aqueous solution after the reaction.The resulting reaction product is a modified product. It is a basic aluminum salt represented by the formula Al (OH) n When the ratio of AI and X is 2 or more, it may become a gray carmela-like solid,
It can be used without problems by adding water to a predetermined concentration. Other methods for producing basic aluminum salts include, for example, adding an aqueous solution of ICI, HNO3, etc. to an aqueous solution of AI(0)1) under predetermined conditions and carrying out one reaction. Addition of modifying components can also be carried out in the same manner as above.

b、中和 得られた塩基性アルミニウム塩水溶液(通常の濃度はA
l2O3換算で15〜25重量%)にアルカリを加えて
中和をし、改質成分を含むアルミナ水和物を得る。改質
成分種によっては分解速度が遅いために所定含有量に満
たないことがあるが、その場合には後工程のスラリーに
添加して調整する。アルカリは炭酸アンモニウム、炭酸
ナトリウムなどの炭酸塩、炭酸水素アンモニウム、炭酸
水素ナトリウムなどの重度酸基、アンモニア水、水酸化
ナトリウムなどの水酸塩が用いられるが、金属不純物の
含有を避けるためにアンモニウム塩が好ましい。
b. Neutralized basic aluminum salt aqueous solution (normal concentration is A)
(15 to 25% by weight (calculated as 12O3)) is neutralized by adding an alkali to obtain an alumina hydrate containing a modifying component. Depending on the type of modifying component, the decomposition rate may be slow and the content may not reach the predetermined level. In that case, the content may be adjusted by adding it to the slurry in the subsequent process. As alkalis, carbonates such as ammonium carbonate and sodium carbonate, heavy acid groups such as ammonium hydrogen carbonate and sodium hydrogen carbonate, and hydroxides such as aqueous ammonia and sodium hydroxide are used, but in order to avoid containing metal impurities, ammonium Salt is preferred.

中和温度としては沸点以下であれば特に制限はないが、
生成物の結晶化を押え水熱処理温度の低下と時間の短縮
をはかるためには50℃以下の低温が好ましい。
There are no particular restrictions on the neutralization temperature as long as it is below the boiling point, but
In order to suppress crystallization of the product and reduce the hydrothermal treatment temperature and time, a low temperature of 50° C. or lower is preferable.

得られた改質成分を含むアルミナ水和物(水和物の形は
平均するとAl2O3,H2O)は、必要に応じて熟成
した後濾過、洗浄を繰り返し副生物を除去する。濾過に
は遠心脱水法、フィルタープレス法などが用いられる。
The obtained alumina hydrate containing the modifying component (the hydrate form is Al2O3, H2O on average) is aged as necessary and then filtered and washed repeatedly to remove by-products. Centrifugal dehydration method, filter press method, etc. are used for filtration.

洗浄を充分に行なった後。After thorough cleaning.

スラリー中の固形分濃度を高くするため、−旦150℃
以下の温度で乾燥し粉砕して乾粉とするのが好ましい、
乾粉の粒度は水熱処理時間を短縮するために細かい程好
ましいが、17Gメツシユ以下であれば充分である。乾
燥時に有機物を用いた共沸乾燥を利用すれば粉砕は不要
となる。乾燥温度が150℃を越えると特性劣化を起し
好ましくない。
In order to increase the solid content concentration in the slurry, -150℃
It is preferable to dry and grind to dry powder at the following temperature:
The particle size of the dry powder is preferably as fine as possible in order to shorten the hydrothermal treatment time, but a particle size of 17G mesh or less is sufficient. If azeotropic drying using an organic substance is used during drying, pulverization becomes unnecessary. If the drying temperature exceeds 150°C, the characteristics will deteriorate, which is not preferable.

C0水熱処理 得られた乾粉に所定濃度になる様に水を加え。C0 hydrothermal treatment Add water to the obtained dry powder to reach the desired concentration.

撹拌してスラリーとした後、酸と必要に応じて濃度調整
のために改質成分を添加して水熱処理をする。
After stirring to form a slurry, an acid and, if necessary, a modifying component for concentration adjustment are added and hydrothermal treatment is performed.

固形分濃度は、次工程の乾燥・固化のエネルギーを少な
くするために、高い程好ましいが、アルミナ1水和物換
算で40重量%以上では解膠が不充分となり砥粒性能上
好ましくない、好ましくはアルミナl水和物換算で15
〜40重量%、最も好ましくは25〜35重量%が用い
られる。
The solid content concentration is preferably as high as possible in order to reduce the energy for drying and solidification in the next step, but if it exceeds 40% by weight in terms of alumina monohydrate, peptization will be insufficient and it is not desirable in terms of abrasive grain performance. is 15 in terms of alumina hydrate
~40% by weight is used, most preferably 25-35% by weight.

使用される酸は、硝酸、塩酸などの無機酸、酢酸、ギ酸
などの有4!!融で一価の酸が好ましい、硫酸、リン酸
などの多価の酸はアルミナの解膠作用が一価の酸より劣
る。酸の添加量は解膠が完全に行なわれるためには水熱
処理後の液のpHが1〜3になる量が好ましく、通常固
形分tg当り0.02〜0.20 m文が用いられる。
The acids used include inorganic acids such as nitric acid and hydrochloric acid, as well as acetic acid and formic acid. ! A monohydric acid is preferable in melting. Polyhydric acids such as sulfuric acid and phosphoric acid have a peptizing effect on alumina inferior to monohydric acids. The amount of acid added is preferably such that the pH of the solution after hydrothermal treatment is 1 to 3 in order to achieve complete peptization, and usually 0.02 to 0.20 mf per tg of solid content is used.

水熱処理は、 120〜300℃で1時間以上、装置上
・エネルギー上好ましくは150〜180℃で2〜8時
間が用いられる。
The hydrothermal treatment is carried out at 120 to 300°C for 1 hour or more, preferably at 150 to 180°C for 2 to 8 hours in terms of equipment and energy.

本発明において水熱処理は重要であり、これを行なわず
に、前工程で得られたアルミナ水和物スラリーをそのま
ま乾燥してもガラス状固体塊とならず粉化してしまう、
水熱処理することによって、非晶質アルミナ水和物が擬
ベーマイトとなり乾燥するとガラス状に固まる。これを
焼結することが必要となる。
Hydrothermal treatment is important in the present invention, and even if the alumina hydrate slurry obtained in the previous step is dried as it is without hydrothermal treatment, it will not become a glassy solid mass but will be powdered.
By hydrothermal treatment, amorphous alumina hydrate becomes pseudo-boehmite and hardens into a glass-like form when dried. It is necessary to sinter this.

d、乾燥・粉砕Φ分級 水熱処理した液を乾燥してガラス状固体塊とし、次いで
粉砕、分級して所定粒度に揃える。
d. Drying and Grinding Φ Classification The hydrothermally treated liquid is dried to form a glassy solid mass, and then crushed and classified to a predetermined particle size.

乾燥は処理液をバットに数cmの厚さになる様に広げ、
 150°C以下で静置乾燥する。好ましくはバットを
均熱ゾーン内でゆっくり移動させると乾燥効率がよく、
また乾燥ムラがなくてよい、乾燥温度は低温程砥粒の密
度が上がり性能上好ましいが、生産性を考慮して通出に
選択されるべきである。150℃以上では、不要粒度を
水に再分散させて再生することができなくなり好ましく
ない。
For drying, spread the treatment solution on a vat to a thickness of several centimeters,
Leave to dry at 150°C or less. It is preferable to move the bat slowly within the soaking zone for better drying efficiency.
In addition, there is no need for uneven drying.The lower the drying temperature, the higher the density of the abrasive grains, which is preferable in terms of performance, but the drying temperature should be selected in consideration of productivity. A temperature of 150° C. or higher is not preferable because unnecessary particle sizes cannot be redispersed in water and regenerated.

粉砕は、ロールクラッシャー、ハンマークラッシャー、
ボールミル、ロッドミルなどが用いられるが、針状粒が
発生し易いので繰り返し粉砕するとよい、粉砕を焼成前
の固化物について行なう理由は、焼成後の焼結体は極め
て硬いこと、不要粒度の回収再使用が困難なことなどに
よる。また砥粒に鋭いエツジをつくる上からも焼成前粉
砕が望ましい。
For crushing, roll crusher, hammer crusher,
Ball mills, rod mills, etc. are used, but since acicular particles are likely to occur, it is recommended to repeatedly grind the solidified material before firing. This is due to the fact that it is difficult to use. It is also desirable to grind before firing in order to create sharp edges on the abrasive grains.

分級は、振動フルイなと通常の網ブルイが用いられるが
、焼成時の収縮を見込んでフルイの目開きを決めるべき
である。
For classification, a vibrating sieve or a regular mesh sieve is used, but the sieve opening should be determined taking into account shrinkage during firing.

e、焼成 所定粒度に揃えた粒は焼成して焼結される。焼成に先立
ち、 800〜800℃で予備焼成して結合水、残存す
る酸を予め除去しておくと都合がよいが、装置上問題が
なければ直接焼成してもよい。
e. Firing The grains adjusted to a predetermined grain size are fired and sintered. Prior to firing, it is convenient to perform preliminary firing at 800 to 800°C to remove bound water and residual acid, but direct firing may be used if there is no problem with the equipment.

焼成は、マツフル炉、台車炉などの電気炉やトンネル窯
、ロータリーキルンなと各種焼成炉が使用できる。焼成
温度は、1200〜1500℃が適し。
For firing, various types of firing furnaces can be used, including electric furnaces such as Matsufuru furnace and trolley furnace, tunnel kilns, and rotary kilns. A suitable firing temperature is 1200 to 1500°C.

好ましくは1350〜1450℃が用いられる。 12
00℃未満では焼結が不充分で砥粒強度が弱く、150
0℃を越えると焼結が進みすぎて砥粒の切れ刃自生作用
が劣る。昇降温速度と保持時間には特に制限はないが、
砥粒性能上は急熱争急冷が好ましい。
Preferably, 1350 to 1450°C is used. 12
Below 00℃, sintering is insufficient and the strength of the abrasive grains is weak.
If the temperature exceeds 0°C, sintering progresses too much and the cutting edge self-growth effect of the abrasive grains becomes poor. There are no particular restrictions on the temperature increase/decrease rate and holding time, but
Rapid heating and rapid cooling is preferred in terms of abrasive grain performance.

次に、本発明を実施例によってさらに詳しく説明する。Next, the present invention will be explained in more detail by way of examples.

実施例 1 水Boo rm文に塩化アルミニウム(AlCl2−8
H20)20Og、改質成分として硝酸マグネシウム(
Mg(NO2)3681(20) 80gを溶解し、還
流冷却しながら、80〜100℃に加温し、次いで予め
10%の塩酸で洗浄Φ乾燥して表面を活性にしておいた
金属アルミニウムの旋盤切削片90gを加えて反応させ
た0反応終了後、反応液を濾過し、炉液として濃度40
.3重量%の塩基性塩化アルミニウム水溶液を得た。溶
質を分析した結果、A12(OH)2.2C13,8の
分子式で表わされる塩基性塩化アルミニウムであり、改
質成分の含有量は酸化物換算(アルミナ中のマグネシア
)で4.8重量%であった。
Example 1 Aluminum chloride (AlCl2-8
H20) 20Og, magnesium nitrate (
Dissolve 80 g of Mg(NO2) 3681 (20), heat to 80-100°C while cooling under reflux, then wash with 10% hydrochloric acid and dry to activate the surface of a metal aluminum lathe. 90g of cutting pieces were added and reacted.After the reaction was completed, the reaction solution was filtered and the concentration was 40% as the furnace solution.
.. A 3% by weight aqueous basic aluminum chloride solution was obtained. Analysis of the solute revealed that it was basic aluminum chloride with the molecular formula of A12(OH)2.2C13,8, and the content of the modifying component was 4.8% by weight in terms of oxide (magnesia in alumina). there were.

次にこの水溶液150gに水800 ts文を加えて希
釈し、室温にて撹拌しながら15重量%の炭酸アンモニ
ウム水溶液130 anを10 m交/sinで滴下し
て中和し、アルミナ水和物を生成した。途中アルミナ水
和物の生成量が増加するにつれて粘度が上昇したため、
逐次水を追加して最終の液量を20001I文にした。
Next, 150 g of this aqueous solution was diluted by adding 800 ts of water, and 130 am of a 15% by weight ammonium carbonate aqueous solution was added dropwise at a rate of 10 m/sin to neutralize the alumina hydrate while stirring at room temperature. generated. As the amount of alumina hydrate increased during the process, the viscosity increased.
Water was added successively to make the final liquid volume 20,001 Ib.

そのまま1時間熟成した後、濾過。After aging for 1 hour, filter.

水洗を繰り返した。最後にアセトンで洗浄後100℃で
乾燥し、35gのアルミ、ナ水和物を得、ボールミルで
解砕して 170メツシ五アンダーとした。
Repeated washing. Finally, it was washed with acetone and dried at 100° C. to obtain 35 g of aluminum hydrate, which was crushed in a ball mill to give 170 mesh (5 under).

このアルミナ水和物はAl2O3含宥率80重量%であ
リ、改質成分の含有量は酸化物換算で1,8重量%であ
った。
This alumina hydrate had an Al2O3 content of 80% by weight, and the content of modifying components was 1.8% by weight in terms of oxides.

このアルミナ水和物の粉末30gを55gの水に分散さ
せ、固形分濃度35重量%(Al2O2濃度換算で21
.2重量%)のスラリーとした。このスラリーにマグネ
シア濃度調整のための硝酸マグネシウム3.8gと硝酸
2.0 Il交を添加し、硝子製耐圧容器中で180℃
、 3時間水熱処理をした。
30g of this alumina hydrate powder was dispersed in 55g of water, and the solid content was 35% by weight (21% in terms of Al2O2 concentration).
.. 2% by weight) to form a slurry. To this slurry, 3.8 g of magnesium nitrate and 2.0 Il of nitric acid were added to adjust the concentration of magnesia, and the mixture was heated to 180°C in a glass pressure-resistant container.
, Hydrothermal treatment was performed for 3 hours.

この様な方法と条件で得られた高粘性液体を100Kg
単位で用意し、ホーローバットに2〜30層の厚さにな
る様に移し、80℃の熱風乾燥基中で24時間かけて乾
燥してガラス状固体塊とした。この固体塊をロールクラ
ッシャーで粉砕し、500〜1000終層に篩分けた。
100 kg of high viscosity liquid obtained by such method and conditions
It was prepared in units, transferred to a enamel vat to a thickness of 2 to 30 layers, and dried in a hot air drying oven at 80° C. for 24 hours to form a glassy solid mass. This solid mass was crushed in a roll crusher and sieved to 500-1000 final layers.

この篩分けた粒をアルミナルツボに納れ、マツフル炉中
で800℃、5時間予備焼成して結晶水、硝酸根を除去
した後、5℃/分の昇温速度で1400℃まで昇温し、
5時間保持した。室温に冷却後取り出し摩布用粒度雲3
6に篩分けた。この試料のマグネシア含有量は約5重量
%であった。
The sieved grains were placed in an aluminum crucible and pre-calcined in a Matsufuru furnace at 800°C for 5 hours to remove crystallization water and nitrate radicals, and then heated to 1400°C at a heating rate of 5°C/min. ,
It was held for 5 hours. After cooling to room temperature, take out particle size cloud for rubbing 3
It was sieved into 6 parts. The magnesia content of this sample was approximately 5% by weight.

実施例 2 実施例1で得た500〜1000 p−tsに篩分けた
粒を白金ルツボに納れ、1400℃に保持したマツフル
炉中に即座に挿入して約5分間で1400℃とし、 5
分間保持した後直ちに室温中に取り出して冷却した0次
いで厚布用粒度@3Bに篩分けた。
5
After being held for a minute, it was immediately taken out to room temperature, cooled, and then sieved to a particle size for thick cloth @3B.

実施例 3 水800 mflに硝酸アルミニウム(AI(NO) 
 ・9)+20)320 g、改質成分として硝酸マグ
ネシウム70gを溶解し、実施例1と同様に金属アルミ
ニウム 100gを反応させて、漕度37,7%の塩基
性硝酸アルミニウムの水溶液を得た。
Example 3 Aluminum nitrate (AI(NO)) was added to 800 mfl of water.
・9)+20) 320 g and 70 g of magnesium nitrate as a modifying component were dissolved, and 100 g of metal aluminum was reacted in the same manner as in Example 1 to obtain an aqueous solution of basic aluminum nitrate with a density of 37.7%.

溶質を分析した結果、A12(OH)2.2(N03)
3.8の分子式で表わされる塩基性硝酸アルミニウムで
あり、改質成分の含有量は酸化物換算で5.8重量%で
あった。
As a result of solute analysis, A12(OH)2.2(N03)
It was basic aluminum nitrate represented by the molecular formula 3.8, and the content of the modifying component was 5.8% by weight in terms of oxide.

この塩基性硝酸アルミニウム溶液を実施例1と同様、中
和−水熱処理一乾燥一粉砕一分級一焼成をし、摩布用粒
度量3Bに−分けた。
This basic aluminum nitrate solution was subjected to neutralization, hydrothermal treatment, drying, pulverization, classification, and baking in the same manner as in Example 1, and was divided into particles having a particle size of 3B for wear.

実施例 4 実施例1〜3で得た粒および比較のため市販の褐色溶融
アルミナ(A)と溶融アルミナ−ジルコニア砥粒の粒度
鍵36を用い、外径!78φ■層、穴径23φl、厚さ
0.85mmのバルカナイズドファイバー板を基板とし
て、通常の方法により、研磨ディスクを製作した。
Example 4 Using the grains obtained in Examples 1 to 3 and a particle size key 36 of commercially available brown fused alumina (A) and fused alumina-zirconia abrasive grains for comparison, the outer diameter! Using a vulcanized fiber board with a 78φ■ layer, a hole diameter of 23φl, and a thickness of 0.85mm as a substrate, an abrasive disk was manufactured by a conventional method.

次いで、これを日立PDH−180B型電動式サングー
に装着し、被削材545C平板(38W X500文X
IOtmm)を荷重8Kgで20分間研削した。
Next, this was installed on the Hitachi PDH-180B electric type Sangoo, and the work material was a 545C flat plate (38W x 500mm x
IOtmm) was ground for 20 minutes with a load of 8 kg.

その累積研削量を第1表に示す。The cumulative amount of grinding is shown in Table 1.

実施例の研磨ディスクは、いずれも従来の溶融アルミナ
の約2.0倍、溶融アルミナ−ジルコニアの約1.3倍
の研削性能を示した。
The polishing disks of the examples all exhibited grinding performance about 2.0 times that of conventional fused alumina and about 1.3 times that of fused alumina-zirconia.

第  1  表 発明の効果 本発明によれば、前記開示された方法と比較して、原料
的に安価であり、且つ必要とされる改質成分の添加を水
溶液として事前に行なうことができることから改質成分
の微細組織までの均質混合が可能であり、また、予め改
質成分の均質混合が行なわれているために粘度上昇を気
にする必要がないので固形分濃度を高くすることが可能
なことから、性能的にも経済的にも有利に製造すること
ができる。
Table 1 Effects of the Invention According to the present invention, compared to the disclosed method, the raw materials are cheaper, and the necessary modifying components can be added in advance as an aqueous solution. It is possible to homogeneously mix down to the fine structure of the quality components, and since the modifying components are homogeneously mixed in advance, there is no need to worry about viscosity increase, so it is possible to increase the solid content concentration. Therefore, it can be manufactured advantageously both in terms of performance and economy.

Claims (3)

【特許請求の範囲】[Claims] (1)アルミナ焼結体の改質成分を含む塩基性アルミニ
ウム塩に中和剤を加え、該改質成分を含むアルミナ水和
物を生成させ、該水和物に酸を添加して水熱処理をし、
得られた処理物を乾燥後焼成することを特徴とするアル
ミナ質焼結砥粒の製造方法。
(1) A neutralizing agent is added to the basic aluminum salt containing the modifying component of the alumina sintered body to generate an alumina hydrate containing the modifying component, and an acid is added to the hydrate for hydrothermal treatment. and
A method for producing alumina sintered abrasive grains, which comprises drying and then firing the obtained treated product.
(2)改質成分がMgO、ZrO_2である特許請求の
範囲第1項記載のアルミナ質焼結砥粒の製造方法。
(2) The method for producing alumina sintered abrasive grains according to claim 1, wherein the modifying components are MgO and ZrO_2.
(3)焼成を1200〜1500℃で行なう特許請求の
範囲第1項記載のアルミナ質焼結砥粒の製造方法。
(3) The method for producing alumina sintered abrasive grains according to claim 1, wherein the firing is performed at 1200 to 1500°C.
JP61171738A 1986-07-23 1986-07-23 Method for producing alumina-based sintered abrasive grains Expired - Lifetime JPH078726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61171738A JPH078726B2 (en) 1986-07-23 1986-07-23 Method for producing alumina-based sintered abrasive grains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61171738A JPH078726B2 (en) 1986-07-23 1986-07-23 Method for producing alumina-based sintered abrasive grains

Publications (2)

Publication Number Publication Date
JPS6330314A true JPS6330314A (en) 1988-02-09
JPH078726B2 JPH078726B2 (en) 1995-02-01

Family

ID=15928766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61171738A Expired - Lifetime JPH078726B2 (en) 1986-07-23 1986-07-23 Method for producing alumina-based sintered abrasive grains

Country Status (1)

Country Link
JP (1) JPH078726B2 (en)

Also Published As

Publication number Publication date
JPH078726B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
JPH06104816B2 (en) Sintered alumina abrasive grains and method for producing the same
JPH06507146A (en) Method for producing stabilized zirconium oxide powder
CN114988886B (en) Preparation method of high-purity alpha-alumina powder capable of being sintered at low temperature
CN100383047C (en) Method for preparing alumina powder with small particle diameter
JPH05117636A (en) Polycrystalline sintered abrasive particle based on alpha-aluminum trioxide, abrasive comprising the abrasive particle, preparation of the abrasive particle and preparation of fire-resistant ceramic product
JPH0214823A (en) Production of submicron powder of zirconium oxide stabilized by yttrium oxide
JP2868176B2 (en) Method for producing rare earth element oxide powder
JPS6345118A (en) Production of sintered abrasive alumina grain
JPS6330314A (en) Production of sintered alumina abrasive grain
JPH09315865A (en) Production of transparent yttrium oxide sintered compact
JPH02293371A (en) Sintered object of alpha-al203
JPH03141115A (en) Production of fine yttrium oxide powder
JPS60176968A (en) Manufacture of sno2-zro2-tio2 dielectric
EP0582644B1 (en) Process for preparing mixed oxides
JPH05147924A (en) Production of alumina-silica powder
KR100473399B1 (en) Process for the preparation of fine ceramic powders
JP3257095B2 (en) Method for producing zirconia powder
JP3394071B2 (en) Method for producing rare earth oxide fine powder
JPH04159386A (en) Production of abrasive grain for polishing
KR0146983B1 (en) Process for preparing zirconia using microwave
JPH06171944A (en) Production of zirconium oxide powder
JPH06171943A (en) Production of zirconium oxide powder
JPH0688794B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPS62128924A (en) Production of zirconium oxide series fine powder
JPH05116943A (en) Production of barium titanate powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term