JPH0610122A - Target material for magnetic thin film and its manufacture, fe-m-c soft magnetic film and its manufacture, magnetic head using the film and magnetic recording and reproducing device - Google Patents

Target material for magnetic thin film and its manufacture, fe-m-c soft magnetic film and its manufacture, magnetic head using the film and magnetic recording and reproducing device

Info

Publication number
JPH0610122A
JPH0610122A JP11974892A JP11974892A JPH0610122A JP H0610122 A JPH0610122 A JP H0610122A JP 11974892 A JP11974892 A JP 11974892A JP 11974892 A JP11974892 A JP 11974892A JP H0610122 A JPH0610122 A JP H0610122A
Authority
JP
Japan
Prior art keywords
carbon
metal
magnetic
film
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11974892A
Other languages
Japanese (ja)
Other versions
JP3076141B2 (en
Inventor
Mutsuo Kazuyasu
六夫 一安
Masaya Yasukochi
正也 安河内
Shigeo Aoki
茂夫 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YASUKI SEIMITSU KK
Hitachi Ltd
Proterial Ltd
Original Assignee
YASUKI SEIMITSU KK
Hitachi Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YASUKI SEIMITSU KK, Hitachi Ltd, Hitachi Metals Ltd filed Critical YASUKI SEIMITSU KK
Priority to JP04119748A priority Critical patent/JP3076141B2/en
Publication of JPH0610122A publication Critical patent/JPH0610122A/en
Application granted granted Critical
Publication of JP3076141B2 publication Critical patent/JP3076141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor

Abstract

PURPOSE:To obtain a target for a magnetic thin film capable of obtaining a uniform Fe-M-C base film by constituting it of specified atomic ratios of metal M (one or more kinds among Ti, Zr, Hf or the like), carbon and Fe and forming the specified ratio of the carbon in the strucdture into a compound with the metal M. CONSTITUTION:This target has a compsn. constituted of, by atom, 5 to 20% metal M (one or moer kinds among Ti, Zr, Hf, V, Nb, Ta, Mo and W) and 6 to 20% carbon, and the balance Fe, and >=75% of the carbon present in the strucdture is present as a compound with the metal M. As for this target, the carbon is taken in the target by forming the carbon into the powder in the state of the compound or alloy with the metal without using the carbon as a simple substance such as graphite and executing sintering. For example, the powder of the compound of the metal M and carbon is blended with the powder of the alloy of Fe and carbon or the alloy in which the metal M enters into solid solution in this or, in addition to the same, is blended with carbon powder with <=5% atomic ratio, and sintering is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気ヘッド等に用いられ
る磁性薄膜を提供する磁性薄膜用ターゲット材とその製
造方法、Fe−M−C軟磁性膜とその製造方法、および
これを用いた磁気ヘッドならびに磁気記録再生装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic thin film target material for providing a magnetic thin film used for a magnetic head and the like, a method for producing the same, a Fe-MC soft magnetic film and a method for producing the same, and a magnetic material using the same. The present invention relates to a head and a magnetic recording / reproducing device.

【0002】[0002]

【従来の技術】近年、磁気記録技術の進歩は著しく、磁
気ディスク等の大容量化、あるいはVTR装置の小型軽
量化のために、記録密度の高密度化が進められている。
この高密度の記録のために使用される磁気ヘッドには、
高保磁力を有する記録媒体に十分書き込むことが可能な
記録磁界を発生するものでなければならない。このため
により高い飽和磁束密度を有する磁性膜を磁気ヘッドに
構成することが要求されている。また、磁気ヘッド用の
材料は記録再生効率の向上の点から高透磁率を有するこ
とが必要であり、記録再生特性の安定化のためには磁歪
定数を零近傍に制御することが望ましい。さらに磁気ヘ
ッドの製造プロセスにおいては、信頼性を確保するため
にガラス溶着等を用いることが多いので、加熱処理によ
り特性が劣化しないように、高温における安定性向上も
必要である。
2. Description of the Related Art In recent years, the magnetic recording technology has made remarkable progress, and the recording density has been increased in order to increase the capacity of magnetic disks and the like, or to reduce the size and weight of VTR devices.
The magnetic head used for this high-density recording is
It must generate a recording magnetic field that can be sufficiently written on a recording medium having a high coercive force. For this reason, it is required to form a magnetic film having a higher saturation magnetic flux density in the magnetic head. Further, the material for the magnetic head needs to have a high magnetic permeability from the viewpoint of improving the recording / reproducing efficiency, and it is desirable to control the magnetostriction constant to near zero in order to stabilize the recording / reproducing characteristics. Further, in the manufacturing process of the magnetic head, glass welding or the like is often used in order to ensure reliability, so it is also necessary to improve stability at high temperature so that the characteristics are not deteriorated by heat treatment.

【0003】このような材料としては、従来からFe−
Al−Si系合金(いわゆるセンダスト)やCo系アモ
ルファス合金等が開発されており、磁気ヘッドに適用さ
れている(特開昭60−74110号等参照)。また、
最近では、Fe−N系の多層膜、Co系およびFe系の
変調窒化膜、Co−TaC膜、Fe−M−C膜(MはT
i,Zr,Hf,V,Nb,Ta,Mo,Wから選ばれ
た1種または2種以上:以下Mと称する)等、上記条件
を満たす材料の探索がさかんに行われている。これらの
磁性膜のうち、上記Fe−M−C系の組成であって、特
開平2−229406号あるいは特開平3−20444
号等に記載の微結晶組織を有する磁性膜は、保持力か小
さく、透磁率も高いことに加えて、磁気特性が熱的に安
定であるという理由から、将来非常に有望な材料であ
る。
As such a material, Fe--
Al-Si alloys (so-called sendust), Co amorphous alloys, etc. have been developed and applied to magnetic heads (see Japanese Patent Laid-Open No. 60-74110, etc.). Also,
Recently, Fe-N-based multilayer films, Co-based and Fe-based modulation nitride films, Co-TaC films, and Fe-MC films (M is T
Materials such as i, Zr, Hf, V, Nb, Ta, Mo, and W, which are one or more selected from each other: hereinafter referred to as M), are being actively searched. Among these magnetic films, the above-mentioned Fe-M-C based composition, which is disclosed in JP-A-2-229406 or JP-A-3-20444.
The magnetic film having a microcrystalline structure described in U.S. Pat. No. 5,698,639 is a very promising material in the future because it has low coercive force, high magnetic permeability, and thermally stable magnetic properties.

【0004】[0004]

【発明が解決しようとする課題】上述したFe−M−C
系の磁性薄膜において、特に炭素量が高い薄膜を得よう
とする場合には、Fe−M合金のターゲットにグラファ
イトのペレットを配置してスパッタリングする方法、あ
るいは炭素を含まないFe−M合金ターゲットを用い、
Ar等の不活性ガス中にメタン(CH4)の混合ガスを
導入し反応性スパッタを行ない得られた膜を加熱処理し
て、微細結晶を析出させ、高飽和磁束密度の薄膜を得る
という方法が知られている。このうち反応性スパッタを
用いる方法は、膜中の炭素濃度の制御が容易に行えると
いう利点を有するものとされていた。しかし、上述した
反応性スパッタはガスとスパッタ粒子の反応速度が律速
となるため、成膜速度は遅くならざるを得ないという問
題がある。
The above-mentioned Fe-M-C
In order to obtain a thin film having a particularly high carbon content in a magnetic thin film of the system, a method of arranging graphite pellets on a target of an Fe-M alloy and sputtering, or a Fe-M alloy target containing no carbon is used. Used,
A method of introducing a mixed gas of methane (CH 4 ) into an inert gas such as Ar and performing reactive sputtering to heat-treat the obtained film to precipitate fine crystals and obtain a thin film with high saturation magnetic flux density. It has been known. Among them, the method using reactive sputtering has been considered to have an advantage that the carbon concentration in the film can be easily controlled. However, in the above-mentioned reactive sputtering, the reaction rate of gas and sputtered particles is rate-determining, so that there is a problem that the film forming rate must be slowed down.

【0005】一方、グラファイトのペレットとして炭素
を配置する方法では、グラファイトが選択的にスパッタ
されやすく、薄膜中の炭素濃度の制御が難しいという問
題がある。また、炭素粉末を単体で混合する方法ではタ
ーゲット母材と炭素の比重の差が大きいため均質なター
ゲットを製造しにくいという問題がある。また、炭素を
単体で添加する場合は、炭素単体のガスの吸着性が高
く、スパッタ中に吸着していたガスが放出して、膜組成
が変動するという問題がある。本発明の目的は、Fe−
M−C系の合金薄膜を通常のスパッタリング法により、
均一な膜が得られる磁性薄膜用ターゲット材とその製造
方法、Fe−M−C軟磁性膜とその製造方法、およびこ
れを用いた磁気ヘッドならびに磁気記録再生装置を提供
することである。
On the other hand, the method of arranging carbon as graphite pellets has a problem that graphite is likely to be selectively sputtered and it is difficult to control the carbon concentration in the thin film. In addition, the method of mixing carbon powders alone has a problem that it is difficult to manufacture a uniform target because the difference in specific gravity between the target base material and carbon is large. Further, when carbon is added by itself, there is a problem that the gas adsorbing the gas of carbon is high and the gas adsorbed during the sputtering is released to change the film composition. An object of the present invention is Fe-
An M-C type alloy thin film is formed by an ordinary sputtering method.
(EN) Provided are a target material for a magnetic thin film capable of obtaining a uniform film and a manufacturing method thereof, a Fe-MC soft magnetic film and a manufacturing method thereof, and a magnetic head and a magnetic recording / reproducing apparatus using the same.

【0006】[0006]

【課題を解決するための手段】本発明者は炭素をグラフ
ァイトのような単体ではなく、炭素を金属との化合物あ
るいは合金状態の粉末として、焼結することによりター
ゲット材組織中に取り込むことによって、炭素単体での
課題であったターゲット母材との比重の差、あるいはガ
ス吸着性を起因とする生成薄膜の組成の変動を抑えこと
が可能であることを見出した。すなわち、本発明は原子
比率で金属M(MはTi、Zr、Hf、V、Nb、T
a、Mo、Wから選ばれる1種または2種以上)が5〜
20%、炭素が6〜20%、残部Feおよび不可避的不
純物からなる組成を有し、組織中に存在する炭素の75
%以上が金属Mとの化合物粒子として存在するか、また
はこれに加えてFeとの合金粒子として存在することを
特徴とする磁性薄膜用ターゲット材である。ターゲット
材中に存在する遊離炭素は少ないほどよく、組織中に存
在する全炭素量の75%以上が金属Mとの化合物粒子ま
たはこれに加えてFeとの合金粒子としてターゲット組
織に存在することが好ましい。
Means for Solving the Problems The present inventor has proposed that carbon is not a simple substance such as graphite but is a powder of a compound or alloy with a metal, which is sintered and incorporated into the target material structure by sintering. It has been found that it is possible to suppress the variation in the composition of the formed thin film due to the difference in specific gravity from the target base material or the gas adsorption property, which was a problem with carbon alone. That is, the present invention is based on the atomic ratio of metal M (M is Ti, Zr, Hf, V, Nb, T).
1 or 2 or more types selected from a, Mo, W) is 5
20%, carbon 6 to 20%, balance Fe and unavoidable impurities, and 75% of carbon present in the structure.
% Or more is present as a compound particle with the metal M, or in addition to this, is present as an alloy particle with Fe, which is a target material for a magnetic thin film. The less free carbon is present in the target material, the better, and 75% or more of the total amount of carbon present in the structure may be present in the target structure as compound particles with the metal M or alloy particles with Fe in addition thereto. preferable.

【0007】また、本発明は原子比率で金属Mが5〜2
0%、炭素が6〜20%、残部Feおよび不可避的不純
物からなる組成を有し、組織が金属Mと金属Mの炭化物
の少なくともいずれかおよびFeとFeの炭化物の少な
くともいずれかからなることを特徴とする磁性薄膜用タ
ーゲット材である。本発明のターゲット材組織において
炭素は金属Mの炭化物あるいはFeの炭化物として存在
するため、炭素単体が添加された時のような遊離炭素と
他の元素で生じていた比重差はほとんどなくなり、生成
する薄膜組成のバラツキ等を防止できる。また、本発明
において、遊離炭素は少ないほど良いが5原子%以下の
遊離炭素を含んでもよい。
In the present invention, the metal M is 5 to 2 in atomic ratio.
0%, 6 to 20% carbon, the balance Fe and inevitable impurities, and the structure is composed of at least one of metal M and a carbide of metal M and at least one of a carbide of Fe and Fe. It is a characteristic target material for magnetic thin films. In the target material structure of the present invention, since carbon exists as a carbide of metal M or a carbide of Fe, the difference in specific gravity generated between free carbon and other elements when carbon simple substance is added is almost eliminated, and carbon is generated. It is possible to prevent variations in thin film composition. Further, in the present invention, the less the free carbon is, the better, but the free carbon may be included in an amount of 5 atom% or less.

【0008】また、本発明の磁性薄膜用ターゲットは金
属Mと炭素との化合物粉末と、Feと炭素の合金または
これに金属Mを固溶している金属合金粉末とを配合する
か、あるいはこれに加えて原子比率で5%以下の炭素粉
末を配合してから焼結することによって得ることができ
る。たとえば、Fe−Ta−C系のターゲットを作成す
る場合、目標のターゲット組成に対して (1)Ta含有量に対して炭素量が当量値より少ない場
合は、TaCとTa量を調整したFe−Ta合金粉末を
混合して製造できる。 (2)Ta含有量に対して、炭素量が当量値より多い場
合はTaC粉末と、C量を調整したFe−C合金粉末を
混合して製造できる。 本願で規定する金属Mはどの元素も酸素と結合しやす
く、金属M単体で使用するのは好ましくなく、金属Mは
炭化物あるいはFeとの合金の状態で使用するのが良
い。本発明では、金属Mおよび炭素を単体で使用せず、
すべて化合物あるいは合金の状態で使用することが可能
であるが、炭素は偏析等の問題がない程度、即ち原子比
率で5%まではターゲットの成分の調整のために添加し
ても良い。本発明において、各粉末を配合した混合物を
圧密化した後に加圧焼結するか、圧密化しながら加圧焼
結を行うことにより、さらに高密度で、内部に空孔など
のほとんどないターゲットを得ることができ、ターゲッ
ト内部の空孔に起因するスパッタ時の異常放電を防止す
ることができる。
In the magnetic thin film target of the present invention, a compound powder of metal M and carbon is mixed with an alloy of Fe and carbon or a metal alloy powder in which metal M is solid-solved, or In addition to the above, a carbon powder having an atomic ratio of 5% or less is blended and then sintered. For example, when an Fe-Ta-C-based target is created, (1) when the carbon content is less than the equivalent value relative to the Ta content with respect to the target composition of the target, Fe- It can be manufactured by mixing Ta alloy powder. (2) When the amount of carbon is larger than the equivalent value with respect to the content of Ta, the powder can be produced by mixing TaC powder and Fe—C alloy powder with an adjusted amount of C. Since any element of the metal M defined in the present application is likely to bond with oxygen, it is not preferable to use the metal M alone, and the metal M is preferably used in the state of a carbide or an alloy with Fe. In the present invention, the metal M and carbon are not used alone,
All can be used in the form of compounds or alloys, but carbon may be added to the extent that there is no problem such as segregation, that is, up to 5% in atomic ratio for the purpose of adjusting the components of the target. In the present invention, a target having a higher density and almost no pores inside is obtained by performing pressure sintering after pressure-hardening a mixture in which each powder is mixed, or performing pressure sintering while performing consolidation. Therefore, it is possible to prevent abnormal discharge during sputtering due to holes inside the target.

【0009】次に本発明の組成の限定理由を述べる。本
発明において、金属Mは生成する薄膜の合金の軟磁気特
性を改善する元素であり、また炭素と結合して微細な炭
化物を析出し軟磁気特性の改善する元素でもある。金属
Mは原子比率で5%未満では、軟磁気特性の改善に効果
が少なく、また、20%を超えると、飽和磁束密度の低
下となるため、5〜20%に限定した。また、炭素は軟
磁気特性の向上と、耐熱性改善のために必要な元素であ
るが、原子比率で6%未満では、軟磁気特性の改善の効
果が少なく、20%を超えると飽和磁束密度の低下にな
るので6〜20%に限定した。
Next, the reasons for limiting the composition of the present invention will be described. In the present invention, the metal M is an element that improves the soft magnetic properties of the alloy of the thin film to be formed, and is also an element that combines with carbon to precipitate fine carbides and improve the soft magnetic properties. If the atomic ratio of the metal M is less than 5%, the effect of improving the soft magnetic properties is small, and if it exceeds 20%, the saturation magnetic flux density decreases, so the content is limited to 5 to 20%. Carbon is an element necessary for improving soft magnetic properties and heat resistance, but if the atomic ratio is less than 6%, the effect of improving soft magnetic properties is small, and if it exceeds 20%, the saturation magnetic flux density is increased. Therefore, it is limited to 6 to 20%.

【0010】[0010]

【実施例】【Example】

(実施例1)純度99.9%、平均粒径3μmのTaC
粉末を、10マイナス3乗torrで1200℃×2時
間の脱ガス処理を行ない、TaC粉末原料を作成した。
また、誘導式真空誘導溶解炉にて、純度99.9%の純
Feをジルコニアルツボを用いて精錬し、炭素粉末を添
加し、1.42重量%の炭素を含む炭素鋼のインゴット
に鋳造した。この炭素鋼のインゴットを表面の表面の酸
化スケールを除去してから、アルゴンガスアトマイズ装
置にて、粉末とし、さらにこの粉末をボールミルで粉砕
して、150メッシュ以下の粉末を採取した。得られた
炭素鋼粉末の炭素含有量は1.33%重量であった。F
e77原子%、Ta9原子%、C14原子%のターゲッ
ト組成、すなわちFe70.55重量%、Ta26.7
0重量%、、C2.75重量%のターゲット組成を目標
に、TaC粉末を28.47重量%、炭素鋼粉末を7
1.50重量%、および炭素量調整のための炭素粉末
0.03重量%をボールミルで24時間混合した後、内
径180mm×深さ11mm熱間静水圧プレス用のカプ
セルに充填した。このカプセルを400℃にて10マイ
ナス6乗torrの減圧雰囲気になるまで脱ガス処理し
た後、封止した。
(Example 1) TaC having a purity of 99.9% and an average particle size of 3 μm
The powder was degassed at 1200 ° C. for 2 hours at 10 −3 torr to prepare a TaC powder raw material.
Further, in an induction-type vacuum induction melting furnace, pure Fe having a purity of 99.9% was refined using a zirconial crucible, carbon powder was added, and cast into a carbon steel ingot containing 1.42% by weight of carbon. . After removing the oxide scale on the surface of the ingot of this carbon steel, it was made into powder by an argon gas atomizing device, and this powder was further pulverized by a ball mill to collect powder of 150 mesh or less. The carbon content of the obtained carbon steel powder was 1.33% by weight. F
Target composition of 77 atomic% of e, 9 atomic% of Ta and 14 atomic% of C, ie, Fe 70.55% by weight, Ta 26.7
Aiming at a target composition of 0 wt% and C 2.75 wt%, TaC powder is 28.47 wt% and carbon steel powder is 7 wt%.
1.50% by weight and 0.03% by weight of carbon powder for adjusting the amount of carbon were mixed in a ball mill for 24 hours, and then filled in a capsule for hot isostatic pressing with an inner diameter of 180 mm and a depth of 11 mm. This capsule was degassed at 400 ° C. to a reduced pressure atmosphere of 10 −6 torr and then sealed.

【0011】これにより、遊離炭素として存在するのは
添加した炭素量分である0.03重量%であり、原子%
にして0.2%程度である。また、炭素量全体の1%が
遊離炭素として存在することになる。封止したカプセル
を1180℃×2.5時間、1200kgf/cm2
熱間静水圧プレスにより圧密化しながら加圧焼結を行
い、その後切削加工により150φ×6mmのターゲッ
ト材を得た。このターゲット材から分析試料を採取し、
ターゲット材表面の外周部および中央部よりそれぞれ2
個所の組成分析を行った。その結果を表1に示す。表1
に示すように、得られたターゲット材はターゲットの位
置に依存する組成変動のほとんどない均一なものである
ことが確認された。
As a result, 0.03% by weight, which is the amount of added carbon, is present as free carbon, and atomic%
Is about 0.2%. In addition, 1% of the total amount of carbon is present as free carbon. The encapsulated capsule was pressure-sintered while being consolidated by a hot isostatic press at 1200 kgf / cm 2 for 1180 ° C. × 2.5 hours, and then a target material of 150φ × 6 mm was obtained by cutting. Collect an analytical sample from this target material,
2 from the outer and center of the target material surface
The composition analysis of the part was performed. The results are shown in Table 1. Table 1
As shown in FIG. 5, it was confirmed that the obtained target material was uniform with almost no compositional variation depending on the position of the target.

【0012】↓[0012] ↓

【表1】 [Table 1]

【0013】また、このターゲット材を光学顕微鏡で組
織観察した。ターゲット材表面のエッチング前とエッチ
ング後の金属組織写真をそれぞれ図1および図2に示
す。図1および図2により、このターゲット材はFeの
α固溶体とFe3Cからなるパーライト組織を有する粒
とこの粒相互間にTaC粒の集合域が存在する組織であ
ることが確認できた。このターゲットを高周波を使用す
るRF−マグネトロンスパッタリング装置を用いて、ア
ルミニウム基板10個に成膜し、EPMA装置により基
板毎のTaの組成の変動を評価したところ、Taは2
6.2±0.3wt%という極めて狭い範囲に収まるこ
とが確認された。
The structure of this target material was observed with an optical microscope. Photographs of the metal structure of the target material surface before and after etching are shown in FIGS. 1 and 2, respectively. From FIG. 1 and FIG. 2, it was confirmed that this target material was a structure in which grains having a pearlite structure composed of an α solid solution of Fe and Fe 3 C and TaC grain aggregation regions were present between these grains. This target was deposited on 10 aluminum substrates using an RF-magnetron sputtering apparatus using high frequency, and when the compositional variation of Ta for each substrate was evaluated by an EPMA apparatus, Ta was 2
It was confirmed that it was within a very narrow range of 6.2 ± 0.3 wt%.

【0014】(実施例2)純度99.9%、平均粒径3
μmのNbC粉末を、10マイナス3乗torrで12
00℃×2時間の脱ガス処理を行ない、NbC粉末原料
を作成した。また、誘導式真空誘導溶解炉にて、純度9
9.9%の純Feをジルコニアルツボを用いて精錬し、
炭素粉末を添加し、2.18重量%の炭素を含む炭素鋼
のインゴットに鋳造した。この炭素鋼のインゴットを表
面の表面の酸化スケールを除去してから、アルゴンガス
アトマイズ装置にて、粉末とし、さらにこの粉末をボー
ルミルで粉砕して、150メッシュ以下の粉末を採取し
た。得られた炭素鋼粉末の炭素含有量は2.06%重量
であった。Fe71原子%、Nb11原子%、C18原
子%のターゲット組成、すなわちFe76.19重量
%、Nb19.65重量%、C4.16重量%のターゲ
ット組成を目標に、NbC粉末を22.19重量%、炭
素鋼粉末を77.79重量%、炭素量調整のため炭素粉
末0.02重量%添加して、ボールミルで24時間混合
した後、内径250mm×深さ11mm熱間静水圧プレ
ス用のカプセルに充填した。このカプセルを500℃に
て10マイナス5乗mmHgの減圧雰囲気になるまで脱
ガス処理した後、封止した。
(Example 2) Purity 99.9%, average particle size 3
12 μm NbC powder at 10 −3 torr
Degassing treatment was carried out at 00 ° C. for 2 hours to prepare a NbC powder raw material. In an induction-type vacuum induction melting furnace, purity 9
9.9% pure Fe was refined using a zirconial crucible,
Carbon powder was added and cast into a carbon steel ingot containing 2.18 wt% carbon. After removing the oxide scale on the surface of the ingot of this carbon steel, it was made into powder by an argon gas atomizing device, and this powder was further pulverized by a ball mill to collect powder of 150 mesh or less. The carbon content of the obtained carbon steel powder was 2.06% by weight. Aiming at a target composition of 71 atomic% of Fe, 11 atomic% of Nb, and 18 atomic% of C, that is, target composition of 76.19% by weight of Fe, 19.65% by weight of Nb, and 4.16% by weight of C, 22.19% by weight of NbC powder and carbon 77.79% by weight of steel powder and 0.02% by weight of carbon powder for adjusting the amount of carbon were added, mixed for 24 hours in a ball mill, and then filled in a capsule for hot isostatic pressing with an inner diameter of 250 mm and a depth of 11 mm. . The capsule was degassed at 500 ° C. to a reduced pressure atmosphere of 10 −5 mm Hg, and then sealed.

【0015】これにより、遊離炭素として存在するのは
添加した炭素量分である0.02重量%であり、原子%
にして0.1%程度である。また、炭素量全体の0.5
%が遊離炭素として存在することになる。封止したカプ
セルを1180℃×2.5時間、1000kgf/cm
2で熱間静水圧プレスにより圧密化しながら加圧焼結を
行い、その後切削加工により204φ×6mmのターゲ
ットを得た。このターゲットを高周波を使用するRF−
マグネトロンスパッタリング装置を用いて、アルミニウ
ム基板10個に成膜し、EPMA装置により基板毎のN
bの組成は変動を評価したところ、Nbは19.5±
0.3wt%という極めて狭い範囲に収まることが確認
された。
As a result, 0.02% by weight, which is the amount of added carbon, is present as free carbon.
Is about 0.1%. In addition, the total amount of carbon is 0.5
% Will be present as free carbon. Sealed capsule at 1180 ° C for 2.5 hours, 1000 kgf / cm
In step 2 , pressure sintering was performed while consolidating with a hot isostatic press, and then a target of 204φ × 6 mm was obtained by cutting. This target is RF-
A magnetron sputtering device is used to form a film on 10 aluminum substrates, and an EPMA device is used to form N films for each substrate.
When the variation of the composition of b was evaluated, Nb was 19.5 ±
It was confirmed that the content was within a very narrow range of 0.3 wt%.

【0016】(実施例3)以下、本発明のターゲット材
により得られる軟磁性膜の磁気特性について説明する
(MとしてはTaを用いた)。図3はターゲット構成と
図中A,B,C各位置の基板対向部分でのFe−Ta−
Cスパッタ膜の(磁場中熱処理後)BHカーブを示した
図、図4はスパッタ時間とスパッタ膜中のFeとTaの
組成比の関係図である。本発明のターゲットを用いると
従来(ペレット法)に比べ、磁気特性のバラツキが改善
されることが図3から、スパッタ膜組成の経時変化が生
じないことが図4からわかる。さらに本発明者らは、こ
れらのターゲットがスパッタ膜の軟磁気特性に及ぼす影
響について知見を得たので以下に図5〜図8を用いて詳
述する。図5はBHカーブ(磁場中熱処理後の困難軸方
向)と比透磁率の周波数特性、図6はマイクロカー効果
を用いた磁区構造の観察図である。図5に示したように
本発明のターゲットを用いると、良好な一軸異方性を有
するFe−Ta−C膜が得られ、従来(ペレット法)の
複合ターゲットでは、保磁力1エステルテッド以下、比
透磁率1000程度の軟磁気特性は得られるものの、良
好な一軸異方性を得にくいことがわかった。また図6に
示したように本発明のターゲットを用いたFe−Ta−
C膜は困難軸と容易軸の差があり、磁壁移動が観察され
たが、従来のそれは磁気的にほぼ等方膜となっているこ
とがわかった。この磁気特性の差を図7、図8を用いて
説明する。
(Embodiment 3) The magnetic characteristics of the soft magnetic film obtained by the target material of the present invention will be described below (Ta was used as M). Fig. 3 shows the target structure and Fe-Ta- in the portion facing the substrate at each position of A, B, and C in the figure.
FIG. 4 is a diagram showing a BH curve (after heat treatment in a magnetic field) of a C sputtered film, and FIG. 4 is a relational diagram of the sputter time and the composition ratio of Fe and Ta in the sputtered film. It can be seen from FIG. 3 that the use of the target of the present invention improves the variation in the magnetic characteristics as compared with the conventional method (pellet method), and that there is no change over time in the composition of the sputtered film. Further, the present inventors have found the influence of these targets on the soft magnetic properties of the sputtered film, and will be described in detail below with reference to FIGS. 5 to 8. FIG. 5 is a frequency characteristic of BH curve (hard axis direction after heat treatment in a magnetic field) and relative permeability, and FIG. 6 is an observation view of a magnetic domain structure using the Microker effect. As shown in FIG. 5, when the target of the present invention is used, an Fe-Ta-C film having good uniaxial anisotropy can be obtained, and in the conventional (pellet method) composite target, coercive force of 1 esterted or less, It was found that good uniaxial anisotropy was difficult to obtain although soft magnetic characteristics with a relative magnetic permeability of about 1000 were obtained. Further, as shown in FIG. 6, Fe-Ta- using the target of the present invention
The C film had a difference between the hard axis and the easy axis, and domain wall movement was observed, but it was found that the conventional film is magnetically almost isotropic. This difference in magnetic characteristics will be described with reference to FIGS. 7 and 8.

【0017】図7はFe−Ta−C膜の透過電子線回折
パターン(ネガ図)、図8は飛跳原子分布のモデル図
で、1はTa,Cの飛跳分布、2はFeの飛跳分布、1
0はTa,C、20はFeである。図7(a)に示した
ように本発明のターゲットを用いた良好な一軸異方性を
有するFe−Ta−C膜は、TaCがランダム配向で回
折強度が弱い。一方、従来(ペレット法)の複合ターゲ
ットを用いたそれは、図7(b)に示したように膜面内
でTaC(200)とTaC(111)の優先配向が見
られ、その回折強度は比較的強い。このことは、以下の
ように考えられる。つまり、基板上でのTa,Cのマイ
グレーションはほぼ同じ(スパッタ条件、基板温度が等
しいから)であるが、図8(b)からわかるように、従
来(ペレット法)の複合ターゲットを用いた場合は、基
板上で微視的なTa,Cのrich層が生じ、本発明の
ターゲットを用いた場合は、図8(a)に示すように微
視的組成むらが小さい。すなわち、Fe−Ta−C膜の
軟磁性化の要因と考えられるFe微結晶粒間の交換相互
作用が膜内でより均一に働くことで良好な一軸異方性を
得ることができる。ここで原子の飛跳分布についてはc
os則、cos2則、Gauss則等いろいろな法則が
提案されているが、定性的にはこのように本発明のター
ゲットを用いると微視的組成むらなく成膜できることが
わかる。この際、膜の耐食性向上などの目的でFe,T
a,C以外の元素(例えばW,Al,Si,B,Ga,
Ge,Co,Ni,Ir,Pt,Au,Rh,Ruな
ど)を混合物に混入してスパッタしても本発明の効果が
得られる。ただし図9、図10に示すように本発明のタ
ーゲットでも、その構成粒が大きいと上記の良好な特性
は得られないことから、その構成粒径は5mm以下が望
ましい。
FIG. 7 is a transmission electron beam diffraction pattern (negative diagram) of the Fe-Ta-C film, and FIG. 8 is a model diagram of the jumping atom distribution. 1 is the jumping distribution of Ta and C, and 2 is the jumping of Fe. Jump distribution, 1
0 is Ta and C, and 20 is Fe. As shown in FIG. 7A, in the Fe-Ta-C film using the target of the present invention and having good uniaxial anisotropy, TaC is randomly oriented and the diffraction intensity is weak. On the other hand, in the case of using the conventional (pellet method) composite target, as shown in FIG. 7B, the preferential orientations of TaC (200) and TaC (111) are observed in the film plane, and the diffraction intensities are compared. Strong. This is considered as follows. That is, the migration of Ta and C on the substrate is almost the same (because the sputtering conditions and the substrate temperature are the same), but as can be seen from FIG. 8B, when the conventional (pellet method) composite target is used. Causes microscopic Ta and C rich layers on the substrate, and when the target of the present invention is used, the microscopic composition unevenness is small as shown in FIG. That is, favorable uniaxial anisotropy can be obtained because the exchange interaction between Fe fine crystal grains, which is considered to be a factor for softening the Fe—Ta—C film, works more uniformly in the film. Here, for the jump distribution of atoms, c
Although various laws such as os law, cos 2 law, and Gauss law have been proposed, it is qualitatively understood that the use of the target of the present invention enables film formation without microscopic composition unevenness. At this time, for the purpose of improving the corrosion resistance of the film, Fe, T
Elements other than a and C (for example, W, Al, Si, B, Ga,
Ge, Co, Ni, Ir, Pt, Au, Rh, Ru, etc.) may be mixed in the mixture and sputtered to obtain the effect of the present invention. However, as shown in FIGS. 9 and 10, even in the target of the present invention, if the constituent grains are large, the above-mentioned good characteristics cannot be obtained, so that the constituent grain size is preferably 5 mm or less.

【0018】次に成膜時の基板温度が磁気特性に及ぼす
影響について知見を得たので説明する。図11は本発明
のターゲットを用い、基板温度を300℃以下、400
℃としたときのBHカーブ(磁場中熱処理後の困難軸方
向)と比透磁率の周波数特性である。図に示したように
基板温度300℃以下のときは、良好な一軸異方性が得
られるが、基板温度400℃のときは保磁力が大きくな
り、異方性磁界が小さくなる。すなわち成膜時の基板温
度は300℃以下が望ましい。下限としては、スパッタ
時に用いる基板冷却用の水、エアーあるいは液体窒素の
温度、すなわち−200℃である。以上詳述した本発明
のターゲットを用いる成膜法は、可燃性、爆発性ガスを
ほとんど発生しないので安全上の問題はない。
Next, the knowledge about the influence of the substrate temperature during film formation on the magnetic characteristics has been obtained. FIG. 11 shows the substrate temperature of 300 ° C. or less, 400
It is a frequency characteristic of BH curve (hard axis direction after heat treatment in a magnetic field) and relative permeability when the temperature is set to ° C. As shown in the figure, when the substrate temperature is 300 ° C. or lower, good uniaxial anisotropy is obtained, but when the substrate temperature is 400 ° C., the coercive force increases and the anisotropic magnetic field decreases. That is, the substrate temperature during film formation is preferably 300 ° C. or lower. The lower limit is the temperature of water, air or liquid nitrogen for cooling the substrate used during sputtering, that is, -200 ° C. The film forming method using the target of the present invention, which has been described in detail above, does not generate combustible or explosive gas, so there is no safety problem.

【0019】[0019]

【発明の効果】本発明によれば、炭素が均一に分散した
焼結組織のターゲット材を得ることができ、通常のスパ
ッタリング法により均質な磁性膜を作成できる。そのた
め、従来反応性スパッタ等で問題の成膜速度が遅いとい
う問題がなくなり、量産性が極めて向上する。さらに、
本発明のターゲットは炭素が単体として分散するのでは
なく、合金あるいは化合物として存在するため、炭素の
選択的なスパッタリングに起因したスパッタロットごと
の成膜組成の変動の問題もなく、きわめて信頼性の高い
高品質の磁性膜を得ることができる。本発明のターゲッ
ト材は、成膜されるFe−Ta−C軟磁性膜の磁気特性
バラツキ、経時変化を生じさせない効果を奏する。さら
には、良好な一軸異方性を有するFe−Ta−C軟磁性
膜が得られる効果も奏する。
According to the present invention, a target material having a sintered structure in which carbon is uniformly dispersed can be obtained, and a uniform magnetic film can be formed by a usual sputtering method. Therefore, the problem that the film forming rate is slow, which is a problem with the conventional reactive sputtering, is eliminated, and mass productivity is significantly improved. further,
In the target of the present invention, carbon does not disperse as a simple substance but exists as an alloy or a compound. Therefore, there is no problem of variation in film forming composition for each sputtering lot due to selective sputtering of carbon, and it is extremely reliable. A high quality magnetic film can be obtained. The target material of the present invention has the effect of preventing variations in the magnetic properties of the Fe-Ta-C soft magnetic film to be formed and changes over time. Furthermore, there is an effect that an Fe-Ta-C soft magnetic film having good uniaxial anisotropy can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のターゲット材のエッチング前の金属組
織写真である。
FIG. 1 is a photograph of a metal structure of a target material of the present invention before etching.

【図2】本発明のターゲット材のエッチング後の金属組
織写真である。
FIG. 2 is a photograph of a metal structure of a target material of the present invention after etching.

【図3】ターゲット構成とBHカーブ図。FIG. 3 is a target configuration and a BH curve diagram.

【図4】スパッタ時間とスパッタ膜中のFeとTaの組
成比の関係図。
FIG. 4 is a graph showing the relationship between the sputtering time and the composition ratio of Fe and Ta in the sputtered film.

【図5】BHカーブと比透磁率の周波数特性図。FIG. 5 is a frequency characteristic diagram of BH curve and relative permeability.

【図6】マイクロカー効果を用いた磁区構造の観察図。FIG. 6 is an observation view of a magnetic domain structure using the Microker effect.

【図7】Fe−Ta−C膜の透過電子線回折パターン
図。
FIG. 7 is a transmission electron beam diffraction pattern diagram of the Fe—Ta—C film.

【図8】飛跳原子分布のモデル図。FIG. 8 is a model diagram of a jumping atom distribution.

【図9】本発明のターゲットの構成粒径によるBHカー
ブ差図。
FIG. 9 is a BH curve difference diagram according to the constituent grain size of the target of the present invention.

【図10】飛跳原子分布のモデル図。FIG. 10 is a model diagram of jumping atom distribution.

【図11】BHカーブと比透磁率の周波数特性図。FIG. 11 is a frequency characteristic diagram of BH curve and relative permeability.

【符号の説明】[Explanation of symbols]

1 Ta,Cの飛跳分布 2 Feの飛跳分布 10 Ta,C 20 Fe 1 Ta, C jump distribution 2 Fe jump distribution 10 Ta, C 20 Fe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 10/14 (72)発明者 安河内 正也 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所映像メディア研究所内 (72)発明者 青木 茂夫 茨城県勝田市大字稲田1410番地 株式会社 日立製作所東海工場内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location H01F 10/14 (72) Inventor Masaya Yasukochi 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Stock company (72) Inventor Shigeo Aoki 1410 Inada, Katsuta-shi, Ibaraki Hitachi Ltd. Tokai Plant, Hitachi Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 原子比率で金属M(MはTi、Zr、H
f、V、Nb、Ta、Mo、Wから選ばれる1種または
2種以上)が5〜20%、炭素が6〜20%、残部Fe
および不可避的不純物からなる組成を有し、組織中に存
在する炭素の75%以上が金属Mとの化合物粒子として
存在することを特徴とする磁性薄膜用ターゲット材。
1. A metal M (M is Ti, Zr, H in atomic ratio).
f, V, Nb, Ta, Mo, W, one or more selected from 5 to 20%, carbon to 6 to 20%, and balance Fe.
And a target material for a magnetic thin film having a composition of unavoidable impurities, wherein 75% or more of carbon present in the structure is present as compound particles with the metal M.
【請求項2】 原子比率で金属M(MはTi、Zr、H
f、V、Nb、Ta、Mo、Wから選ばれる1種または
2種以上)が5〜20%、炭素が6〜20%、残部Fe
および不可避的不純物からなる組成を有し、組織中に存
在する炭素の75%以上が、金属Mとの化合物粒子およ
びFeとの合金粒子として存在することを特徴とする磁
性薄膜用ターゲット材。
2. A metal M in atomic ratio (M is Ti, Zr, H
f, V, Nb, Ta, Mo, W, one or more selected from 5 to 20%, carbon to 6 to 20%, and balance Fe.
And a target material for a magnetic thin film having a composition of unavoidable impurities, wherein 75% or more of carbon present in the structure exists as compound particles with the metal M and alloy particles with Fe.
【請求項3】 原子比率で金属M(MはTi、Zr、H
f、V、Nb、Ta、Mo、Wから選ばれる1種または
2種以上)が5〜20%、炭素が6〜20%、残部Fe
および不可避的不純物からなる組成を有し、組織が金属
Mと金属Mの炭化物の少なくともいずれか、およびFe
とFeの炭化物の少なくともいずれかからなることを特
徴とする磁性薄膜用ターゲット材。
3. A metal M in atomic ratio (M is Ti, Zr, H
f, V, Nb, Ta, Mo, W, one or more selected from 5 to 20%, carbon to 6 to 20%, and balance Fe.
And an unavoidable impurity and having a structure of at least one of metal M and carbide of metal M, and Fe.
A target material for a magnetic thin film, which comprises at least one of Fe and Fe carbide.
【請求項4】 原子比率で金属M(MはTi、Zr、H
f、V、Nb、Ta、Mo、Wから選ばれる1種または
2種以上)が5〜20%、炭素が6〜20%、残部Fe
および不可避的不純物からなる組成を有し、遊離炭素が
原子比率で5%以下であることを特徴とする磁性薄膜用
ターゲット材。
4. A metal M (M is Ti, Zr, H) in atomic ratio.
f, V, Nb, Ta, Mo, W, one or more selected from 5 to 20%, carbon to 6 to 20%, and balance Fe.
And a target material for a magnetic thin film having a composition of unavoidable impurities and having an atomic ratio of free carbon of 5% or less.
【請求項5】 金属M(MはTi、Zr、Hf、V、N
b、Ta、Mo、Wから選ばれる1種または2種以上)
と炭素との化合物と、Feと炭素の合金またはこれに金
属Mを固溶している合金粉末とを配合し焼結することを
特徴とする磁性薄膜用ターゲット材の製造方法。
5. A metal M (M is Ti, Zr, Hf, V, N
(1 or 2 or more selected from b, Ta, Mo and W)
A method for producing a target material for a magnetic thin film, which comprises mixing a compound of carbon and carbon, an alloy of Fe and carbon or an alloy powder in which a metal M is solid-solved, and sintering the mixture.
【請求項6】 金属M(MはTi、Zr、Hf、V、N
b、Ta、Mo、Wから選ばれる1種または2種以上)
と炭素との化合物と、Feと炭素の合金またはこれに金
属Mを固溶している合金粉末と、5原子%以下の炭素粉
末とを配合し焼結することを特徴とする磁性薄膜用ター
ゲット材の製造方法。
6. A metal M (M is Ti, Zr, Hf, V, N
(1 or 2 or more selected from b, Ta, Mo and W)
A target for a magnetic thin film, which comprises compounding and sintering a compound of carbon and carbon, an alloy of Fe and carbon or an alloy powder in which a metal M is dissolved in solid solution, and carbon powder of 5 atomic% or less. Method of manufacturing wood.
【請求項7】 金属M(MはTi、Zr、Hf、V、N
b、Ta、Mo、Wから選ばれる1種または2種以上)
と炭素との化合物の粉末と、Feと炭素との合金または
これに金属Mを固溶している合金粉末とを配合した混合
物を圧密化した後に加圧焼結するか、圧密化しながら加
圧焼結を行うことを特徴とする磁性薄膜用ターゲットの
製造方法。
7. A metal M (M is Ti, Zr, Hf, V, N
(1 or 2 or more selected from b, Ta, Mo and W)
A mixture of a powder of a compound of carbon and carbon and an alloy of Fe and carbon or an alloy powder in which a metal M is solid-solved is compacted and then pressure-sintered, or pressure is applied while compacting. A method for manufacturing a target for a magnetic thin film, which comprises performing sintering.
【請求項8】 金属M(MはTi、Zr、Hf、V、N
b、Ta、Mo、Wから選ばれる1種または2種以上)
と炭素との化合物の粉末と、Feと炭素の合金またはこ
れに金属Mを固溶している合金粉末と、5原子%以下の
炭素粉末とを配合した混合物を圧密化した後に加圧焼結
するか、圧密化しながら加圧焼結を行うことを特徴とす
る磁性薄膜用ターゲットの製造方法。
8. A metal M (M is Ti, Zr, Hf, V, N
(1 or 2 or more selected from b, Ta, Mo and W)
A mixture of a powder of a compound of carbon and carbon, an alloy of Fe and carbon or an alloy powder in which a metal M is dissolved in solid solution, and carbon powder of 5 atomic% or less is consolidated and then pressure-sintered. Or a method for producing a target for a magnetic thin film, which comprises performing pressure sintering while consolidating.
【請求項9】 請求項1ないし4のいずれかに記載のタ
ーゲットをスパッタして成膜されたことを特徴とするF
e−M−C軟磁性膜(MはTi、Zr、Hf、V、N
b、Ta、Mo、Wの少なくとも一つ)。
9. An F formed by sputtering the target according to any one of claims 1 to 4.
e-MC Soft magnetic film (M is Ti, Zr, Hf, V, N
at least one of b, Ta, Mo and W).
【請求項10】 請求項9に記載のFe−M−C軟磁性
膜(MはTi、Zr、Hf、V、Nb、Ta、Mo、W
の少なくとも一つ)の成膜時の基板温度が300℃以下
であることを特徴とするFe−M−C軟磁性膜の製造方
法。
10. The Fe-MC soft magnetic film according to claim 9, wherein M is Ti, Zr, Hf, V, Nb, Ta, Mo or W.
At least one of the above), the substrate temperature during film formation is 300 ° C. or lower, and a method for manufacturing an Fe-MC soft magnetic film.
【請求項11】 請求項9に記載のFe−M−C軟磁性
膜を用いた磁気ヘッド。
11. A magnetic head using the Fe-M-C soft magnetic film according to claim 9.
【請求項12】 請求項11に記載の磁気ヘッドを用い
た磁気記録再生装置。
12. A magnetic recording / reproducing apparatus using the magnetic head according to claim 11.
JP04119748A 1991-04-15 1992-04-13 Magnetic thin film target material and method of manufacturing the same, Fe-MC soft magnetic film and method of manufacturing the same, and magnetic head and magnetic recording / reproducing apparatus using the same Expired - Fee Related JP3076141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04119748A JP3076141B2 (en) 1991-04-15 1992-04-13 Magnetic thin film target material and method of manufacturing the same, Fe-MC soft magnetic film and method of manufacturing the same, and magnetic head and magnetic recording / reproducing apparatus using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-109702 1991-04-15
JP10970291 1991-04-15
JP04119748A JP3076141B2 (en) 1991-04-15 1992-04-13 Magnetic thin film target material and method of manufacturing the same, Fe-MC soft magnetic film and method of manufacturing the same, and magnetic head and magnetic recording / reproducing apparatus using the same

Publications (2)

Publication Number Publication Date
JPH0610122A true JPH0610122A (en) 1994-01-18
JP3076141B2 JP3076141B2 (en) 2000-08-14

Family

ID=26449433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04119748A Expired - Fee Related JP3076141B2 (en) 1991-04-15 1992-04-13 Magnetic thin film target material and method of manufacturing the same, Fe-MC soft magnetic film and method of manufacturing the same, and magnetic head and magnetic recording / reproducing apparatus using the same

Country Status (1)

Country Link
JP (1) JP3076141B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786037A (en) * 1993-09-03 1995-03-31 Korea Advanced Inst Of Sci Technol Iron-based soft-magnetism thin-film alloy for magnetic head, and manufacture thereof
US6899828B2 (en) * 1999-05-10 2005-05-31 Nanyang Technological University Composite coatings
JP2012102387A (en) * 2010-11-12 2012-05-31 Mitsubishi Materials Corp Sputtering target for forming film of magnetic recording medium, and method for manufacturing the same
WO2013046882A1 (en) * 2011-09-26 2013-04-04 Jx日鉱日石金属株式会社 Iron/platinum/carbon sputtering target
US9999227B2 (en) 2011-10-04 2018-06-19 0903608 B.C. Ltd. Pest control formulations and methods of making and using same
US9999218B2 (en) 2011-10-04 2018-06-19 0903608 B.C. Ltd. Pest control formulations and methods of making and using same
CN113451038A (en) * 2021-06-07 2021-09-28 杭州永磁集团有限公司 Preparation method of samarium-cobalt permanent magnet suitable for high-temperature high-pressure pure hydrogen environment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786037A (en) * 1993-09-03 1995-03-31 Korea Advanced Inst Of Sci Technol Iron-based soft-magnetism thin-film alloy for magnetic head, and manufacture thereof
US6899828B2 (en) * 1999-05-10 2005-05-31 Nanyang Technological University Composite coatings
JP2012102387A (en) * 2010-11-12 2012-05-31 Mitsubishi Materials Corp Sputtering target for forming film of magnetic recording medium, and method for manufacturing the same
WO2013046882A1 (en) * 2011-09-26 2013-04-04 Jx日鉱日石金属株式会社 Iron/platinum/carbon sputtering target
JP5301751B1 (en) * 2011-09-26 2013-09-25 Jx日鉱日石金属株式会社 Fe-Pt-C sputtering target
TWI550114B (en) * 2011-09-26 2016-09-21 Jx Nippon Mining & Metals Corp Fe-Pt-C sputtering target
US9999227B2 (en) 2011-10-04 2018-06-19 0903608 B.C. Ltd. Pest control formulations and methods of making and using same
US9999218B2 (en) 2011-10-04 2018-06-19 0903608 B.C. Ltd. Pest control formulations and methods of making and using same
US10905114B2 (en) 2011-10-04 2021-02-02 0903608 B.C. Ltd. Pest control formulations and methods of making and using same
CN113451038A (en) * 2021-06-07 2021-09-28 杭州永磁集团有限公司 Preparation method of samarium-cobalt permanent magnet suitable for high-temperature high-pressure pure hydrogen environment

Also Published As

Publication number Publication date
JP3076141B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
US5098649A (en) Rare earth metal-iron group metal target, alloy powder therefor and method of producing same
US20080083616A1 (en) Co-Fe-Zr BASED ALLOY SPUTTERING TARGET MATERIAL AND PROCESS FOR PRODUCTION THEREOF
JP2005320627A (en) Co ALLOY TARGET AND ITS PRODUCTION METHOD, SOFT MAGNETIC FILM FOR PERPENDICULAR MAGNETIC RECORDING AND PERPENDICULAR MAGNETIC RECORDING MEDIUM
KR0129795B1 (en) Target for magneto optical recording media &amp; method for production the same
JPH1088333A (en) Sputtering target and its production
JP5370917B2 (en) Method for producing Fe-Co-Ni alloy sputtering target material
WO2008026439A1 (en) Magnetic thin film
JP3076141B2 (en) Magnetic thin film target material and method of manufacturing the same, Fe-MC soft magnetic film and method of manufacturing the same, and magnetic head and magnetic recording / reproducing apparatus using the same
JPH05222488A (en) Alloy ingot for permanent magnet and its manufacture
US20110020169A1 (en) Sputtering Target Material for Producing Intermediate Layer Film of Perpendicular Magnetic Recording Medium and Thin Film Produced by Using the Same
JP2023144067A (en) Sputtering target, granular film, and vertical magnetic recording medium
EP0640964B1 (en) Target for magneto-optical recording medium and process for production therefof
JPS6270550A (en) Material for target
JPH02107762A (en) Alloy target for magneto-optical recording
WO2018123500A1 (en) Magnetic material sputtering target and method for manufacturing same
TWI605143B (en) Magnetic recording media sputtering target
JPH0119448B2 (en)
JP2894695B2 (en) Rare earth metal-iron group metal target and method for producing the same
JP3997527B2 (en) Method for producing Ru-Al intermetallic compound target, Ru-Al intermetallic compound target, and magnetic recording medium
JP2597380B2 (en) Method for producing rare earth metal-transition metal target alloy powder and method for producing rare earth metal-transition metal target
JPH11246967A (en) Target for irmn series alloy film formation, its production and antiferromagnetic film using it
JP2002226970A (en) Co TARGET AND PRODUCTION METHOD THEREFOR
US5710384A (en) Magneto-optical recording medium target and manufacture method of same
JPH062131A (en) Sputtering target for magneto-optical recording medium and its production
JP3328921B2 (en) Target for magneto-optical recording media

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees