JPH11246967A - Target for irmn series alloy film formation, its production and antiferromagnetic film using it - Google Patents

Target for irmn series alloy film formation, its production and antiferromagnetic film using it

Info

Publication number
JPH11246967A
JPH11246967A JP10051669A JP5166998A JPH11246967A JP H11246967 A JPH11246967 A JP H11246967A JP 10051669 A JP10051669 A JP 10051669A JP 5166998 A JP5166998 A JP 5166998A JP H11246967 A JPH11246967 A JP H11246967A
Authority
JP
Japan
Prior art keywords
irmn
film
target
alloy
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10051669A
Other languages
Japanese (ja)
Other versions
JP4002659B2 (en
Inventor
Shunichiro Matsumoto
俊一郎 松本
Hideo Murata
英夫 村田
Hidetoshi Hagiwara
英俊 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP05166998A priority Critical patent/JP4002659B2/en
Publication of JPH11246967A publication Critical patent/JPH11246967A/en
Application granted granted Critical
Publication of JP4002659B2 publication Critical patent/JP4002659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a target for IrMn sereis alloy film formation excellent in discharge stability at the time of sputtering, furthermore free from the generation of target cracking even by thermal stress generated at the time of sputtering and moreover large in the exchange combination magnetic field of an antiferromagnetic film formed by sputtering. SOLUTION: Ir phases are dispersedly present in the structure of an IrMn series antiferromagnetic alloy target, and furthermore, the content of oxygen in the target is regulated to <=3000 ppm. As for the producing method, Ir powder, Mn powder and Mn-X allay powder or X powder (X denotes at least one kind among Fe, Ni, Cu, Ta, Hf, Pd, Ti, Nb, Cr, W, Zr, Mo or the like) are formulated by desired quantity, and pressure sintering is executed at a temp. lower than the liq. phase exhibiting temp. of the powdery mixture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反強磁性を有する
IrMn系合金の成膜用ターゲットとその製造方法さらに、
それを用いた反強磁性膜に関するものであり、特に磁気
記録装置などに適用される磁気抵抗効果型磁気ヘッドの
検出部の磁区制御などに適用される反強磁性膜に係わる
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has an antiferromagnetism
IrMn-based alloy film formation target and its manufacturing method
The present invention relates to an antiferromagnetic film using the same, and more particularly to an antiferromagnetic film applied to a magnetic domain control of a detection unit of a magnetoresistive magnetic head applied to a magnetic recording device or the like.

【0002】[0002]

【従来の技術】パソコン等の外部記憶装置に使用されて
いるハードディスクドライブによって代表される磁気記
録分野では、大容量、高記録密度化が年率20〜30%以上
の大きな伸びを示している。情報を磁気ディスクに書き
込み/読み出す磁気ヘッドにとってみても、その方式、
構成等は目まぐるしく変化し、変革が進んでいる。現
在、磁気ディスク上に書き込まれる情報密度は2〜3Gbit
/in2に達しており、磁気ヘッドとして電磁誘導方式で
は書き込み/読み出しが困難になっていしまい、そのた
め読み出し専用ヘッドとして磁気抵抗効果を利用した磁
気抵抗効果型ヘッドが考え出され、主流を占めるに至っ
てきた。
2. Description of the Related Art In the field of magnetic recording represented by a hard disk drive used in an external storage device such as a personal computer, a large capacity and a high recording density are increasing at a rate of 20 to 30% or more per year. For a magnetic head that writes / reads information to / from a magnetic disk, the method,
The composition is changing rapidly, and the change is progressing. Currently, the information density written on the magnetic disk is 2-3Gbit
/ In2, making it difficult to write / read data using the electromagnetic induction method as a magnetic head. Therefore, a magnetoresistive head using the magnetoresistive effect has been devised as a read-only head, and has become the mainstream. Came.

【0003】さて、この磁気抵抗効果型ヘッドの検出部
には、強磁性体であるパーマロイ等の磁性薄膜による磁
気抵抗効果が利用されているが、強磁性材に特有な磁区
あるいは磁壁が薄膜中に存在のため、バルクハウゼンノ
イズが発生し、実用化の上で大きな障害になっていた。
このため、磁性薄膜を単磁区化する実用的な方法が多方
面から検討され、多くの対策方法が盛んに行われてい
る。それらのなかで、有用な解決方法として強磁性体薄
膜による磁気抵抗効果膜と反強磁性膜との交換結合現象
を利用して、磁気抵抗効果膜の磁区を特定方向に制御す
る方法が提案されている。このように、強磁性と反強磁
性の薄膜を2層以上重ねる多層膜は、交換結合膜と称せ
られている。強磁性膜に積層される反強磁性膜として
は、γ-FeMnあるいはNiO等の合金系があるが、特許番号
第2,672,802号公報に開示されているIrMn系合金が、交
換結合磁界強さ、ブロッキング温度、耐食性等の点で好
適である旨が記載され、注目を浴びるようになってき
た。
The detecting portion of the magnetoresistive head utilizes the magnetoresistance effect of a magnetic thin film made of a ferromagnetic material such as permalloy. However, a magnetic domain or domain wall unique to a ferromagnetic material is formed in the thin film. , Barkhausen noise was generated, which was a major obstacle in practical use.
For this reason, a practical method for forming a magnetic thin film into a single magnetic domain has been studied from various aspects, and many countermeasures have been actively conducted. Among them, a method for controlling the magnetic domain of the magnetoresistive film in a specific direction by utilizing the exchange coupling phenomenon between the magnetoresistive film and the antiferromagnetic film using a ferromagnetic thin film has been proposed as a useful solution. ing. Such a multilayer film in which two or more ferromagnetic and antiferromagnetic thin films are stacked is called an exchange coupling film. As the antiferromagnetic film laminated on the ferromagnetic film, there is an alloy system such as γ-FeMn or NiO, but the IrMn-based alloy disclosed in Patent No. 2,672,802 has an exchange coupling magnetic field strength, blocking. It is described that it is suitable in terms of temperature, corrosion resistance and the like, and has been receiving attention.

【0004】IrMn系合金膜は反強磁性を有するため、
強磁性合金膜上に隣接して膜を形成すれば、原子間の相
互作用による磁気的な結合を生じ、強磁性合金膜の磁化
方向を制御するという特異な現象を発生する。この物性
現象を利用すれば、磁気抵抗効果型ヘッドの検出部を形
成する磁気抵抗効果膜のバルクハウゼンノイズを抑制で
き、磁気抵抗効果型磁気ヘッドの性能を格段に向上でき
ることが予想される。実際、強磁性膜としてパーマロイ
あるいはCo−Fe等が用いられ、反強磁性膜としてγ-FeM
nあるいはNiO等が知られてる。一方、IrMn系合金膜は成
膜中に特定方向に磁場を印加して成膜すれば、成膜後、
磁場中での熱処理を施さなくても高い交換結合磁界が得
られ、良好な強磁性膜の磁化方向制御を行えることから
注目されていた。IrMn系合金の反強磁性膜はスパッタリ
ング等の成膜方法で形成されるが、それに使用されるタ
ーゲット素材は、真空溶解法あるいは所望組成のIrMn合
金粉末を加圧焼結する粉末冶金法により作製される。次
に、ターゲット素材は機械加工して所望の形状寸法に仕
上げられて、ターゲットとしてスパッタ装置に組み込ま
れる。このようなターゲットは主としてArのような不
活性ガスイオンの雰囲気中でスパッタリング工程に適用
され、磁気ヘッドの検出部等の形成が行われる。
Since the IrMn-based alloy film has antiferromagnetism,
If a film is formed adjacent to the ferromagnetic alloy film, magnetic coupling occurs due to the interaction between atoms, and a peculiar phenomenon of controlling the magnetization direction of the ferromagnetic alloy film occurs. By utilizing this property phenomenon, it is expected that Barkhausen noise of the magnetoresistive effect film forming the detecting portion of the magnetoresistive head can be suppressed, and the performance of the magnetoresistive head can be remarkably improved. In fact, permalloy or Co-Fe is used as the ferromagnetic film, and γ-FeM
n or NiO is known. On the other hand, if an IrMn-based alloy film is formed by applying a magnetic field in a specific direction during film formation, after the film formation,
Attention has been paid to the fact that a high exchange coupling magnetic field can be obtained without performing heat treatment in a magnetic field, and good magnetization direction control of the ferromagnetic film can be performed. The antiferromagnetic film of the IrMn-based alloy is formed by a film forming method such as sputtering, and the target material used for the film is prepared by a vacuum melting method or a powder metallurgy method in which IrMn alloy powder of a desired composition is sintered under pressure. Is done. Next, the target material is machined to have a desired shape and size, and is incorporated as a target into a sputtering apparatus. Such a target is mainly applied to a sputtering process in an atmosphere of an inert gas ion such as Ar to form a detection portion of a magnetic head.

【0005】さて、上述したIrMn系合金成膜用ターゲッ
トは真空溶解法あるいは粉末冶金法で作製されることが
知られており、以下その製法について述べることにす
る。まず、真空溶解法では原料のIr,Mnおよび必要とす
るその他の合金成分を所望組成に配合し、真空炉中に設
置したジルコニアあるいはアルミナ製耐火物からできて
いる坩堝に原料を装入する。その後、真空炉を10-2
10-3Torr程度まで減圧した後、耐火坩堝の外周に
設置したコイルに高周波電流を通電して原料に電磁誘導
による渦電流を発生させ、渦電流によるジュール熱を発
生させ加熱溶解を行う。真空溶解を行ったIrMn系合金融
体を、同じく真空炉中に設置した鋳型に注ぎ真空鋳造を
行い、加工素材を作製する。さらに、機械あるいは研磨
加工工程を経て、適当な形状寸法に加工してスパッタリ
ング用ターゲットを得る。
[0005] It is known that the above-mentioned IrMn-based alloy film-forming target is produced by a vacuum melting method or a powder metallurgy method, and its production method will be described below. First, in the vacuum melting method, Ir and Mn as raw materials and other necessary alloy components are blended into a desired composition, and the raw materials are charged into a crucible made of zirconia or alumina refractories installed in a vacuum furnace. After that, the vacuum furnace was set to 10 -2
After reducing the pressure to about 10 −3 Torr, a high-frequency current is applied to a coil placed on the outer periphery of the refractory crucible to generate an eddy current in the raw material by electromagnetic induction, and to generate a Joule heat by the eddy current to perform heating and melting. The vacuum-melted IrMn-based alloy is poured into a mold that is also placed in a vacuum furnace, and vacuum casting is performed to produce a processed material. Further, through a mechanical or polishing processing step, it is processed into an appropriate shape and size to obtain a sputtering target.

【0006】一方、粉末冶金法を適用した製造法では、
ガスアトマイズ法等で所望組成のIrMn合金粉末を作製し
た後、これを熱間静水圧プレス法(HIP)等の加圧焼結
法を用いて、ターゲット素材を作製する。このように作
製した加工素材は旋盤、研削盤等の機械加工され、所望
のターゲット形状に仕上げて使用される。
On the other hand, in a manufacturing method to which powder metallurgy is applied,
After producing an IrMn alloy powder having a desired composition by a gas atomizing method or the like, a target material is produced by using a pressure sintering method such as a hot isostatic pressing method (HIP). The processing material thus manufactured is machined by a lathe, a grinding machine, or the like, and is used after finishing into a desired target shape.

【0007】[0007]

【発明が解決しようとする課題】真空溶解法または粉末
焼結法を用いて、スパッタリング用合金ターゲットを作
製するのは広く用いられる製造方法であるが、IrMn系合
金素材は機械的に脆いIrMn系金属間化合物相よって構成
される。このような脆性材料によるターゲットは、スパ
ッタリング放電中加熱され急速に温度上昇または局部加
熱されるため、温度分布の不均一による熱応力が増大し
てターゲットに割れを引き起こすという問題点がある。
スパッタ放電中にターゲットに割れを生ずると、この割
れの部分にプラズマが集中してしまい、その結果スパッ
タリングターゲットのメタルボンディング材のIr等の蝋
材が露出し、この蝋材がターゲット材と同時にスパッタ
されることになるため、成膜された反強磁性膜が汚染さ
れて必要な特性の反強磁性膜を得ることができない。
It is a widely used manufacturing method to produce an alloy target for sputtering using a vacuum melting method or a powder sintering method, but the IrMn-based alloy material is mechanically fragile. It is composed of an intermetallic compound phase. The target made of such a brittle material is heated during sputtering discharge and rapidly rises in temperature or locally heated, so that there is a problem that thermal stress increases due to uneven temperature distribution and the target is cracked.
If a crack occurs in the target during the sputter discharge, the plasma concentrates at the cracked portion, and as a result, a brazing material such as Ir as a metal bonding material of the sputtering target is exposed. Therefore, the formed antiferromagnetic film is contaminated, and an antiferromagnetic film having necessary characteristics cannot be obtained.

【0008】一方、IrMn系合金を粉末法で作製した場
合、Mnは酸素との親和力が大きいため、粉末の作製時に
粉末表面が酸化し、厚い酸化膜層を形成してしまう。こ
の酸化層が厚く形成された原料粉末を用いた場合、加圧
焼結時にこの酸化物層が中間に介在して原料粉間の原子
の相互拡散を妨害するため、焼結性が悪くなり、その結
果ターゲット用素材として必要な相対密度90%以上を得
ることが困難であった。また、焼結体の相対密度が90%
以下の場合、焼結体内部の空隙は連なって存在するよう
になり、焼結体外部と繋がってしまい、表面あるいは内
部に細かい空腔を生じることになる。このような焼結体
を機械加工すると、加工液が焼結体内部に浸透したり、
あるいは残留する原因になる。さらに、加工液による材
料の汚染を促進したり、加工液が焼結体の酸化を進行さ
せる原因にもなる。
On the other hand, when an IrMn-based alloy is produced by a powder method, Mn has a high affinity for oxygen, so that the surface of the powder is oxidized during the production of the powder, forming a thick oxide film layer. When using a raw material powder in which this oxide layer is formed thickly, the sinterability deteriorates because the oxide layer intervenes in the middle during pressure sintering and hinders the mutual diffusion of atoms between the raw material powders, As a result, it was difficult to obtain a relative density of 90% or more required as a target material. The relative density of the sintered body is 90%
In the following cases, the voids inside the sintered body are continuously formed, and are connected to the outside of the sintered body, so that fine voids are generated on the surface or inside. When such a sintered body is machined, the working fluid penetrates into the sintered body,
Or it may cause a residue. Further, the contamination of the material by the working fluid is promoted, and the working fluid causes oxidation of the sintered body to progress.

【0009】酸素含有量の高いターゲットを使用してス
パッタリングした場合、酸化物、特にMnの酸化物はター
ゲット表面に残留すると共に、絶縁物であるため電荷が
トラップされ表面に滞留することになる。このため、タ
ーゲットの電位分布が一様でなくなり、場所によっては
急激に変化する不均一分布になる。スパッタ時にターゲ
ット近傍は均一な電位分布、即ち電界分布が得られなく
なり、スパッタリング放電時に異常放電を招き安定した
放電を継続出来ない。つまり、成膜装置内で安定したプ
ラズマ状態が得られないことである。また、高含有酸素
の材料をスパッタ成膜した場合、酸素は成膜中に取り込
まれることになり、強磁性膜上に反強磁性膜がエピタキ
シ成長することを阻害する。反強磁性膜のエピタキシ成
長が阻害されると、強磁性膜との交換結合磁界は低下
し、磁化方向を制御することは困難となり、予定した特
性が得られない。さらに、成膜組成とターゲット組成が
一致しないため、予定した特性を得ることが難しく、ま
た制御することが困難であった。
When sputtering is performed using a target having a high oxygen content, an oxide, particularly an oxide of Mn, remains on the target surface and, because it is an insulator, charges are trapped and stay on the surface. For this reason, the potential distribution of the target becomes non-uniform, resulting in a non-uniform distribution that rapidly changes in some places. A uniform electric potential distribution, that is, an electric field distribution cannot be obtained near the target during sputtering, and abnormal discharge occurs during sputtering discharge, and stable discharge cannot be continued. That is, a stable plasma state cannot be obtained in the film forming apparatus. In addition, when a material having a high oxygen content is formed by sputtering, oxygen is taken in during the film formation, which hinders the antiferromagnetic film from growing epitaxially on the ferromagnetic film. When the epitaxy growth of the antiferromagnetic film is hindered, the exchange coupling magnetic field with the ferromagnetic film decreases, and it becomes difficult to control the magnetization direction, and the intended characteristics cannot be obtained. Furthermore, since the film formation composition and the target composition do not match, it is difficult to obtain the intended characteristics and it is difficult to control the characteristics.

【0010】[0010]

【課題を解決するための手段】以上、従来技術の課題を
記述したが、次にその解決手段を詳しく述べることにす
る。本発明の本質はターゲット材の構成元素であるIr
とMnが金属間化合物を形成することに起因する点、お
よびMnが非常に酸化し易い元素ある点にある。このよ
うな従来技術の問題点と条件の特異性を加味して、本発
明を想到するに至ったものである。
Having described the problems of the prior art, the means for solving the problems will now be described in detail. The essence of the present invention is Ir which is a constituent element of the target material.
And Mn form an intermetallic compound, and Mn is an element that is very easily oxidized. The present invention has been conceived in consideration of such problems of the conventional technology and the specificity of the conditions.

【0011】本発明では、ターゲットの組織をIr相とそ
の外周側にIrMn合金相あるいはIrMn多元合金相で接合さ
れている複合組織と規定したところに特長がある。これ
は焼結体の機械的強度を低下させる主因であるMn相お
よびMn合金相の割合を少なくし、機械的に強度の低い
Mn相あるいはMn合金相にクラックが生じた場合で
も、Ir相でクラックの進展を食止めることができる。こ
れは脆性および抗折強度を大幅に改善できるものであ
る。同時に、スパッタ放電時の熱応力によってターゲッ
トに割れが生ずるのを防止することも可能である。従来
法である真空溶解による完全合金型ターゲットと本発明
のターゲットの機械的な強度である抗折強度で比較した
ところ、完全合金型のターゲットは5〜10kg/cm2の抗折
強度であったのに対し、本発明のターゲットは15kg/cm
2以上の抗折強度を有していることがわかった。IrMn系
合金ターゲットの組織中にIr相を存在させ、さらにIr相
の外側をIrMn合金相で接合されていることが本発明の本
質であるが、組織中にIrが存在しIrMn合金を介して分散
される形態がより本発明を表現したものと言える。この
ように組織をIr相とIrMn合金相に分けてターゲットを作
製することは、従来のターゲットでは組織が単相である
ため、本発明のような機能および効果は期待できないこ
とは、以上の説明から容易に理解できるところである。
The present invention is characterized in that the target structure is defined as a composite structure in which an Ir phase and an IrMn alloy phase or an IrMn multi-element alloy phase are bonded to the outer peripheral side thereof. This reduces the ratio of the Mn phase and the Mn alloy phase, which is the main cause of lowering the mechanical strength of the sintered body, so that even if a crack occurs in the mechanically low strength Mn phase or the Mn alloy phase, the Ir phase is reduced. Cracking can be stopped. This can greatly improve brittleness and bending strength. At the same time, it is possible to prevent the target from cracking due to thermal stress during sputter discharge. Comparing the bending strength, which is the mechanical strength of the target of the present invention, with the mechanical strength of the perfect alloy type target by vacuum melting, which is the conventional method, the perfect alloy type target had a bending strength of 5 to 10 kg / cm 2 . On the other hand, the target of the present invention is 15 kg / cm
It was found to have a bending strength of 2 or more. It is the essence of the present invention that the Ir phase is present in the structure of the IrMn-based alloy target, and that the outside of the Ir phase is joined with the IrMn alloy phase, but Ir is present in the structure through the IrMn alloy. It can be said that the dispersed form more expresses the present invention. As described above, the production of the target by dividing the structure into the Ir phase and the IrMn alloy phase cannot be expected to achieve the functions and effects as in the present invention because the structure is a single phase in the conventional target. It is easy to understand from.

【0012】前述した本発明によるターゲットを用いて
反強磁性膜を作製することは、本発明の究極的な目的で
はあるが、その組成について言及する。磁気抵抗効果型
ヘッドの検出部を構成する交換結合膜を構成する場合、
その組成はIrYMn1-Yで表すことができ、0.02≦Y≦0.8at
%の範囲で交換結合磁界を大きくできる。さらに、0.05
≦Y≦0.4at%では高温域における交換結合力を確保で
き、より好ましい範囲である。交換結合膜を構成する強
磁性膜との関係もあるが、反強磁性の膜厚は15nm以下が
適しており、好ましくは3〜10nmである。
Although it is the ultimate object of the present invention to produce an antiferromagnetic film using the above-described target according to the present invention, its composition will be described. When forming the exchange coupling film that constitutes the detection unit of the magnetoresistive head,
Its composition can be represented by Ir Y Mn 1-Y , 0.02 ≦ Y ≦ 0.8 at
%, The exchange coupling magnetic field can be increased. In addition, 0.05
When ≦ Y ≦ 0.4 at%, the exchange coupling force in a high temperature range can be secured, which is a more preferable range. Although there is a relationship with the ferromagnetic film forming the exchange coupling film, the antiferromagnetic film thickness is suitably 15 nm or less, and preferably 3 to 10 nm.

【0013】次に、IrMn合金にFe、Ni、Cu、Ta、Hf、P
d、Ti、Nb、Cr、W、Zr、Mo、Re、Co、Ru、Ptの群から選
ばれた少なくとも1種が含有されるIrMn系多元合金にお
いて、組織中にIr相を存在させ、このIr相の外側をIrMn
合金あるいはIrMn多元合金相で接合することである。Ir
Mn合金に上記したFe以下の添加元素を加えることは、更
なる耐食性の向上を目的としたものであり、本発明の実
施しうる範囲である。しかし、0.5at%以上添加すると交
換結合力の低下を招くため、0.5at%を上限値とするもの
である。
Next, Fe, Ni, Cu, Ta, Hf, P are added to the IrMn alloy.
d, Ti, Nb, Cr, W, Zr, Mo, Re, Co, Ru, at least one selected from the group of the Pt-containing IrMn-based multi-alloy containing at least one Ir phase in the structure, IrMn outside Ir phase
Joining with an alloy or IrMn multiple alloy phase. Ir
The addition of the above-mentioned additional element of Fe or less to the Mn alloy is intended to further improve the corrosion resistance, and is within the range in which the present invention can be implemented. However, the addition of 0.5 at% or more causes a decrease in the exchange coupling force. Therefore, the upper limit is 0.5 at%.

【0014】本発明に係わる第三の点は、前記のIrMn系
合金成膜用ターゲットは、15kg/cm2以上の抗折強度を
有し、スパッタ放電時の熱応力によっても割れが発生し
難いことを特徴とする。このような特性は、ターゲット
素材の機械加工時にその有用性を発揮するものである。
即ち、従来材では脆い材質であったため、機械加工時に
正確な仕上げが出来ず、表面の状態も不良であり、特性
の良い薄膜を形成することが困難であった。しかし、本
発明によってこのような不具合は解消できるものであ
る。
A third point relating to the present invention is that the above-mentioned IrMn-based alloy film-forming target has a transverse rupture strength of 15 kg / cm 2 or more, and is hardly cracked even by thermal stress during sputter discharge. It is characterized by the following. Such properties demonstrate their usefulness during machining of the target material.
That is, since the conventional material was a brittle material, accurate finishing could not be performed at the time of machining, the surface condition was poor, and it was difficult to form a thin film having good characteristics. However, such problems can be solved by the present invention.

【0015】本発明では、IrMn系合金成膜用ターゲット
の含有酸素量を3000ppm以下、かつ相対密度を90%以上
にすることを特徴とするものである。ターゲット材中の
酸素量を3000ppm以下と規定した理由は、含有酸素が主
としてMnの酸化物として存在することになる。Mnの酸化
物は電気伝導性が無い絶縁体であるため、スパッタ放電
中には電荷が蓄積されることになる。蓄積された電荷は
ある限界に達すると、酸化物から電荷が急激に放電され
るため、スパッタ中に異常放電を生ずることとなる。タ
ーゲット中の含有酸素量が3000ppmを超える値に達する
と、安定したスパッタ放電を継続することが最早困難と
なり、スパッタ膜厚を厳密に制御することも不可能とな
る。3000ppmの限界値は実験と経験則から算定したもの
である。
The present invention is characterized in that the oxygen content of the IrMn-based alloy film forming target is 3000 ppm or less and the relative density is 90% or more. The reason that the amount of oxygen in the target material is specified to be 3000 ppm or less is that the contained oxygen mainly exists as an oxide of Mn. Since the oxide of Mn is an insulator having no electric conductivity, charges are accumulated during sputter discharge. When the accumulated charge reaches a certain limit, the charge is rapidly discharged from the oxide, so that an abnormal discharge occurs during sputtering. When the oxygen content in the target reaches a value exceeding 3000 ppm, it is no longer possible to maintain stable sputter discharge, and it is no longer possible to precisely control the sputter film thickness. The limit of 3000 ppm was calculated from experiments and rules of thumb.

【0016】また、異常放電発生時にスピッティング現
象を併発し、溶融したターゲット金属元素が膜面上に付
着し凝固するため、異物が非常に多い膜となる。このよ
うな膜の表面異物は素子の歩留まりを著しく低下させる
ため、磁気記録用ヘッドの製造上重大なな問題であっ
た。しかし、本発明者等はIrMn系合金成膜用ターゲット
の含有酸素を3000ppm、さらに好ましくは2500ppm以下に
すれば、スパッタリング時の異常放電を完全に抑えるこ
とはできないにしても、安定したスパッタ放電を維持す
ることが可能であり、安定した膜厚の制御が出来ると同
時に、表面異物の発生を実用上問題のない程度に抑える
ことが可能であることを見いだした。
Further, when an abnormal discharge occurs, a spitting phenomenon occurs at the same time, and the molten target metal element adheres to the film surface and solidifies, so that the film has a very large amount of foreign substances. Such foreign matter on the surface of the film significantly reduces the yield of the element, and is a serious problem in the manufacture of a magnetic recording head. However, the present inventors have set the oxygen content of the IrMn-based alloy film-forming target to 3,000 ppm, more preferably 2500 ppm or less, even if it is not possible to completely suppress abnormal discharge during sputtering, even if stable sputtering discharge. It has been found that it is possible to maintain the film thickness stably and to control the film thickness stably, and at the same time, it is possible to suppress the occurrence of surface foreign matter to a practically acceptable level.

【0017】ターゲットの相対密度は高いほど好ましい
ことは当然であるが、実用上の限界値を検討すると、90
%以上が特性および経済性の分岐点である。真空溶解法
に比べると、本発明による方法ではターゲット中に空隙
を生じやすい。このため、相対密度に影響するパラメー
タを適宜選び試験したところ、相対密度が90%以上であ
れば、ターゲット中の空隙は孤立して存在するようにな
り、機械加工時に材料中に加工液の浸透を抑えることが
可能となり、結果としてターゲット用素材の酸化を抑え
られる点、また加工液による材質の汚染を防止できる。
It is natural that the higher the relative density of the target is, the better it is.
% Or more is the branch point of characteristics and economy. In the method according to the present invention, voids are more likely to be generated in the target than in the vacuum melting method. For this reason, when the parameters affecting the relative density were appropriately selected and tested, if the relative density was 90% or more, the voids in the target became isolated, and the penetration of the machining fluid into the material during machining Can be suppressed, and as a result, oxidation of the target material can be suppressed, and contamination of the material by the processing liquid can be prevented.

【0018】さらに、本発明は強磁性膜上に酸素量3000
ppm以下に制御した低酸素のIrMn系合金成膜用ターゲッ
トを用いて反強磁性膜を形成した交換結合膜を含むもの
である。本発明者らは含有酸素量3000ppm以下、90%以
上の相対密度を有するIrMn合金成膜用ターゲットと含有
酸素量5000ppmで、かつ相対密度が85%のIrMn系合金成
膜用ターゲットを用いて比較を行った。成膜の特性評価
したところ、酸素含有量の高いターゲットによる交換結
合膜は、含有酸素量の低いターゲットを用いたものと比
較すると、強磁性膜との交換結合磁界が小さいことが判
明した。さらに、成膜した膜を透過型電子顕微鏡を用い
てミクロ解析を行ったところ、含有酸素量の少ない方の
ターゲットで成膜したものは、強磁性膜上に良好にエピ
タキシー成長しているが、含有酸素の多いターゲットで
成膜した膜は、エピタキシー成長が一部阻害されている
ことが観察できた。IrMn系合金ターゲット中の含有酸素
は、ターゲット側ではスパッタ粒子として原子状態で存
在すると考えられるが、これが基板上に到達して再びMn
と結びつき、酸化物を形成する。このMn酸化物が、強
磁性膜上にIrMn系合金膜がエピタキシー成長するのを妨
げ、結果として強磁性膜と反強磁性膜間の交換結合磁界
が低下する原因である。
Further, according to the present invention, an oxygen content of 3000
It includes an exchange-coupled film in which an antiferromagnetic film is formed using a low-oxygen IrMn-based alloy film-forming target controlled to be less than ppm. The present inventors compared using an IrMn alloy deposition target having an oxygen content of 3000 ppm or less and a relative density of 90% or more with an IrMn-based alloy deposition target having an oxygen content of 5000 ppm and a relative density of 85%. Was done. As a result of evaluating the characteristics of the film formation, it was found that the exchange coupling magnetic field with the ferromagnetic film was smaller in the exchange coupling film using the target having a high oxygen content than in the case using the target having a low oxygen content. Furthermore, when the formed film was subjected to micro-analysis using a transmission electron microscope, the film formed with the target having a smaller oxygen content had a good epitaxy growth on the ferromagnetic film. It was observed that the epitaxy growth was partially inhibited in the film formed with the target containing a large amount of oxygen. Oxygen contained in the IrMn-based alloy target is considered to exist in the atomic state as sputtered particles on the target side.
And form oxides. This Mn oxide prevents the IrMn-based alloy film from growing epitaxially on the ferromagnetic film, and as a result, the exchange coupling magnetic field between the ferromagnetic film and the antiferromagnetic film is reduced.

【0019】次に製造方法について言及する。良好なIr
Mn系合金成膜用ターゲットを実現するための製造方法と
しては、Ir粉末、Mn粉末、Mn−X合金粉末あるいはX粉
末、(XはFe、Ni、Cu、Ta、Hf、Pd、Ti、Nb、Cr、W、Z
r、Mo、Re、Co、Ru、Ptの群から選ばれた少なくとも1
種)を所望量配合した後、混合する工程を経て、混合粉
末の液相発現温度より低い温度で加圧焼結を行うことを
特徴とするするものである。
Next, the manufacturing method will be described. Good Ir
As a manufacturing method for realizing the Mn-based alloy film-forming target, there are Ir powder, Mn powder, Mn-X alloy powder or X powder, (X is Fe, Ni, Cu, Ta, Hf, Pd, Ti, Nb , Cr, W, Z
at least one selected from the group consisting of r, Mo, Re, Co, Ru, and Pt
After the desired amount of the seed is blended, pressure sintering is performed at a temperature lower than the liquid phase onset temperature of the mixed powder through a mixing step.

【0020】本発明の製造方法として、Ir粉末、Mn粉
末、Mn−X合金粉末、あるいはX粉末を配合、混合す
る。この混合粉末を液相発現温度より低い温度で加圧焼
結を行ってターゲット用素材を作製する最大の理由は以
下の通りである。本発明の基本的組織であるをIr相の外
側をIrMn相によって結合するようにするために、Ir粉末
は必ず単独で配合し、残りの元素は単独かあるいは合金
粉末の形で配合する必要がある。原料混合粉末の液相発
現温度以下で加圧焼結を行うことによって、加圧焼結時
に液相が生じた場合、粉末を保持するためのモールド型
や、金属製の缶と液相が反応し、良好な焼結体を得るこ
とは困難となる。相対密度90%以上の高密度の焼結体を
うるための具体的な焼結条件としては、液相発現温度以
下10℃から200℃以内の温度範囲内、さらに具体的には
温度1235℃から1045℃の範囲内、圧力は100kg/cm2以上
で加圧焼結を行うのが望ましい。
In the production method of the present invention, Ir powder, Mn powder, Mn-X alloy powder or X powder is blended and mixed. The greatest reason for producing the target material by subjecting this mixed powder to pressure sintering at a temperature lower than the liquid phase onset temperature is as follows. In order to combine the outside of the Ir phase with the IrMn phase, which is the basic structure of the present invention, the Ir powder must be blended alone, and the remaining elements must be blended alone or in the form of an alloy powder. is there. If a liquid phase is generated during pressure sintering by performing pressure sintering at a temperature below the liquid phase onset temperature of the raw material mixed powder, the liquid phase reacts with a mold for holding the powder or a metal can. However, it is difficult to obtain a good sintered body. Specific sintering conditions for obtaining a high-density sintered body with a relative density of 90% or more include a liquidus temperature of 10 ° C. to 200 ° C., more specifically, a temperature of 1235 ° C. Pressure sintering is desirably performed at a pressure of 100 kg / cm 2 or more within the range of 1045 ° C.

【0021】[0021]

【発明の実施の形態】以下本発明を詳細に説明する。 (実施例1) 本発明及び比較例のスパッタリングター
ゲットの製造条件を表1に示す。表1中、試料1から試
料8については、平均粒径50μmのIr粉末、および
Mn粉末を所望組成に秤量、配合し、混合ミルを用いて
均一に混合した後、ホットプレス法あるいはHIP法を
用いて加圧焼結を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. (Example 1) Table 1 shows manufacturing conditions of the sputtering targets of the present invention and a comparative example. In Table 1, with respect to Samples 1 to 8, Ir powder and Mn powder having an average particle size of 50 μm were weighed and blended to a desired composition, mixed uniformly using a mixing mill, and then subjected to hot pressing or HIP. And pressure-sintered.

【0022】[0022]

【表1】 [Table 1]

【0022】加圧焼結法としてホットプレスを用いた場
合は、混合粉末をカーボン製のモールド型に充填した
後、ホットプレス装置内を真空引きし、さらに温度40
0℃まで加熱した後5時間真空加熱を行って原料粉末に
吸着している酸素の脱気処理を行った。脱気処理した
後、本発明である試料1は、原料粉末を圧力150Kg
f/cm2、温度1230℃で加圧焼結を行った。比較
例の試料7は、焼結時の加圧圧力を50Kg/cm2
温度900℃で焼結を行い、比較例8は、焼結温度温度
1300℃で加圧焼結を行った。なお、試料8の加熱温
度1300℃は混合粉末のIrMn系合金の液相発現温度1
253℃を超え、加圧焼結時に液相が発現しモールド型
との反応を生じた。
When a hot press is used as the pressure sintering method, the mixed powder is filled in a carbon mold, and then the inside of the hot press is evacuated to a temperature of 40 ° C.
After heating to 0 ° C., vacuum heating was performed for 5 hours to deaerate oxygen adsorbed on the raw material powder. After the degassing treatment, the sample 1 of the present invention was prepared by pressing the raw material powder at a pressure of 150 kg.
Pressure sintering was performed at f / cm 2 and a temperature of 1230 ° C. Sample 7 of the comparative example had a pressure of 50 Kg / cm 2 at the time of sintering.
Sintering was performed at a temperature of 900 ° C., and in Comparative Example 8, pressure sintering was performed at a sintering temperature of 1300 ° C. The heating temperature of Sample 8 was 1300 ° C., and the liquid phase onset temperature of the mixed powder IrMn alloy was 1
Exceeding 253 ° C., a liquid phase was developed during pressure sintering and caused a reaction with the mold.

【0023】加圧焼結法としてHIP法を用いた場合
は、原料粉末を軟鋼製の容器に充填した後、軟鋼製容器
内を真空引きし、さらに400℃まで加熱した後5時間
放置し原料粉末の脱気処理を行った。脱気処理完了後、
軟鋼製容器を密封し、容器をHIP装置内に入れ、圧力
1000〜1300Kgf/cm2、温度1050〜1
230℃で加圧焼結を行った。
When the HIP method is used as the pressure sintering method, the raw material powder is filled in a mild steel container, the inside of the mild steel container is evacuated, heated to 400 ° C., and left for 5 hours. The powder was degassed. After the degassing process is completed,
The container made of mild steel is sealed, and the container is placed in a HIP device, at a pressure of 1000 to 1300 Kgf / cm 2 and a temperature of 1050 to 1
Pressure sintering was performed at 230 ° C.

【0024】比較例の試料9では、真空溶解、鋳造によ
り表記の組成のインゴットを作製し、これをハンマーに
より適当な大きさに砕いた後、ディスクミルを用いて平
均粒径50μmまで粉砕を行った。なお、粉砕中は粉末
の酸化を防ぐため、ディスクミル容器内を真空引きした
後、内部をArガスで置換して、不活性ガス雰囲気にし
た。以上のようにして得たIrMn合金粉末は、HIP法を用
いて加圧焼結を行った。加圧焼結条件は圧力1300K
g/cm2,温度1200℃である。比較例10では、
真空鋳造法を用いてIrMn合金の作製を行った。上記のよ
うに作成した素材は、相対密度、酸素含有量、抗折強度
を測定するとともに、スパッタ放電安定性、薄膜組成、
磁気特性評価およびスパッタ時の割れの発生状況を評価
するため、スパッタリングターゲットを機械加工して作
成した。作成したターゲットはスパッタリング装置に装
着し、Arガス圧5×10-3Torr、ターゲットへの
直流印可電力15W/cm2の条件で直流スパッタを行
って、膜厚1000Åの薄膜組成分析用の試料を作成
し、薄膜組成をEPMAを用いて分析を行った。
In sample 9 of the comparative example, an ingot having the indicated composition was prepared by vacuum melting and casting, crushed into an appropriate size with a hammer, and crushed to an average particle size of 50 μm using a disk mill. Was. During the pulverization, in order to prevent the powder from being oxidized, the inside of the disk mill container was evacuated, and then the inside was replaced with Ar gas to make an inert gas atmosphere. The IrMn alloy powder obtained as described above was subjected to pressure sintering using the HIP method. Pressure sintering conditions are pressure 1300K
g / cm 2 , temperature 1200 ° C. In Comparative Example 10,
IrMn alloy was prepared by vacuum casting. The material prepared as described above, while measuring the relative density, oxygen content, bending strength, sputter discharge stability, thin film composition,
In order to evaluate the magnetic properties and the state of occurrence of cracks during sputtering, a sputtering target was machined and created. The prepared target was mounted on a sputtering apparatus, and subjected to DC sputtering under the conditions of an Ar gas pressure of 5 × 10 −3 Torr and a DC application power of 15 W / cm 2 to obtain a thin film composition analysis sample having a film thickness of 1000 mm. The prepared thin film composition was analyzed using EPMA.

【0025】磁気特性特性の評価については、同一スパ
ッタチャンバー内でシリコン基板上に、純Co膜を25
Å成膜を行った後、前記のスッハ゜タ条件でNiMn系反強磁性
合金膜を200Å成膜をした後、IrMn合金膜の酸化を防
止するため、Taを50Å成膜し、交換結合磁界測定用の
薄膜試料を作成した。作成した試料は振動試料型磁力計
を用いて交換結合の測定を行った。スパッタ時の放電安
定性、及びターゲットの割れの発生状況の評価は、Arガ
ス圧5×10-3Torr、ターゲットへの直流印加電力20
W/cm2の条件で5時間連続してスパッタ放電を行っ
て、スパッタ放電時の異常放電発生回数をアーキングモ
ニターでカウントすると同時に、試験後にターゲット表
面の観察を割れの有無を調査した。
For the evaluation of the magnetic characteristics, a pure Co film was formed on a silicon substrate in the same sputtering chamber.
After the film formation, a NiMn-based antiferromagnetic alloy film was formed under the above-mentioned sputtering conditions for 200 mm, and then a Ta film was formed at a thickness of 50 mm to prevent oxidation of the IrMn alloy film. Was prepared. The prepared sample was subjected to exchange coupling measurement using a vibrating sample magnetometer. The evaluation of the discharge stability at the time of sputtering and the occurrence of cracks in the target were performed under the conditions of an Ar gas pressure of 5 × 10 −3 Torr and a DC applied power of 20 to the target.
Sputter discharge was performed continuously for 5 hours under the condition of W / cm 2, and the number of abnormal discharges generated during the sputter discharge was counted by an arcing monitor. At the same time, after the test, the target surface was examined for cracks.

【0026】評価結果を纏めて表2示す。本発明は何れ
の試料も90%以上の良好な相対密度、含有酸素量25
00ppm以下、16Kg/cm2以上の抗折強度を有
しているのに対し、比較例である試料7、試料9は80
%台と相対密度が低く、また含有酸素量も4500pp
m以上と非常に多い事が分かる。また抗折強度も6kg
/cm2以下と非常に脆くなっていることが判明した。
真空鋳造法で作成した試料10に関しては相対密度、含
有酸素量とも良好であったが、抗折強度は9Kg/cm
2と低い値を示した。なお、試料8は焼結中に液相を生
じたため評価することはできなかった。
Table 2 summarizes the evaluation results. In the present invention, each sample has a good relative density of 90% or more and an oxygen content of 25%.
Samples 7 and 9 which are comparative examples have a bending strength of not more than 00 ppm and not less than 16 kg / cm 2 ,
% And the relative density is low, and the oxygen content is 4500pp
It can be seen that the number is as large as m or more. The bending strength is 6kg
/ Cm 2 or less, which was very brittle.
Although the relative density and the oxygen content were good for the sample 10 prepared by the vacuum casting method, the transverse rupture strength was 9 kg / cm.
It showed a low value of 2 . Note that Sample 8 could not be evaluated because a liquid phase was generated during sintering.

【0027】[0027]

【表2】 [Table 2]

【0028】交換結合磁界の結果について、薄膜組成の
近い本発明の試料2と比較例の9の結果を比較すると、
ほぼ同じ薄膜組成であるにも拘わらず本発明の400Oe
に対し、130Oeと低くなり、本発明のターゲットで作
成した薄膜は良好な交換結合磁界を有することが分か
る。
With respect to the result of the exchange coupling magnetic field, when the result of Sample 2 of the present invention having a similar thin film composition and the result of Comparative Example 9 are compared,
Despite having almost the same thin film composition, 400 Oe
On the other hand, it is as low as 130 Oe, which indicates that the thin film formed with the target of the present invention has a good exchange coupling magnetic field.

【0029】異常放電回数の評価、及びスパッタ後の割
れの発生状況に関しては、本発明のターゲットの異常放
電発生回数は1分当たり1回以下の非常に低い値でか
つ、試験後ターゲットに割れの発生は無かったが、相対
密度が低く、かつ含有酸素量も多い比較例の試料9は1
分当たり5回と異常放電回数も多く、連続放電開始後1
時間経過した後、ターゲットに割れを生じた。比較例の
10については、安定した試験の途中の段階までは安定
したスパッタ放電が継続したが、連続放電開始後2時間
でターゲットに割れを生じた。
With respect to the evaluation of the number of abnormal discharges and the state of occurrence of cracks after sputtering, the number of abnormal discharges of the target of the present invention is a very low value of 1 or less per minute, and the target after the test has cracks. Although no generation occurred, Sample 9 of Comparative Example having a low relative density and a high oxygen content contained 1
The number of abnormal discharges is also high at 5 times per minute.
After the passage of time, the target cracked. In Comparative Example 10, stable sputter discharge continued until the middle of the stable test, but cracks occurred in the target 2 hours after the start of continuous discharge.

【0030】(実施例2) 実施例2を表3に示す。実
施例2では、Ir粉末、Mn粉末以外に第三元素、第四元
素を添加するため、純金属粉末、あるいは、それらの合
金粉末を原料粉末として使用した。ホットプレス、HIP
による加圧焼結、及びターゲットの機械加工は実施例1
に準じて行っている。なお、試料19は加圧焼結中に液
相を生じ良好な燒結体を得ることは出来なかった。
(Example 2) Table 3 shows Example 2. In Example 2, a pure metal powder or an alloy powder thereof was used as a raw material powder to add a third element and a fourth element in addition to the Ir powder and the Mn powder. Hot press, HIP
Pressure sintering and machining of the target in Example 1
We go according to. In Sample 19, a liquid phase was formed during pressure sintering, and a good sintered body could not be obtained.

【0031】[0031]

【表3】 [Table 3]

【0032】実施例2の評価結果を表4に示す。本発明
のターゲットはいずれの試料も90%以上の相対密度を
有し、かつ抗折強度、薄膜組成、スパッタ放電安定性、
ターゲットの割れ等、全ての点で良好な特性を有するの
に対し、比較例の試料は、何らかの点で問題を有するこ
とが分かる。さらに、薄膜組成がほぼ等しい試料12と
比較例24の交換結合磁界について見てみると、本発明
の試料12が400Oeもの値を示しているのに対し、比
較例の24は190Oeと半分以下の値示しておらず本発
明のターゲットをIrMn系合金反強磁性膜の成膜に使用す
る良好な磁気特性が得られることがわかる。作製した試
料に電流供給端子を設け、磁界検出素子を形成した。低
磁界の信号で十分大きな信号を得ることができ本発明を
実施すれば、従来にない高感度な磁界検出センサを提供
可能となる。これは記録密度2〜3Gbit/in2以上の磁気抵
抗効果型磁気ヘッドの検出部を構成できることは、以上
の検討結果より明らかである。
Table 4 shows the evaluation results of Example 2. The target of the present invention has a relative density of 90% or more for each sample, and has a transverse rupture strength, thin film composition, sputter discharge stability,
It can be seen that the sample of the comparative example has a problem in some respects, while having good characteristics in all respects such as cracking of the target. Furthermore, looking at the exchange coupling magnetic field of the sample 12 and the comparative example 24 having substantially the same thin film composition, the sample 12 of the present invention shows a value of 400 Oe, while the comparative example 24 has a value of 190 Oe, which is less than half. No value is shown, indicating that good magnetic properties can be obtained when the target of the present invention is used for forming an IrMn-based alloy antiferromagnetic film. A current supply terminal was provided on the manufactured sample to form a magnetic field detecting element. If a sufficiently large signal can be obtained with a signal of a low magnetic field and the present invention is implemented, a highly sensitive magnetic field detection sensor which has not been available in the past can be provided. It is clear from the above examination results that this can constitute a detecting section of a magnetoresistive magnetic head having a recording density of 2 to 3 Gbit / in 2 or more.

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【発明の効果】IrMn合金、あるいはIrMnFe合
金ターゲットの製造に際し、その組織を複合組織とする
事で機械加工性にすぐれ、またターゲットとして使用し
た場合の放電安定性が良好で放電時の熱応力によっても
割れを生じ難い反強磁性合金成膜用ターゲットが得られ
る。また、高い交換結合力を持つ磁気抵抗効果膜を作製
でき、感度の良好な磁気ヘッド等の検出素子を提供する
ことができる。
According to the present invention, when manufacturing an IrMn alloy or IrMnFe alloy target, by forming the structure as a composite structure, the workability is excellent, and when used as a target, the discharge stability is good and the thermal stress at the time of discharge is high. Thus, it is possible to obtain an antiferromagnetic alloy film-forming target that hardly causes cracks. Further, a magnetoresistive film having a high exchange coupling force can be manufactured, and a detection element such as a magnetic head with good sensitivity can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // G11B 5/39 G11B 5/39 H01L 43/12 H01L 43/12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI // G11B 5/39 G11B 5/39 H01L 43/12 H01L 43/12

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 組織中にIrが存在し、このIrはIrMn合金
を介して分散されていることを特徴とするIrMn系合金成
膜用ターゲット。
1. An IrMn-based alloy film-forming target, characterized in that Ir exists in the structure, and the Ir is dispersed via an IrMn alloy.
【請求項2】 請求項1において、前記IrとIrMn合金に
はそれぞれIr相およびIrMn合金相を有すると共に、前記
Ir相がIrMn合金相によって接合されていることを特徴と
するIrMn系合金成膜用ターゲット。
2. The method according to claim 1, wherein the Ir and IrMn alloys have an Ir phase and an IrMn alloy phase, respectively.
An IrMn-based alloy film forming target, wherein the Ir phase is joined by an IrMn alloy phase.
【請求項3】 組織中にIrが存在し、IrMn合金を介して
分散されているIrMn系合金成膜用ターゲットにおいて、
Fe、Ni、Cu、Ta、Hf、Pd、Ti、Nb、Cr、W、Zr、Mo、R
e、Co、Ru、Ptの群から選ばれた少なくとも1種が前記I
rMn合金もしくはIrMn合金相に含有されることを特徴と
するIrMn系合金成膜用ターゲット。
3. An IrMn-based alloy film-forming target in which Ir is present in a structure and dispersed through an IrMn alloy,
Fe, Ni, Cu, Ta, Hf, Pd, Ti, Nb, Cr, W, Zr, Mo, R
e, Co, Ru, at least one selected from the group consisting of Pt
An IrMn-based alloy film forming target, which is contained in an rMn alloy or an IrMn alloy phase.
【請求項4】 請求項3において、組織中に少なくとも
Fe相、FeMn相あるいはIr相のいずれか1つ以上が存在す
ることを特徴とするIrMn系合金成膜用ターゲット。
4. The method according to claim 3, wherein at least
An IrMn-based alloy film forming target, wherein at least one of Fe phase, FeMn phase and Ir phase is present.
【請求項5】 請求項1〜4のいずれかにおいて、抗折
強度が15kg/cm2以上を有することを特徴とするIr
Mn系合金成膜用ターゲット。
5. The Ir according to claim 1, wherein the transverse rupture strength is 15 kg / cm 2 or more.
Mn-based alloy deposition target.
【請求項6】 請求項5において、スパッタ放電時の熱
応力等による割れが発生しないかもしくは発生しても成
膜組成に実質的に影響を与えないことを特徴とするIrMn
系合金成膜用ターゲット。
6. The IrMn according to claim 5, wherein cracks due to thermal stress or the like during sputter discharge do not occur or do not substantially affect the film forming composition.
System alloy film formation target.
【請求項7】 請求項1〜6のいずれかにおいて、含有
酸素量が3000ppm以下であることを特徴とするIrMn系
合金成膜用ターゲット。
7. The IrMn-based alloy film-forming target according to claim 1, wherein the oxygen content is 3000 ppm or less.
【請求項8】 請求項1〜4のいずれかにおいて、90%
以上の相対密度を有することを特徴とするIrMn系合金成
膜用ターゲット。
8. The method according to claim 1, wherein 90%
An IrMn-based alloy film formation target having the above relative density.
【請求項9】 請求項7において、スパッタリング等の
成膜時に前記ターゲット表面に存在する主としてMn等の
酸化物による絶縁性残留物が、空間電荷をトラップして
プラズマ形成に大きな影響のない程度に抑制されている
ことを特徴とするIrMn系合金成膜用ターゲット。
9. The method according to claim 7, wherein insulating residues mainly due to oxides such as Mn existing on the surface of the target during film formation by sputtering or the like trap space charges and do not significantly affect plasma formation. An IrMn-based alloy film formation target characterized in that it is suppressed.
【請求項10】 請求項7または8のいずれかにおい
て、成膜時の異常放電の発生頻度を低く抑えるように酸
化物が制御されていることを特徴とするIrMn系合金成膜
用ターゲット。
10. The IrMn-based alloy film forming target according to claim 7, wherein the oxide is controlled so as to suppress the frequency of occurrence of abnormal discharge during film formation.
【請求項11】 所望量配合したIrMn合金粉末を液相発
現温度より低い温度で加圧焼結する工程を含むことを特
徴とするIrMn成膜用ターゲットの製造方法。
11. A method for producing an IrMn film-forming target, comprising a step of pressure-sintering IrMn alloy powder mixed in a desired amount at a temperature lower than a liquid phase onset temperature.
【請求項12】 Ir粉末、Mn粉末、Mn−X合金粉末ある
いはX粉末、(XはFe、Ni、Cu、Ta、Hf、Pd、Ti、Nb、
Cr、W、Zr、Mo、Re、Co、Ru、Ptの群から選ばれた少な
くとも1種)を1または2種以上配合した後、混合する
工程を経て、混合粉末の液相発現温度より低い温度で加
圧焼結を行うを工程を含むことを特徴とするIrMn成膜用
ターゲットの製造方法。
12. Ir powder, Mn powder, Mn-X alloy powder or X powder, wherein X is Fe, Ni, Cu, Ta, Hf, Pd, Ti, Nb,
At least one selected from the group consisting of Cr, W, Zr, Mo, Re, Co, Ru, and Pt), and after blending one or more of them, a step of mixing is performed to lower the liquid phase onset temperature of the mixed powder. A method for producing an IrMn film-forming target, comprising a step of performing pressure sintering at a temperature.
【請求項13】 請求項11または12のいずれかにお
いて、前記加圧焼結温度は液相発現温度の10〜200
℃低いことを特徴とするIrMn成膜用ターゲットの製造方
法。
13. The pressure sintering temperature according to claim 11, wherein the pressure sintering temperature is 10 to 200 of a liquid phase onset temperature.
A method for manufacturing an IrMn film-forming target, characterized in that the temperature is lower by ℃.
【請求項14】 組織中にIr相が存在し、IrMn合金で接
合されているIrMn系合金成膜用ターゲットを用いて形成
されたことを特徴とする反強磁性膜。
14. An antiferromagnetic film formed by using an IrMn-based alloy film-forming target that has an Ir phase in its structure and is joined by an IrMn alloy.
【請求項15】 IrMn合金にFe、Ni、Cu、Ta、Hf、Pd、
Ti、Nb、Cr、W、Zr、Mo、Re、Co、Ru、Ptの群から選ば
れた少なくとも1種がIrMn合金に含有されるIrMn系多元
合金において、組織中にIr相が存在し、このIr相は前記
IrMn合金相あるいはIrMn多元合金相で接合されているIr
Mn系合金成膜用ターゲットを用いて成膜されたことを特
徴とする反強磁性膜。
15. An IrMn alloy containing Fe, Ni, Cu, Ta, Hf, Pd,
Ti, Nb, Cr, W, Zr, Mo, Re, Co, Ru, at least one selected from the group of Pt in an IrMn-based multi-component alloy contained in the IrMn alloy, an Ir phase is present in the structure, This Ir phase is
Ir joined by IrMn alloy phase or IrMn multi-component alloy phase
An antiferromagnetic film formed using a Mn-based alloy film forming target.
【請求項16】 請求項14または15のいずれかにお
いて、強磁性体膜と積層して交換結合力を生じさせたこ
とを特徴とする反強磁性膜。
16. An antiferromagnetic film according to claim 14, wherein an exchange coupling force is generated by laminating with the ferromagnetic film.
【請求項17】 請求項16において、10kA/m以上の交
換結合力を持たせたことを特徴とする反強磁性膜。
17. The antiferromagnetic film according to claim 16, wherein the exchange coupling force is 10 kA / m or more.
【請求項18】 請求項14〜17のいずれかにおい
て、前記反強磁性膜に電流供給端子を設け、磁界検出素
子の機能を付与したことを特徴とする反強磁性膜。
18. An antiferromagnetic film according to claim 14, wherein a current supply terminal is provided on said antiferromagnetic film to provide a function of a magnetic field detecting element.
JP05166998A 1998-03-04 1998-03-04 IrMn alloy target for film formation and antiferromagnetic film using the same Expired - Fee Related JP4002659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05166998A JP4002659B2 (en) 1998-03-04 1998-03-04 IrMn alloy target for film formation and antiferromagnetic film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05166998A JP4002659B2 (en) 1998-03-04 1998-03-04 IrMn alloy target for film formation and antiferromagnetic film using the same

Publications (2)

Publication Number Publication Date
JPH11246967A true JPH11246967A (en) 1999-09-14
JP4002659B2 JP4002659B2 (en) 2007-11-07

Family

ID=12893299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05166998A Expired - Fee Related JP4002659B2 (en) 1998-03-04 1998-03-04 IrMn alloy target for film formation and antiferromagnetic film using the same

Country Status (1)

Country Link
JP (1) JP4002659B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297654A (en) * 2006-04-28 2007-11-15 Ulvac Material Kk Sputtering target, joint type sputtering target and method for producing the same
US8911528B2 (en) 2005-10-20 2014-12-16 H.C. Starck Inc. Methods of making molybdenum titanium sputtering plates and targets
US9017762B2 (en) 2010-06-30 2015-04-28 H.C. Starck, Inc. Method of making molybdenum-containing targets comprising three metal elements
US9150955B2 (en) 2010-06-30 2015-10-06 H.C. Starck Inc. Method of making molybdenum containing targets comprising molybdenum, titanium, and tantalum or chromium
US9334562B2 (en) 2011-05-10 2016-05-10 H.C. Starck Inc. Multi-block sputtering target and associated methods and articles
US9334565B2 (en) 2012-05-09 2016-05-10 H.C. Starck Inc. Multi-block sputtering target with interface portions and associated methods and articles

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911528B2 (en) 2005-10-20 2014-12-16 H.C. Starck Inc. Methods of making molybdenum titanium sputtering plates and targets
JP2007297654A (en) * 2006-04-28 2007-11-15 Ulvac Material Kk Sputtering target, joint type sputtering target and method for producing the same
TWI403600B (en) * 2006-04-28 2013-08-01 Ulvac Inc A sputtering target as well as a joined type sputtering target assembly and a method of making such a joined type sputtering target assembly
US9017762B2 (en) 2010-06-30 2015-04-28 H.C. Starck, Inc. Method of making molybdenum-containing targets comprising three metal elements
US9150955B2 (en) 2010-06-30 2015-10-06 H.C. Starck Inc. Method of making molybdenum containing targets comprising molybdenum, titanium, and tantalum or chromium
US9837253B2 (en) 2010-06-30 2017-12-05 H.C. Starck Inc. Molybdenum containing targets for touch screen device
US9945023B2 (en) 2010-06-30 2018-04-17 H.C. Starck, Inc. Touch screen device comprising Mo-based film layer and methods thereof
US9334562B2 (en) 2011-05-10 2016-05-10 H.C. Starck Inc. Multi-block sputtering target and associated methods and articles
US9922808B2 (en) 2011-05-10 2018-03-20 H.C. Starck Inc. Multi-block sputtering target and associated methods and articles
US9334565B2 (en) 2012-05-09 2016-05-10 H.C. Starck Inc. Multi-block sputtering target with interface portions and associated methods and articles
US10643827B2 (en) 2012-05-09 2020-05-05 H.C. Starck Inc. Multi-block sputtering target with interface portions and associated methods and articles

Also Published As

Publication number Publication date
JP4002659B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP3386747B2 (en) Sputtering target
TWI405862B (en) Alloy and sputtering target material for soft-magnetic film layer in perpendicular magnetic recording medium, and method for producing the same
US20130213803A1 (en) Fe-Pt-Based Sputtering Target with Dispersed C Grains
US20080083616A1 (en) Co-Fe-Zr BASED ALLOY SPUTTERING TARGET MATERIAL AND PROCESS FOR PRODUCTION THEREOF
WO2004009865A1 (en) FABRICATION OF B/C/N/O/Si DOPED SPUTTERING TARGETS
US20030228238A1 (en) High-PTF sputtering targets and method of manufacturing
JP3544293B2 (en) Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film
CN104221085A (en) Sputtering target for forming magnetic recording film and process for producing same
US7780826B2 (en) Cr-doped FeCoB based target material and method for producing the same
KR0129795B1 (en) Target for magneto optical recording media &amp; method for production the same
JP5370917B2 (en) Method for producing Fe-Co-Ni alloy sputtering target material
JP4002659B2 (en) IrMn alloy target for film formation and antiferromagnetic film using the same
JP2533922B2 (en) Sintered target member and manufacturing method thereof
JP3662251B2 (en) Sputter target made of magneto-optic alloy
JP5944580B2 (en) Sputtering target
JP3076141B2 (en) Magnetic thin film target material and method of manufacturing the same, Fe-MC soft magnetic film and method of manufacturing the same, and magnetic head and magnetic recording / reproducing apparatus using the same
JPH02107762A (en) Alloy target for magneto-optical recording
JP3525439B2 (en) Target member and method of manufacturing the same
JPS63274764A (en) Alloy target for magneto-optical recording
JP7274361B2 (en) Alloy for seed layer of magnetic recording media
TWI681067B (en) Sputtering target, magnetic film and manufacturing method of magnetic film
JP6845069B2 (en) Sputtering target
WO2020053972A1 (en) Sputtering target, magnetic film, and method for manufacturing magnetic film
JP2000038660A (en) CoPt SPUTTERING TARGET, ITS PRODUCTION AND CoPt-MAGNETIC RECORDING MEDIUM
JP3891549B2 (en) Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees