JPH0610083B2 - Method for producing easily sintered alumina - Google Patents

Method for producing easily sintered alumina

Info

Publication number
JPH0610083B2
JPH0610083B2 JP1228687A JP22868789A JPH0610083B2 JP H0610083 B2 JPH0610083 B2 JP H0610083B2 JP 1228687 A JP1228687 A JP 1228687A JP 22868789 A JP22868789 A JP 22868789A JP H0610083 B2 JPH0610083 B2 JP H0610083B2
Authority
JP
Japan
Prior art keywords
alumina
aluminum hydroxide
log
boehmite
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1228687A
Other languages
Japanese (ja)
Other versions
JPH0393617A (en
Inventor
康則 須田
坂本  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1228687A priority Critical patent/JPH0610083B2/en
Publication of JPH0393617A publication Critical patent/JPH0393617A/en
Publication of JPH0610083B2 publication Critical patent/JPH0610083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は易焼結アルミナの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a method for producing easily sinterable alumina.

則ち1400℃以下の焼成温度で焼結嵩密度が3.90
g/cm3以上の焼結体が得られるアルミナの製造方法に
関する。
That is, the sintered bulk density is 3.90 at a firing temperature of 1400 ° C. or lower.
The present invention relates to a method for producing alumina, which yields a sintered body of g / cm 3 or more.

〔従来の技術〕[Conventional technology]

従来よりα−アルミナは耐熱性、耐蝕性,耐摩耗性、電
気絶縁性、熱伝導性等の物性に優れているため半導体集
積回路基板、切削工具、耐摩耗軸受け等の焼結体原料と
して使用されている。近年これらの用途は技術的進歩が
著しく、原料アルミナに求められる品質も年々厳しくな
っている。
Since α-alumina has been excellent in physical properties such as heat resistance, corrosion resistance, wear resistance, electrical insulation, and thermal conductivity, it has been used as a sintered material for semiconductor integrated circuit boards, cutting tools, wear resistant bearings, etc. Has been done. In recent years, these applications have made remarkable technological advances, and the quality required for the raw material alumina has become stricter year by year.

焼結体用原料に要求される物性として特に重要な事はα
−アルミナ粉末の一次粒子径が小さく、強い凝集粒子が
無く形状が均一で低温で焼結出来る事である。この様な
物性を具備するアルミナを原料に用いた場合に得られる
焼結体は焼結密度、機械的強度に優れるとともに低温で
の焼結が可能となり焼成コストは勿論焼成設備の建設費
も低減することができる等の利点を有する。
The most important physical property required for the raw material for the sintered body is α
-The primary particle size of the alumina powder is small, there are no strong agglomerated particles, the shape is uniform, and it can be sintered at low temperature. The sintered body obtained when alumina having such physical properties is used as a raw material has excellent sintering density and mechanical strength and can be sintered at a low temperature, which reduces the firing cost as well as the construction cost of the firing facility. It has the advantage that it can be done.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら従来最も工業的に採用されているバイヤー
法により得られるアルミナは、平均一次粒子が数μm〜
数十μmで長時間の粉砕に依っても1μmの平均粒子径
のものは得難く、また得られたアルミナ粉末は粉砕装置
より混入する不純物による純度低下や結晶形骸破砕面の
非平滑性の故所望する物性の改良効果は得難かった。ま
た、アルミニウムアルコキシド等のアルミニウム化合物
を加水分解しアルミナ水和物となし、これを乾燥・焼成
してα−アルミナを得る方法もあるが、この方法に於い
ては、加水分解により平均一次粒子径の小さいアルミナ
水和物は得られるものの、脱水乾燥時に凝集・固化を生
じ、これを焼成後粉砕しても粒子形状が均一で平均粒子
径の小さい所望とするα−アルミナ粉末を得る事は出来
ない。
However, in the alumina obtained by the Bayer method which has been most industrially adopted so far, the average primary particle is several μm to
It is difficult to obtain particles with an average particle size of 1 μm even after pulverizing for several tens of μm for a long time, and the obtained alumina powder has a reduced purity due to impurities mixed in from the pulverizer and the non-smoothness of the crushed surface of the crystal form. It was difficult to obtain the desired effect of improving the physical properties. There is also a method of hydrolyzing an aluminum compound such as an aluminum alkoxide to form an alumina hydrate, and drying and firing this to obtain α-alumina. In this method, the average primary particle diameter by hydrolysis is Although a hydrated alumina hydrate having a small particle size can be obtained, the desired α-alumina powder having a uniform particle shape and a small average particle size cannot be obtained even if it is aggregated and solidified during dehydration drying and pulverized after firing. Absent.

更にベーマイトのコロイド溶液に種子としてα−アルミ
ナのコロイド溶液を混合し成形焼成することにより従来
よりも低い焼成温度で均質で緻密な焼結体が得られる事
が知られている(特開昭61−26554)。しかしな
がらこの方法はゲル状で成形するため乾燥・焼結時に於
ける成形体の収縮が大きく精密な成形体は得難いという
欠点を有する。それ故ゲル状物を乾燥・焼成後粉砕して
粉末を得、これを成形体原料粉末として使用する方法も
考えられるが、この方法により得られた粉末は乾燥・焼
成過程で粒子が凝集・結晶成長を生じる為か微粒粉末は
得られず、結果として均質で緻密な成形体は得られな
い。
Further, it is known that a homogenous and dense sintered body can be obtained at a lower firing temperature than before by mixing a colloidal solution of α-alumina as seeds with a colloidal solution of boehmite and firing the mixture (JP-A-61). -26554). However, this method has a drawback in that a molded body is largely shrunk at the time of drying and sintering because it is molded in a gel state, and it is difficult to obtain a precise molded body. Therefore, it is conceivable to dry and calcine the gel-like material to obtain a powder, and use this powder as a raw material powder for a molded body. However, the powder obtained by this method is agglomerated and crystallized during the drying and baking process. Fine particles may not be obtained, possibly because of the growth, and as a result, a homogeneous and dense compact cannot be obtained.

かかる状況に鑑み本発明者等は低い焼結温度で均質で緻
密な焼結体を得る事が出来る平均一次粒子径が小さく均
質な易焼結性アルミナ粉末を得るべく鋭意検討を行った
結果、従来のバイヤー法により得られたアルミナが焼結
性に劣るのは、アルミン酸アルカリの加水分解により得
られた水酸化アルミニウムを焼成してアルミナを得る過
程に於いて水酸化アルミニウムの一部が結晶性ベーマイ
トに転移してからα−アルミナに転移する部分が悪影響
を及ぼしているとの知見を持つに至り、本発明方法を完
成するに至った。
In view of such a situation, the present inventors have earnestly studied to obtain a uniform easily sinterable alumina powder having a small average primary particle diameter that can obtain a homogeneous and dense sintered body at a low sintering temperature, Alumina obtained by the conventional Bayer method is inferior in sinterability because a part of aluminum hydroxide crystallizes in the process of obtaining alumina by firing aluminum hydroxide obtained by hydrolysis of alkali aluminate. The inventors have come to the knowledge that the portion that transforms to the characteristic boehmite and then transforms to α-alumina has an adverse effect, and has completed the method of the present invention.

〔課題を解決するための手段〕 すなわち、本発明はアルミン酸アルカリを加水分解して
得られる水酸化アルミニウムを焼成してα−アルミナと
する際、ベーマイト相を経由するアルミナが全体の10
%以下となるように焼成することを特徴とする易焼結ア
ルミナ粉末の製造方法を提供するにある。
[Means for Solving the Problem] That is, according to the present invention, when aluminum hydroxide obtained by hydrolyzing an alkali aluminate is fired to form α-alumina, the total amount of alumina passing through the boehmite phase is 10%.
Another object of the present invention is to provide a method for producing a readily sinterable alumina powder, which is characterized in that it is fired so as to have a content of at most%.

そして、ベーマイト相を経由するアルミナが全体の10
%以下となるように焼成するには、通常の焼成方法則
ち、大気中で水酸化アルミニウムを焼成する場合におい
ては、平均粒子径d50が8μ以下であり、均等数nが、
次式 n>K/{log15−log(d50)} を満足する水酸化アルミニウムを、原料として通常水酸
化アルミニウムを焼成する温度で焼成すればよく、この
方法により易焼結アルミナが製造できる。
Then, the total amount of alumina passing through the boehmite phase is 10
%, The average particle size d 50 is 8 μm or less, and the uniform number n is
The following equation n> K / {log15-log (d 50)} aluminum hydroxide that satisfies, may be fired at a temperature of firing normally aluminum hydroxide as a raw material, sinterability alumina can be produced by this method.

また、減圧下で焼成すれば、上記の水酸化アルミニウム
よりも、相対的に大きな粒径の水酸化アルミニウムを原
料としても、同様な易焼結アルミナを製造できる。
Further, by firing under reduced pressure, similar easily sinterable alumina can be produced by using aluminum hydroxide having a particle size relatively larger than that of the above aluminum hydroxide as a raw material.

則ち、−600mmHg以上の高真空下で焼成する場合にお
いては、d50が20μ以下であり、均等数nが次式 n>K/{log30−log(d50)} を満足する水酸化アルミニウムを原料として焼成すれ
ば、ベーマイト相を経由するのは10%以下となり同様
な易焼結アルミナを製造できる。
That is, in the case of firing in a high vacuum of -600 mmHg or more, aluminum hydroxide having d 50 of 20 μ or less and an even number n satisfying the following expression n> K / {log30-log (d 50 )} If this is fired as a raw material, the proportion of the material passing through the boehmite phase is 10% or less, and a similar easily sinterable alumina can be manufactured.

均等数nは、粒度分布の均一性を表わす数値で、ロジン
・ラムラー線図にプロットした粒度分布のグラフの傾き
として得られる。ロジン・ラムラー線図は、粉体用の対
数確率紙で、日本粉体工業協会で入手できるが、粒子径
をD、ふるい上をR(%)とすれば、x軸とy軸にlog
Dとlog{log(100/R)}の目盛りをつけたものであ
る。
The uniform number n is a numerical value representing the uniformity of the particle size distribution, and is obtained as the slope of the graph of the particle size distribution plotted on the Rosin-Rammler diagram. The Rosin-Rammler diagram is a logarithmic probability paper for powders, which can be obtained from the Japan Powder Industry Association, but if the particle size is D and the sieve top is R (%), log on the x-axis and y-axis.
It is a scale with D and log {log (100 / R)}.

又、前記式で K=log{log(100/0.01)}− log{log(100/50)} =1.12345 である。In the above equation, K = log {log (100 / 0.01)}-log {log (100/50)} = 1.12345.

以下、本発明を更に詳細に説明する。Hereinafter, the present invention will be described in more detail.

通常バイヤー法で得られる水酸化アルミニウムは鉱物名
をギブサイトまたはハイドラルジライトと称されるアル
ミナ三水和物であり、有姿粒子径が30〜100μ程度
の粉末である。これらの水酸化アルミニウムを大気中で
通常の手法で焼成するとその一部はα−アルミナに相転
移する際、結晶性ベーマイトを経由する(電気化学 第
28巻 358〜364頁)。
Usually, aluminum hydroxide obtained by the Bayer method is an alumina trihydrate whose mineral name is gibbsite or hydrargillite, and is a powder having an apparent particle diameter of about 30 to 100 μm. When these aluminum hydroxides are fired in the air by a usual method, a part of them undergoes a phase transition to α-alumina through crystalline boehmite (Electrochemistry 28: 358-364).

この転移した割合は示差熱天秤による分析により容易に
測定可能である。即ち第1図に示す如く示差熱分析(D
TA)の吸熱ピークに該当する反応の中で、生成したベ
ーマイトが脱水して結晶水を失う温度領域に於ける重量
減少からベーマイトの量を算出しこれが元の試料のどの
程度の割合になるかを計算することができる。
The rate of this transition can be easily measured by analysis with a differential thermal balance. That is, as shown in FIG. 1, differential thermal analysis (D
In the reaction corresponding to the endothermic peak of (TA), the amount of boehmite is calculated from the weight reduction in the temperature range where the formed boehmite loses water of crystallization due to dehydration, and the ratio of this to the original sample is calculated. Can be calculated.

この様な方法で上記バイヤー法で得られた水酸化アルミ
ニウムについてベーマイト転移量を測定すると通常は2
5〜55%の値である。
When the boehmite transfer amount of aluminum hydroxide obtained by the above-mentioned Bayer method is measured by such a method, it is usually 2
It is a value of 5 to 55%.

本発明者等はこのベーマイト転移量が変化した場合に、
最終的に得られるα−アルミナの焼結特性が変化する現
象を詳細に検討した結果、意外にもベーマイト転移量が
ある水準以下になると焼結特性が大幅に改善せられる事
を発見し、本発明を完成するに至った。
The present inventors, when the amount of boehmite transfer changes,
As a result of detailed examination of the phenomenon in which the sintering characteristics of the finally obtained α-alumina change, it was discovered that when the boehmite transition amount falls below a certain level, the sintering characteristics are significantly improved. The invention was completed.

以下に本発明の基盤となった実験事実を述べる。苛性ソ
ーダ濃度160g/l、Al23濃度120g/lのア
ルミン酸ソーダ溶液に均等数n=3.8、平均粒子径d
50=0.52μの水酸化アルミニウム(昭和電光(株)
製微粒水酸化アルミニウムH−43)を種子として適当
量添加し、所定の温度で攪はん裡に保持したのち濾過洗
浄し第1表に示すように均等数nが約4で平均粒子径が
1.2〜40μの水酸化アルミニウムを得た。
The experimental facts on which the present invention is based will be described below. Sodium aluminate solution having a caustic soda concentration of 160 g / l and an Al 2 O 3 concentration of 120 g / l has an equal number n = 3.8 and an average particle diameter d.
50 = 0.52μ aluminum hydroxide (Showa Denko KK)
Finely divided aluminum hydroxide H-43) was added as a seed in an appropriate amount, and the mixture was kept stirring at a predetermined temperature and then washed by filtration. As shown in Table 1, the uniform number n was about 4 and the average particle size was about 4. 1.2 to 40 μ of aluminum hydroxide was obtained.

上記と同じ組成のアルミン酸ソーダ溶液を用い、三段の
析出槽と二段のサイクロン&シックナを組み合わせた種
子循環型析出設備により初期種子に上記H−43を用い
て析出を継続した。これにより、均等数nが約2で平均
粒子径が3〜40μの水酸化アルミニウムを得た。
Using a sodium aluminate solution having the same composition as described above, precipitation was continued using H-43 as the initial seeds by a seed circulation type precipitation equipment combining a three-stage precipitation tank and a two-stage cyclone & thickener. As a result, aluminum hydroxide having an even number n of about 2 and an average particle diameter of 3 to 40 μm was obtained.

これらの水酸化アルミニウムを理学電機(株)製示差熱
分析装置により大気雰囲気における加熱時のベーマイト
生成量及び−600mmHg雰囲気で加熱した場合のベーマ
イト生成量を測定した。結果は第1表に併記した。
The amount of boehmite produced when heated in an air atmosphere and the amount of boehmite produced when heated in an atmosphere of -600 mmHg were measured by a differential thermal analyzer manufactured by Rigaku Denki Co., Ltd. The results are also shown in Table 1.

また、これらの水酸化アルミニウムを特開昭55−14
0719を参考に以下の手順で処理しアルミナとし、そ
の焼結特性を比較した。
Further, these aluminum hydroxides are used as disclosed in JP-A-55-14.
With reference to No. 0719, alumina was treated by the following procedure, and the sintering characteristics were compared.

アルミナの調製方法 (1)雰囲気焼成炉により大気圧下、及び−600mmHg
減圧下で各水酸化ア ルミニウムを400℃、 2時間加熱する。
Alumina preparation method (1) Atmospheric pressure and -600mmHg
Each aluminum hydroxide is heated under reduced pressure at 400 ° C. for 2 hours.

(2)加熱処理物を1wt%のクエン酸溶液に200g/
lの濃度で懸濁し濾別 後温水にて洗浄し乾燥す
る。
(2) 200 g of the heat-treated product in a 1 wt% citric acid solution /
It is suspended at a concentration of 1 and separated by filtration, washed with warm water and dried.

(3)カンタル発熱体を用いた電気炉により大気圧下で
所定温度に2時間保持し、B ET比表面積が約1
0m2/gのα−アルミナとする。
(3) A BET specific surface area of about 1 is maintained at a predetermined temperature for 2 hours under atmospheric pressure by an electric furnace using a Kanthal heating element.
It is 0 m 2 / g of α-alumina.

(4)各焼成物を径300mm・長さ300mmの円筒型回
転ボールミルを 用い、ミル内に20mmφのアルミ
ナボール24Kgと試料アルミナ 2.4Kgを充填し
16時間粉砕処理を行う。
(4) Using a cylindrical rotary ball mill having a diameter of 300 mm and a length of 300 mm, 24 Kg of 20 mmφ alumina balls and 2.4 Kg of sample alumina are filled in each fired product and pulverized for 16 hours.

上記により調製された各粉砕アルミナに外割でパラフィ
ンを5%添加し充分混練後、7gを秤量し金型に入れ成
形圧力500Kg/cm2で成形する。これを脱脂後1400
℃で2時間保持した後、焼結嵩密度を測定した。測定結
果を第1表に示す。
To each pulverized alumina prepared as described above, 5% of paraffin is added by external splitting and thoroughly kneaded, and then 7 g is weighed and placed in a mold and molded at a molding pressure of 500 Kg / cm 2 . After degreasing this 1400
After holding at 0 ° C for 2 hours, the sintered bulk density was measured. The measurement results are shown in Table 1.

第1表よりわかるようにベーマイト転移量が10%以下
のものは焼結温度が1400℃と低くても、焼結体の嵩
密度が3.90g/cm3以上となり極めて焼結活性に富
むことがわかる。
As can be seen from Table 1, when the boehmite transition amount is 10% or less, the bulk density of the sintered body is 3.90 g / cm 3 or more and the sintering activity is extremely high even if the sintering temperature is as low as 1400 ° C. I understand.

ベーマイト転移量は水酸化アルミニウムの平均粒子径の
みによって規定はできずその均等数、焼成時の雰囲気に
より左右される事も明かである。均等数が大きい場合は
平均粒子径が比較的大きくてもベーマイト転移量は小さ
いが、均等数が小さいと平均粒子径が小さくともベーマ
イト転移量が大きくなる。また減圧下では全体的にベー
マイト転移量が減少し相対的に大きい粒子、低い均等数
でも1400℃における焼成嵩密度は高くなる。均等数
nの大小は、基本的には、水酸化アルミニウムの粗粒の
割合が影響している。具体的には原料の平均粒子径・均
等数と上記結果から大気雰囲気下の焼成では15μ、−
600mmHgに於ては30μ以上の粒径の粒子が殆ど存在
しない(例えば0.01%以下)事が必要である。
It is also apparent that the amount of boehmite transition cannot be regulated only by the average particle diameter of aluminum hydroxide, and that it depends on the uniform number and the atmosphere during firing. When the uniform number is large, the amount of boehmite transfer is small even if the average particle size is relatively large, but when the uniform number is small, the amount of boehmite transfer is large even if the average particle size is small. Further, under reduced pressure, the amount of boehmite transition is reduced as a whole, relatively large particles, and even if the number is low, the baked bulk density at 1400 ° C. increases. The size of the uniform number n is basically influenced by the proportion of coarse particles of aluminum hydroxide. Specifically, based on the average particle diameter and the uniform number of the raw materials and the above results, the firing in the air atmosphere was 15 μ, −
At 600 mmHg, it is necessary that almost no particles having a particle size of 30 μ or more exist (for example, 0.01% or less).

以上の結果から特許請求の範囲の記載の如く、アルミン
酸アルカリを加水分解して得られる水酸化アルミニウム
を焼成してアルミナを製造するプロセスに於て、水酸化
アルミニウムがアルミナに相転移する際、ベーマイト相
を経由するアルミナが全体の10%以下となるように焼
成することにより従来になく焼結特性に優れたアルミナ
を製造することが可能になった。そして、焼成雰囲気に
応じて原料に用いる水酸化アルミニウムの粒度分布を選
択する事により、上記条件が達成せられる。アルミナの
前駆体としては従来のバイヤー法またはその改良法とし
て既に商業生産工程が確立しているプロセスで製造した
水酸化アルミニウムが使用でき、アルミナの調製工程も
従来のプロセスが利用出来るので製造コストも安い。こ
の方法により製造されたアルミナは低温で充分な焼結体
が得られるので本発明は産業上極めて有益なものであ
る。以下に本発明の内容を実施例により詳細に説明する
が本発明の技術的範囲はこれに限定されるものではな
い。
From the above results, in the process for producing alumina by firing aluminum hydroxide obtained by hydrolyzing alkali aluminate as described in the claims, when aluminum hydroxide undergoes a phase transition to alumina, By firing so that the alumina passing through the boehmite phase is 10% or less of the whole, it has become possible to produce alumina having excellent sintering characteristics as never before. The above conditions can be achieved by selecting the particle size distribution of aluminum hydroxide used as a raw material according to the firing atmosphere. As the precursor of alumina, aluminum hydroxide manufactured by the conventional Bayer process or a process in which a commercial production process has already been established as an improved method can be used, and since the conventional process can be used for the preparation process of alumina, the manufacturing cost is also high. cheap. Since the alumina produced by this method can obtain a sufficient sintered body at a low temperature, the present invention is extremely useful industrially. Hereinafter, the content of the present invention will be described in detail with reference to Examples, but the technical scope of the present invention is not limited thereto.

〔実施例〕〔Example〕

実施例1 バイヤー法で得られた水酸化アルミニウムを工業用苛性
ソーダに溶解した後、希釈・清澄濾過を行いNa2O:
Al23モル比1.5、Na2O120g/lのアルミ
ン酸ソーダ溶液を調製した。この液に平均粒子径1.0
μ、均等数3.8の水酸化アルミニウム(昭和電光
(株)製 微粒水酸化アルミニウム H−42)を3g
/l添加し、50℃の温度で48時間攪拌裡に保持し有
姿平均粒子径24μ、均等数3.9の凝集した水酸化ア
ルミニウムを析出させた。次いでこれを濾過・洗浄後パ
ドルドライヤーで混練しつつ乾燥したところ凝集が解け
て平均粒子径6.8μ、均等数3.7の水酸化アルミニ
ウムが得られた。このものの大気圧下のベーマイト転移
率は8.3%であった。これをロータリーキルンで50
0℃で焼成後、温水に懸濁し再度濾過・洗浄した後ロー
タリーキルンで1150℃滞留時間1時間で焼成したと
ころ、BET比表面積9.8m2/g、α化率98%のア
ルミナが得られた。これを既述の方法による粉砕及び焼
結試験に供したところ1400℃で焼結嵩密度3.95
g/cm3の焼結体が得られた。
Example 1 Aluminum hydroxide obtained by the Bayer method was dissolved in industrial caustic soda, and diluted and clarified by filtration to obtain Na 2 O:
Al 2 O 3 molar ratio of 1.5, was prepared sodium aluminate solution Na 2 O120g / l. This liquid has an average particle size of 1.0
3 g of aluminum hydroxide (microparticle aluminum hydroxide H-42 manufactured by Showa Denko Co., Ltd.) having a uniform number of 3.8
/ L was added and the mixture was kept at 50 ° C. for 48 hours with stirring to precipitate agglomerated aluminum hydroxide having a mean particle size of 24 μm and a uniform number of 3.9. Next, this was filtered and washed, and then kneaded with a paddle dryer and dried, whereby the agglomeration was released and aluminum hydroxide having an average particle diameter of 6.8 μ and an equal number of 3.7 was obtained. This product had a boehmite transition rate under atmospheric pressure of 8.3%. 50 in a rotary kiln
After calcination at 0 ° C., suspension in warm water, filtration and washing again, and calcination with a rotary kiln at a residence time of 1150 ° C. for 1 hour, alumina having a BET specific surface area of 9.8 m 2 / g and an α conversion of 98% was obtained. . When this was subjected to pulverization and a sintering test by the method described above, the sintered bulk density was 3.95 at 1400 ° C.
A sintered body of g / cm 3 was obtained.

比較例1 実施例1で析出させた水酸化アルミニウムを濾過・洗浄
後工業用水に懸濁し噴霧乾燥したところ有姿平均粒子径
22μ、均等数3.4の凝集した水酸化アルミニウムが
得られた。このものの大気圧下のベーマイト転移率は2
1%であった。これをロータリーキルンで500℃で焼
成後、温水に懸濁し再度濾過・洗浄した後ロータリーキ
ルンで1180℃滞留時間1時間で焼成したところ、B
ET比表面積10.2m2/g、α化率98%のアルミナ
が得られた。これを既述の方法による粉砕及び焼結試験
に供したところ1400℃で焼結嵩密度3.66g/cm
3の焼結体が得られた。
Comparative Example 1 The aluminum hydroxide precipitated in Example 1 was filtered, washed, suspended in industrial water, and spray-dried to obtain aggregated aluminum hydroxide having an average particle size of 22 μ and a uniform number of 3.4. This product has a boehmite transition rate of 2 under atmospheric pressure.
It was 1%. This was baked in a rotary kiln at 500 ° C, suspended in warm water, filtered and washed again, and then baked in a rotary kiln at a residence time of 1180 ° C for 1 hour.
Alumina having an ET specific surface area of 10.2 m 2 / g and an α conversion of 98% was obtained. When this was subjected to pulverization and a sintering test by the method described above, it had a sintered bulk density of 3.66 g / cm at 1400 ° C.
A sintered body of 3 was obtained.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明の方法で製造したアルミナ
は、1400℃における焼結嵩密度が、3.90g/cm
3以上と高く、易焼結性にすぐれている。
As described above, the alumina produced by the method of the present invention has a sintered bulk density at 1400 ° C. of 3.90 g / cm 3.
It is as high as 3 or more and has excellent sinterability.

【図面の簡単な説明】[Brief description of drawings]

第1図は、水酸化アルミニウムの焼成過程での吸熱及び
重量減の状態を示すグラフである。
FIG. 1 is a graph showing the state of heat absorption and weight loss during the baking process of aluminum hydroxide.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】アルミン酸アルカリを加水分解して得られ
る水酸化アルミニウムを焼成してアルミナを製造するプ
ロセスに於て、水酸化アルミニウムがアルミナに相転移
する際、ベーマイト相を経由するアルミナが全体の10
%以下となるように焼成する事を特徴とする易焼結アル
ミナの製造方法。
1. A process for producing alumina by calcining aluminum hydroxide obtained by hydrolyzing alkali aluminate, in which aluminum hydroxide passes through the boehmite phase when the aluminum hydroxide undergoes a phase transition to alumina. Of 10
A method for producing easily sinterable alumina, which comprises firing so that the content becomes less than or equal to%.
【請求項2】平均粒子径d50が8μ以下であり、均等数
nが次式 n>K/{log15−log(d50)} 但しK=log{log(100/0.01)}− log{log(100/50)} =1.12345 を満足する水酸化アルミニウムを、通常の焼成方法で焼
成することを特徴とする請求項1記載の易焼結アルミナ
の製造方法。
2. The average particle diameter d 50 is 8 μm or less, and the uniform number n is the following expression n> K / {log15−log (d 50 )} where K = log {log (100 / 0.01)} − log { 2. The method for producing easily sinterable alumina according to claim 1, wherein aluminum hydroxide satisfying log (100/50) = 1.12345 is fired by a usual firing method.
【請求項3】平均粒子径d50が20μ以下であり均等数
nが次式 n>1.12345/{log30−log(d50)} を満足する水酸化アルミニウムを、−600mmHg以上の
高真空下で焼成することを特徴とする請求項1記載の易
焼結アルミナの製造方法。
3. An aluminum hydroxide having an average particle diameter d 50 of 20 μm or less and an even number n satisfying the following expression n> 1.123 45 / {log30−log (d 50 )} under high vacuum of −600 mmHg or more. The method for producing easily sinterable alumina according to claim 1, wherein the method is as follows.
JP1228687A 1989-09-04 1989-09-04 Method for producing easily sintered alumina Expired - Fee Related JPH0610083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1228687A JPH0610083B2 (en) 1989-09-04 1989-09-04 Method for producing easily sintered alumina

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1228687A JPH0610083B2 (en) 1989-09-04 1989-09-04 Method for producing easily sintered alumina

Publications (2)

Publication Number Publication Date
JPH0393617A JPH0393617A (en) 1991-04-18
JPH0610083B2 true JPH0610083B2 (en) 1994-02-09

Family

ID=16880231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1228687A Expired - Fee Related JPH0610083B2 (en) 1989-09-04 1989-09-04 Method for producing easily sintered alumina

Country Status (1)

Country Link
JP (1) JPH0610083B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5217258B2 (en) * 2007-06-07 2013-06-19 日本軽金属株式会社 Sinterable α-alumina and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0277730B1 (en) * 1987-01-29 1992-05-06 Sumitomo Chemical Company, Limited Process for the preparation of alumina
EP0281265B1 (en) * 1987-02-26 1992-08-05 Sumitomo Chemical Company, Limited Process for preparing easily mono-dispersible alumina

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
田中元治編無機化学全書X−1−1アルミニウムP.206第161行〜P.207第1行

Also Published As

Publication number Publication date
JPH0393617A (en) 1991-04-18

Similar Documents

Publication Publication Date Title
EP0384603B1 (en) Process for the production of magnesium oxide
US4769351A (en) Hydrothermal process for preparing zirconia-alumina base ultra-fine powders of high purity
US5009876A (en) Method of manufacturing barium titanate BaTiO3
JPH07100608B2 (en) Manufacturing method of alumina powder and sintered body
WO2022071245A1 (en) Hexagonal boron nitride powder and method for producing sintered body
JPH02239113A (en) Production of boehmite
EP0337472A2 (en) Process for preparing submicronic powders of zirconium oxide stabilized with yttrium oxide
US7119041B2 (en) Cerium based composite oxide, sintered product thereof and method for preparation thereof
JPH0353255B2 (en)
JP2869287B2 (en) Method for producing plate-like boehmite particles
JPH0610083B2 (en) Method for producing easily sintered alumina
US4374117A (en) Preparation of ultrafine BaZrO3
JPH10101329A (en) Alpha-alumina and its production
JP3087403B2 (en) Method for producing spherical alumina
US4774068A (en) Method for production of mullite of high purity
JPS60176968A (en) Manufacture of sno2-zro2-tio2 dielectric
JPH03141115A (en) Production of fine yttrium oxide powder
JPS61132513A (en) Alpha-alumina powder and its production
Sathiyakumar et al. Synthesis of sol–gel derived alumina powder: effect of milling and calcination temperatures on sintering behaviour
JPH0686291B2 (en) Spinel powder and method for producing the same
Haase et al. Preparation and characterization of ultrafine zirconia powder
EP0582644B1 (en) Process for preparing mixed oxides
JPH0239451B2 (en)
JPH06144830A (en) Production of extremely easily sinterable alumina
JPH06100358A (en) Production of mullite sintered compact

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees