JPH0393617A - Production of easily sinterable alumina - Google Patents

Production of easily sinterable alumina

Info

Publication number
JPH0393617A
JPH0393617A JP1228687A JP22868789A JPH0393617A JP H0393617 A JPH0393617 A JP H0393617A JP 1228687 A JP1228687 A JP 1228687A JP 22868789 A JP22868789 A JP 22868789A JP H0393617 A JPH0393617 A JP H0393617A
Authority
JP
Japan
Prior art keywords
alumina
log
boehmite
aluminum hydroxide
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1228687A
Other languages
Japanese (ja)
Other versions
JPH0610083B2 (en
Inventor
Yasunori Suda
須田 康則
Akira Sakamoto
明 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1228687A priority Critical patent/JPH0610083B2/en
Publication of JPH0393617A publication Critical patent/JPH0393617A/en
Publication of JPH0610083B2 publication Critical patent/JPH0610083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the sinterability of alumina by hydrolyzing an alkali metal aluminate and calcining the produced Al(OH)3 under specific condition. CONSTITUTION:Al(OH)3 produced by the hydrolysis of an alkali metal aluminate and having an average particle diameter (d58) of <=8mum and a uniformity number (n) satisfying the formula I [K=log {log(100/0.01)}-log {log(100/50}=1.12345] is calcined by conventional calcination process in such a manner as to get <=10% (based on the whole alumina) of alumina which passes through Boehmite phase in the phase transition of Al(OH)3 to Boehmite. As an alternative method, Al(OH)3 having an average particle diameter (d58) of <=20mum and a uniformity number (n) satisfying the formula II is calcined in high vacuum (<=-600mmHg) in such a manner as to get <=10% (based on the whole alumina) of alumina which passes through Boehmite phase in the phase-transition of Al(OH)3 to Boehmite. The objective easily sinterable alumina having a sintered bulk density of >=90g/cm<3> at 1400 deg.C can be produced by the above methods.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は易焼結アル萼ナの製造方法に関する.則ち14
00@C以下の焼成温度で焼結嵩密度が3.  9 0
 g/ a1以上の焼結体が得られるアルミナのiIl
造方法に関する. 〔従来の技術〕 従来よりα−アルミナは耐熱性、耐蝕性,酎庫粍性、電
気絶縁性、熱伝導性等の物性に優れているため半導体集
積回路基板、切削工具、酎摩粍軸受け等の焼結体原料と
して使用されている.近年これらの用途は技術的進歩が
著しく、原料アル竃ナに求められる品質も年々厳しくな
っている.焼結体用原料に要求される物性として特に重
要な事はα−アルミナ粉末の一次粒子径が小さく,強い
凝集粒子が無く形状が均一で低温で焼結出来る事である
.この様な物性を具備するアルミナを原料に用いた場合
に得られる焼結体は焼結密度、機械的強度に優れるとと
もに低温での焼結が可能となり焼成コストは勿論焼成設
備の建設費も低減することができる等の利点を有する. 〔発明が解決しようとする課題〕 しかしながら従来最も工業的に採用されているバイヤー
法により得られるアルミナは、平均一次粒子が数μm〜
数十μmで長時間の粉砕に依っても1μmの平均粒子怪
のものは得難く,また得られたアル主ナ粉末は粉砕装置
より混入する不純物による純度低下や結晶形骸破砕面の
非平滑性の故所望する物性の改良効果は得難かった.ま
た、アルミニウムアルコキシド等のアルξニウム化合物
を加水分解しアルミナ水和物となし、これを乾燥・焼成
してα−アルミナを得る方法もあるが,この方法に於い
ては、加水分解により平均一次粒子径の小さいアルミナ
水和物は得られるものの、脱水乾煽時に凝集・固化を生
じ、これを焼成後粉砕しても粒子形状が均一で平均粒子
径の小さい所望とするα−アルミナ粉末を得る事は出来
ない.更にベーマイトのコロイド溶液に種子としてα−
アルミナのコロイド溶液を混合し成形焼成することによ
り従来よりも低い焼結温度で均質で緻密な焼結体が得ら
れる事が知られている(特開昭61−265!54).
Lかしながらこの方法はゲル状で或形するため乾燥・焼
結時に於ける戒形体の収縮が大きく精密な戒形体は得難
いという欠点を有する.それ故ゲル状物を乾燥・焼成後
粉砕して粉末を得、これを戒形体原料粉末として使用す
る方法も考えられるが,この方法により得られた粉末は
乾燥・焼成過程で粒子が凝集・結晶或長を生じる為か微
粒粉末は得られず、結果として均質で緻密な成形体は得
られない. かかる状況に鑑み本発明者等は低い焼結温度で均質で緻
密な焼結体を得る事が出来る平均一次粒子径が小さく均
質な易焼結性アルミナ粉末を得るべく鋭意検討を行った
結果、従来のバイヤー法により得られたアル1ナが焼結
性に劣るのは、アルミン酸アルカリの加水分解によV得
られた水酸化アルミニウムを焼威してアルミナを得る過
程に於いて水酸化アルミニウムの一部が結晶性ベーマイ
トに転移してからα−アルミナに転移する部分が悪影響
を及ぼしているとの知見を持つに至り、本発明方法を完
或するに至った. 〔課題を解決するための手段〕 すなわち、本発明はアルミン酸アルカリを加水分解して
得られる水酸化アルミニウムを焼威してα−アルミナと
する際、ベーマイト相を経由するアルミナが全体の10
%以下となるように焼威することを特徴とするs#!結
アルミナ粉末の製造方法を提供するにある. そして,ベーマイト相を経由するアルミナが全体の10
%以下となるように焼成するには、通常の焼成方法則ち
,大気中で水酸化アルミウムを焼威する場合においては
、平均粒子径dseが8μ以下であり、均等数nが1 
次式 n > K / {log{logl 5 −1o( ( d ss)} を満足する水酸化アルミニウムを,原料として通常水酸
化アル竃ニウムを焼成する温度で焼成すればよく,この
方法により易焼結アルミナが製造できる. また,減圧下で焼成すれば、上記の水酸化アルξニウム
よりも,相対的に大きな粒径の水酸化アルミニウムを原
料としても、同様な易焼結アルミナを製造できる. 則ち、− 6 0 0 mmHg以上の高真空下で焼成
する場合においては,d5@が20μ以下であり、均等
数nが次式 n>K/  (lox30−1og(dse))を満足
する水酸化アルミニウムを原料として焼成すれば、ベー
マイト相を経由するのは10%以下となり同様な易焼結
アルミナを製造できる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing easily sinterable alumina. i.e. 14
The sintered bulk density is 3. 9 0
Alumina iIl that yields a sintered body of g/a1 or more
Regarding the manufacturing method. [Conventional technology] Alpha-alumina has traditionally had excellent physical properties such as heat resistance, corrosion resistance, corrosion resistance, electrical insulation, and thermal conductivity, so it has been used in semiconductor integrated circuit boards, cutting tools, aluminum alloy bearings, etc. It is used as a raw material for sintered bodies. In recent years, there has been significant technological progress in these applications, and the quality required for the raw material alumina has become stricter year by year. The particularly important physical properties required for raw materials for sintered bodies are that the primary particle size of α-alumina powder is small, there are no strongly agglomerated particles, the shape is uniform, and it can be sintered at low temperatures. Sintered bodies obtained when alumina with these physical properties is used as a raw material have excellent sintered density and mechanical strength, and can be sintered at low temperatures, reducing not only firing costs but also the construction costs of firing equipment. It has the advantage of being able to [Problem to be solved by the invention] However, alumina obtained by the Bayer method, which has been most industrially adopted so far, has an average primary particle size of several μm to
It is difficult to obtain average particles with an average particle size of 1 μm even if milling is carried out for a long time at several tens of μm, and the obtained alumina powder has reduced purity due to impurities mixed in from the crushing equipment and non-smoothness of the crushed surface of crystal bodies. Therefore, it was difficult to obtain the desired effect of improving physical properties. There is also a method of hydrolyzing aluminum compounds such as aluminum alkoxide to form alumina hydrate, which is then dried and calcined to obtain α-alumina. Although alumina hydrate with a small particle size can be obtained, agglomeration and solidification occur during dehydration and drying, and even if this is pulverized after firing, the desired α-alumina powder with a uniform particle shape and a small average particle size can be obtained. I can't do anything. Furthermore, α-
It is known that a homogeneous and dense sintered body can be obtained at a lower sintering temperature than before by mixing a colloidal solution of alumina and then forming and firing it (Japanese Patent Application Laid-Open No. 61-265!54).
However, this method has the disadvantage that since the mold is formed in a gel-like form, the molded body shrinks greatly during drying and sintering, making it difficult to obtain a precise molded body. Therefore, it is possible to obtain a powder by drying and firing the gel-like material and then pulverizing it and using this as the raw material powder for the precept form, but the powder obtained by this method has particles that aggregate and crystallize during the drying and firing process. Perhaps because a certain length is produced, fine powder cannot be obtained, and as a result, a homogeneous and dense compact cannot be obtained. In view of this situation, the present inventors conducted intensive studies to obtain homogeneous and easily sinterable alumina powder with a small average primary particle size that can produce a homogeneous and dense sintered body at a low sintering temperature. The reason why alumina obtained by the conventional Bayer method has poor sinterability is that aluminum hydroxide is We have come to the knowledge that the part of the aluminum that is transformed into crystalline boehmite and then transformed into α-alumina has an adverse effect, and we have completed the method of the present invention. [Means for Solving the Problems] That is, the present invention provides that when aluminum hydroxide obtained by hydrolyzing alkali aluminate is burnt to produce α-alumina, the alumina passing through the boehmite phase accounts for 10% of the total.
s#, which is characterized by burning so that it is less than %! The present invention provides a method for producing condensed alumina powder. Alumina passing through the boehmite phase accounts for 10% of the total
% or less, the average particle diameter dse is 8μ or less and the uniform number n is 1.
Aluminum hydroxide that satisfies the following formula n > K / {log{logl 5 -1o ( (d ss)}) can be fired as a raw material at the temperature at which aluminum hydroxide is normally fired. It is possible to produce sintered alumina.Also, by firing under reduced pressure, a similar easily sintered alumina can be produced using aluminum hydroxide, which has a relatively larger particle size than the above-mentioned aluminum ξ hydroxide, as a raw material. In other words, when firing under a high vacuum of -600 mmHg or more, water whose d5@ is 20μ or less and whose uniformity number n satisfies the following formula n>K/ (lox30-1og (dse)) is used. If aluminum oxide is used as a raw material for firing, less than 10% of the aluminum oxide will pass through the boehmite phase, making it possible to produce similar easily sintered alumina.

均等数nは、粒度分布の均一性を表わす数値で、ロジン
・ラムラー線図にプロットした粒度分布のグラフの傾き
として得られる.ロジン・ラムラー線図は、粉体用の対
数確率紙で、日本粉体工業協会で入手できるが、粒子径
をD、ふるい上をR(%)とすれば、X軸とy軸に1o
zDとlog {log{log (100/R))の
目盛りをつけたものである.又,前記式で K=log {log{log (100/0.01)
)−log {log{log (100/50))=
1.   12345 である. 以下、本発明を更に詳細に説明する. 通常バイヤー法で得られる水酸化アルミニウムは鉱物名
をギブサイトまたはハイドラルジライトと称されるアル
ミナ三水和物であり,有姿粒子径が30〜100μ程度
の粉末である.これらの水酸化アルミニウムを大気中で
通常の手法で焼威するとその一部はα−アルミナに相転
移する際、結品性ベーマイトを経由する(電気化学 第
28巻358〜364頁). この転移した割合は示差熱天秤による分析により容易に
測定可能である.即ち第1図に示す如く示差熱分析(D
 T A)の吸熱ピークに該当する反応の中で,生成し
たベーマイトが脱水して結晶水を失う温度領域に於ける
重量減少からベーマイトの量を算出しこれが元の試料の
どの程度の割合になるかを計算することができる. この様な方法で上記バイヤー法で得られた水酸化アルミ
ニウムについてベーマイト転移量を測定すると通常は2
5〜55%の値である.本発明者等はこのベーマイト転
移量が変化した場合に、最終的に得られるα−アルミナ
の焼結特性が変化する現象を詳細に検討した結果、意外
にもベーマイト転移量がある水準以下になると焼結特性
が大幅に改善せられる事を発見し、本発明を完成するに
至った. 以下に本発明の基盤となった実験事実を述べる.苛性ソ
ーダ濃度 1 6 0 g/ l.  A l 203
濃度12 0 g / lのアルミン酸ソーダ溶液に均
等数n=3.8、平均粒子径dss =Q,52pの水
酸化アルミニウム(昭和電工(株)製微粒水酸化アルミ
ニウム H−43)を種子として適当量添加し、所定の
温度で攪はん裡に保持したのち濾過洗浄し第1表に示す
ように均等数nが約4で平均粒子径が1.2〜40μの
水酸化アルミニウムを得た.上記と同じ組或のアルミン
酸ソーダ溶液を用い、三段の析出槽と二段のサイクロン
&シツクナを組み合わせた種子循環型析出設備により初
期種子に上記H−43を用いて析出を継続した.これに
より,均等数nが約2で平均粒子径が3〜40μの水酸
化アル1ニウムを得た. これらの水酸化アルミニウムを理学電機(株)製示差熱
分析装置により大気雰囲気における加熱時のベーマイト
生或量及び−6 0 0 mmHg雰囲気で加熱した場
合のベーマイト生成量を測定した.結栗は第l表に併記
した. また、これらの水酸化アルミニウムを特開昭55−14
0719を参考に以下の手順で処理しアルミナとし,そ
の焼結特性を比較した.アレミ      ゜ (1)雰囲気焼成炉により大気圧下、及び−600 m
aHg減圧下で各水酸化アルミニウムを4OO@C、 2時間加熱する. (2)加熱処理物をlwt%のクエン酸溶液に200g
/lの濃度で懸濁し濾別後温水にて洗浄し乾燥する. (3)カンタル発熱体を用いた電気炉により大気圧下で
所定温度に2時間保持し、BET比表面積が約10m2
/gのα−アル竃ナとす(4) る. 各焼成物を径300mlI1・長さ300amの円筒型
回転ボール主ルを用い、竃ル内に20■鳳φのアノレミ
ナボーノレ24k.と試料アノレミナ2.4k.を充填
し16時間粉砕処理を行う. 上記により調製された各粉砕アルミナに外割でパラフィ
ンを5%添加し充分混線後,7gを秤量し金型に入れ或
形圧力50 0 k g / c m 2で或形する.
これを脱脂後1400℃で2時間保持した後,焼結嵩密
度を測定した.測定結果を第1表に示す.(以下余白) 第1表よりわかるようにベーマイト転移量が10%以下
のものは焼結温度が1400” Cと低くても、焼結体
の嵩密度が3.  9 0 g/ cm3以上となり極
めて焼結活性に富むことがわかる.ベーマイト転移量は
水酸化アル【ニウムの平均粒子径のみによって規定はで
きずその均等数、焼成時の雰囲気により左右される事も
明かである.均等数が大きい場合は平均粒子径が比較的
大きくてもベーマイト転移量は小さいが、均等数が小さ
いと平均粒子径が小さくともベーマイト転移量が大きく
なる.また減圧下では全体的にベーマイト転移量が減少
し相対的に大きい粒子,低い均等数でも1400℃にお
ける焼結嵩密度は高くなる.均等数nの大小は,基本的
には,水酸化アル竃二ウムの粗粒の割合が影響している
.具体的には原料の平均粒子径・均等数と上記結果から
大気雰囲気下の焼成ではl5μ、− 6 0 0 m+
*Hgに於では30μ以上の粒径の粒子が殆ど存在しな
い(例えば0.01%以下)事が必要である. 以上の結果から特許請求の範囲の記載の如く、アルミン
酸アルカリを加水分解して得られる水酸化アルξニウム
を焼威してアルミナを製造するプロセスに於て、水酸化
アルミニウムがアル稟ナに相転移する際、ベーマイト相
を経由するアルミナが全体の10%以下となるように焼
成することにより従来になく焼結特性に優れたアルミナ
を製造することが可能になった.そして、焼成雰囲気に
応じて原料に用いる水酸化アルミニウムの粒度分布を選
択する事により,上記条件が達或せられる.アルミナの
前廂体としては従来のバイヤー法またはその改良法とし
て既に商業生産工程が確立しているプロセスで製造した
水酸化アルミニウムが使用でき、アルミナの調製工程も
従来のプロセスが利用出来るので製造コストも安い.こ
の方法により製造されたアル主ナは低温で充分な焼結体
が得られるので本発明は産業上極めて有益なものである
.以下に本発明の内容を実施例により詳細に説明するが
本発明の技術的範囲はこれに限定されるものではない. 〔実施例〕 実施例1 バイヤー法で得られた水酸化アルミニウムを工業用苛性
ソーダに溶解した後、希釈・清澄濾過を行いN a 2
0: A I 20 3モル比1.5.Na2012 
0 g / lのアル稟ン酸ソーダ溶液を調製した。
The uniformity number n is a numerical value representing the uniformity of the particle size distribution, and is obtained as the slope of the graph of the particle size distribution plotted on the Rosin-Rammler diagram. The Rosin-Rammler diagram is a logarithmic probability paper for powders, available from the Japan Powder Industry Association, but if the particle diameter is D and the sieve surface is R (%), then
It has a scale of zD and log {log{log (100/R)). Also, in the above formula, K=log {log{log (100/0.01)
)−log {log{log (100/50))=
1. It is 12345. The present invention will be explained in more detail below. Aluminum hydroxide usually obtained by the Bayer process is alumina trihydrate, whose mineral name is gibbsite or hydralgilite, and is a powder with a visible particle size of about 30 to 100 μm. When these aluminum hydroxides are incinerated in the atmosphere using a conventional method, a portion of the aluminum hydroxide undergoes a phase transition to α-alumina through crystallizing boehmite (Electrochemistry Vol. 28, pp. 358-364). The proportion of this transition can be easily measured by analysis using a differential thermal balance. That is, as shown in Fig. 1, differential thermal analysis (D
Calculate the amount of boehmite from the weight loss in the temperature range in which the boehmite produced dehydrates and loses crystal water during the reaction corresponding to the endothermic peak in A). Calculate the amount of boehmite and calculate the proportion of the original sample. can be calculated. When the amount of boehmite transition is measured using this method for aluminum hydroxide obtained by the Bayer method, it is usually 2.
The value is between 5 and 55%. The inventors of the present invention have investigated in detail the phenomenon in which the sintering properties of the final α-alumina change when the amount of boehmite transition changes, and have found that, unexpectedly, when the amount of boehmite transition is below a certain level. We discovered that the sintering characteristics could be significantly improved and completed the present invention. The experimental facts that formed the basis of the present invention are described below. Caustic soda concentration 160 g/l. A l 203
Aluminum hydroxide (fine particle aluminum hydroxide H-43 manufactured by Showa Denko K.K.) with equal number n = 3.8, average particle size dss = Q, 52p was added to a sodium aluminate solution with a concentration of 120 g / l as seeds. An appropriate amount was added, kept under stirring at a predetermined temperature, and then filtered and washed to obtain aluminum hydroxide with a uniform number n of about 4 and an average particle size of 1.2 to 40μ as shown in Table 1. .. Using the same sodium aluminate solution as above, precipitation was continued using the above H-43 on the initial seeds using a seed circulation type precipitation facility that combined a three-stage precipitation tank and a two-stage cyclone and shaker. As a result, aluminum hydroxide having a uniform number n of about 2 and an average particle size of 3 to 40 μm was obtained. Using a differential thermal analyzer manufactured by Rigaku Denki Co., Ltd., these aluminum hydroxides were used to measure the amount of boehmite produced when heated in an air atmosphere and the amount of boehmite produced when heated in a -600 mmHg atmosphere. Yukuri is also listed in Table I. In addition, these aluminum hydroxides were
Using 0719 as a reference, we processed alumina using the following procedure and compared its sintering properties. Aremi ゜ (1) Under atmospheric pressure and -600 m using an atmosphere firing furnace
Heat each aluminum hydroxide at 4OO@C under aHg vacuum for 2 hours. (2) 200g of the heat-treated product is added to lwt% citric acid solution.
Suspend at a concentration of /l, filter, wash with warm water, and dry. (3) Maintained at a specified temperature for 2 hours under atmospheric pressure in an electric furnace using a Kanthal heating element, and the BET specific surface area was approximately 10 m2.
/g of α-alumina (4). Each fired product was placed in a cylindrical rotating bowl with a diameter of 300 ml and a length of 300 am, and an anoremina bowl of 24 k. and sample anoremina 2.4k. Filled with powder and subjected to pulverization for 16 hours. Add 5% paraffin to each of the pulverized aluminas prepared above, mix thoroughly, weigh 7 g, put in a mold, and shape at a pressure of 500 kg/cm2.
After degreasing and holding at 1400°C for 2 hours, the sintered bulk density was measured. The measurement results are shown in Table 1. (Left below) As can be seen from Table 1, when the amount of boehmite transition is 10% or less, even if the sintering temperature is as low as 1400"C, the bulk density of the sintered body is over 3.90 g/cm3, which is extremely high. It can be seen that the sintering activity is high.It is clear that the amount of boehmite transfer cannot be determined only by the average particle size of aluminum hydroxide, but is influenced by the number of equal particles and the atmosphere during firing. In this case, the amount of boehmite transfer is small even if the average particle size is relatively large, but if the number of equal particles is small, the amount of boehmite transfer is large even if the average particle size is small.In addition, under reduced pressure, the amount of boehmite transfer decreases overall and the relative The sintered bulk density at 1400°C is high even with relatively large particles and a low uniformity number.The size of the uniformity number n is basically influenced by the proportion of coarse particles in the aluminum hydroxide. Specifically, from the average particle size and uniform number of raw materials and the above results, when fired in an atmospheric atmosphere, the average particle diameter is 15 μ, -600 m+
*For Hg, it is necessary that there are almost no particles with a particle size of 30μ or more (for example, 0.01% or less). From the above results, as stated in the claims, in the process of producing alumina by burning out aluminum hydroxide obtained by hydrolyzing alkali aluminate, aluminum hydroxide becomes alumina. By sintering so that less than 10% of the alumina passes through the boehmite phase during phase transition, it has become possible to produce alumina with unprecedented sintering properties. The above conditions can be achieved by selecting the particle size distribution of aluminum hydroxide used as a raw material depending on the firing atmosphere. As the precursor of alumina, aluminum hydroxide manufactured by the conventional Bayer method or its improved method, which has already been established as a commercial production process, can be used, and the manufacturing cost can be reduced because the conventional process can be used for the alumina preparation process. It's also cheap. The present invention is industrially extremely useful because the alumina produced by this method can be sufficiently sintered at low temperatures. The content of the present invention will be explained in detail below using Examples, but the technical scope of the present invention is not limited thereto. [Example] Example 1 After dissolving aluminum hydroxide obtained by the Bayer method in industrial caustic soda, dilution and clarifying filtration were performed to obtain Na 2
0: A I 20 3 molar ratio 1.5. Na2012
A 0 g/l sodium alkyl solution was prepared.

この液に平均粒子径1.  0μ、均等数3.8の水酸
化アルミニウム(昭和電工■am粒水酸化アルミニウム
 H−42)を3g/1添加し、50@Cの温度で48
時間攪拌裡に保持し有姿平均粒子径24μ,均等数3.
9の凝集した水酸化アルミニウムを析出させた.次いで
これを濾過・洗浄後パドルドライヤーで混練しつつ乾燥
したところ凝集が解けて平均粒子径6.8μ,均等数3
.7の水酸化アルミニウムが得られた.このものの大気
圧下のベーマイト転移率は8.3%であった.これをロ
ータリーキルンで500’ Cで焼成後、温水に懸濁し
再度濾過・洗浄した後ロータリーキルンで1150”C
滞留時間1時間で焼威したところ、BET比表面積9.
8m2/g、α化率98%のアルミナが得られた.これ
を既述の方法による粉.砕及び焼結試験に供したところ
1400゜Cで焼結嵩密度3.95g/am3の焼結体
が得られた. 比較例l 実施例1で析出させた水酸化アルミニウムを濾過・洗浄
後工業用水に懸濁し噴霧乾燥したところ有姿平均粒子径
22μ、均等数3.4の凝集した水酸化アルミニウムが
得られた.このものの大気圧下のベーマイト転移率は2
1%であった.これをロータリーキルンで500”Cで
焼成後、温水に懸濁し再度濾過・洗浄した後ロータリー
キルンで1180’″C滞留時間1時間で焼成したとこ
ろ、BET比表面積10.2m?/g、α化率98%の
アルミナが得られた.これを既述の方法による粉砕及び
焼結試験に供したところ1400@Cで焼結嵩密度3.
66g/am3の焼結体が得られた.〔発明の効果〕 以上説明したように本発明の方法で製造したアルミナは
、1400℃における焼結嵩密度が、3.90z/c1
以上と高く、易焼結性にすぐれている.4.
This liquid has an average particle size of 1. Add 3g/1 of aluminum hydroxide (Showa Denko am grain aluminum hydroxide H-42) with a uniform number of 3.8 and
Hold with stirring for a period of time, average particle size 24μ, uniform number 3.
9 coagulated aluminum hydroxide was precipitated. Next, this was filtered and washed, and then dried while being kneaded with a paddle dryer, and the agglomeration was dissolved and the average particle size was 6.8μ, and the number of even particles was 3.
.. 7 aluminum hydroxide was obtained. The boehmite conversion rate of this material under atmospheric pressure was 8.3%. After firing this in a rotary kiln at 500'C, it was suspended in warm water, filtered and washed again, and then heated in a rotary kiln at 1150'C.
When burnt out with a residence time of 1 hour, the BET specific surface area was 9.
Alumina of 8 m2/g and a gelatinization rate of 98% was obtained. This is powdered using the method described above. When subjected to crushing and sintering tests, a sintered body with a sintered bulk density of 3.95 g/am3 was obtained at 1400°C. Comparative Example 1 When the aluminum hydroxide precipitated in Example 1 was filtered and washed, suspended in industrial water and spray-dried, agglomerated aluminum hydroxide with an average particle size of 22 μm and an equivalent number of 3.4 was obtained. The boehmite transition rate of this material under atmospheric pressure is 2
It was 1%. This was fired in a rotary kiln at 500''C, suspended in hot water, filtered and washed again, and fired in a rotary kiln at 1180''C for 1 hour, resulting in a BET specific surface area of 10.2m? /g, alumina with a gelatinization rate of 98% was obtained. When this was subjected to a crushing and sintering test using the method described above, the sintered bulk density was 3.
A sintered body of 66 g/am3 was obtained. [Effects of the Invention] As explained above, the alumina produced by the method of the present invention has a sintered bulk density of 3.90z/c1 at 1400°C.
It has excellent sinterability. 4.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、 水酸化アルミニウムの焼成過程での Figure 1 shows During the firing process of aluminum hydroxide

Claims (3)

【特許請求の範囲】[Claims] (1)アルミン酸アルカリを加水分解して得られる水酸
化アルミニウムを焼成してアルミナを製造するプロセス
に於て、水酸化アルミニウムがアルミナに相転移する際
、ベーマイト相を経由するアルミナが全体の10%以下
となるように焼成する事を特徴とする易焼結アルミナの
製造方法。
(1) In the process of producing alumina by calcining aluminum hydroxide obtained by hydrolyzing alkali aluminate, when aluminum hydroxide undergoes a phase transition to alumina, alumina that passes through the boehmite phase accounts for 10% of the total % or less.
(2)平均粒子径d_5_0が8μ以下であり、均等数
nが次式 n>K/{log15−log(d_5_0)}但しK
=log{log{log(100/0.01)}−l
og{log(100/50)} =1.12345 を満足する水酸化アルミニウムを、通常の焼成方法で焼
成することを特徴とする請求項1記載の易焼結アルミナ
の製造方法。
(2) The average particle diameter d_5_0 is 8 μ or less, and the uniform number n is calculated by the following formula n>K/{log15-log(d_5_0)} where K
=log{log{log(100/0.01)}-l
The method for producing easily sinterable alumina according to claim 1, characterized in that aluminum hydroxide satisfying the following formula is fired by a normal firing method.
(3)平均粒子径d_5_0が20μ以下であり均等数
nが次式 n>1.12354/{log30−log(d_5_
0)}を満足する水酸化アルミニウムを、−600mm
Hg以上の高真空下で焼成することを特徴とする請求項
1記載の易焼結アルミナの製造方法。
(3) The average particle diameter d_5_0 is 20μ or less and the uniform number n is calculated by the following formula n>1.12354/{log30-log(d_5_
0)} aluminum hydroxide that satisfies -600mm
The method for producing easily sinterable alumina according to claim 1, characterized in that the firing is performed under a high vacuum of Hg or higher.
JP1228687A 1989-09-04 1989-09-04 Method for producing easily sintered alumina Expired - Fee Related JPH0610083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1228687A JPH0610083B2 (en) 1989-09-04 1989-09-04 Method for producing easily sintered alumina

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1228687A JPH0610083B2 (en) 1989-09-04 1989-09-04 Method for producing easily sintered alumina

Publications (2)

Publication Number Publication Date
JPH0393617A true JPH0393617A (en) 1991-04-18
JPH0610083B2 JPH0610083B2 (en) 1994-02-09

Family

ID=16880231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1228687A Expired - Fee Related JPH0610083B2 (en) 1989-09-04 1989-09-04 Method for producing easily sintered alumina

Country Status (1)

Country Link
JP (1) JPH0610083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149690A1 (en) * 2007-06-07 2008-12-11 Nippon Light Metal Company, Ltd. Α-alumina with satisfactory suitability for sintering and process for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303809A (en) * 1987-01-29 1988-12-12 Sumitomo Chem Co Ltd Production of alumina powder having narrow particle size distribution
JPS643008A (en) * 1987-02-26 1989-01-06 Sumitomo Chem Co Ltd Production of easily disintegrable alumina

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303809A (en) * 1987-01-29 1988-12-12 Sumitomo Chem Co Ltd Production of alumina powder having narrow particle size distribution
JPS643008A (en) * 1987-02-26 1989-01-06 Sumitomo Chem Co Ltd Production of easily disintegrable alumina

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149690A1 (en) * 2007-06-07 2008-12-11 Nippon Light Metal Company, Ltd. Α-alumina with satisfactory suitability for sintering and process for producing the same
JP2008303105A (en) * 2007-06-07 2008-12-18 Nippon Light Metal Co Ltd Well-sinterable alpha alumina and its production method

Also Published As

Publication number Publication date
JPH0610083B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
EP0384603B1 (en) Process for the production of magnesium oxide
CN102369162B (en) Method for producing alkali metal niobate particles, and alkali metal niobate particles
Her et al. Preparation of well-defined colloidal barium titanate crystals by the controlled double-jet precipitation
JPS63185821A (en) Production of zirconium oxide fine powder
Yuan et al. Preparation of calcium hexaluminate porous ceramics by novel pectin based gelcasting freeze-drying method
JPH01153530A (en) Crystalline zirconium oxide powder, method for its manufacture and method for manufacturing sintered ceramic
CN112110424B (en) Preparation method of superfine aluminum nitride powder
JPH02239113A (en) Production of boehmite
AU609280B2 (en) Process for preparing submicronic powders of zirconium oxide stabilized with yttrium oxide
JPH0353255B2 (en)
JPH0393617A (en) Production of easily sinterable alumina
JPH03141115A (en) Production of fine yttrium oxide powder
JPS60176968A (en) Manufacture of sno2-zro2-tio2 dielectric
US4774068A (en) Method for production of mullite of high purity
JPS5939367B2 (en) Manufacturing method of zirconium oxide fine powder
JPH06329411A (en) Production of flaky transition alumina
JP2528462B2 (en) Method for producing sodium hexatitanate fine particle powder
CN105084397B (en) Strip-shaped crystal grain boehmite preparation method
Sathiyakumar et al. Synthesis of sol–gel derived alumina powder: effect of milling and calcination temperatures on sintering behaviour
JPH0239451B2 (en)
JPS60161338A (en) Manufacture of mixed fine particle consisting of batio3 and basn(oh)6 and fine particle of ba(snxti1-x)o3 solid solution
JPS61127619A (en) Production of superfine granular alpha-alumina
JPH09278443A (en) Titanium oxide particulates and its production
JPS647030B2 (en)
JPS6016819A (en) Production of zirconium oxide powder containing yttrium as solid solution

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees