JPH09278443A - Titanium oxide particulates and its production - Google Patents

Titanium oxide particulates and its production

Info

Publication number
JPH09278443A
JPH09278443A JP11537996A JP11537996A JPH09278443A JP H09278443 A JPH09278443 A JP H09278443A JP 11537996 A JP11537996 A JP 11537996A JP 11537996 A JP11537996 A JP 11537996A JP H09278443 A JPH09278443 A JP H09278443A
Authority
JP
Japan
Prior art keywords
titanium oxide
fine particles
oxide fine
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11537996A
Other languages
Japanese (ja)
Other versions
JP3708216B2 (en
Inventor
Masahiro Omori
将弘 大森
Hidenori Nakamura
英則 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP11537996A priority Critical patent/JP3708216B2/en
Publication of JPH09278443A publication Critical patent/JPH09278443A/en
Application granted granted Critical
Publication of JP3708216B2 publication Critical patent/JP3708216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide titanium oxide particulates having a particle diameter and a specific surface area suitable for sintering and small in aggregation at the time of heating. SOLUTION: This titanium oxide particulates have 0.1-0.5μm average particle diameter and 40-95m<2> /g specific surface area and have a property that the specific surface area becomes 10-30m<2> /g in the case of heating the particulates at 800 deg.C for 30min. The particulates are produced by preparing a mixed solution of titanium tetrachloride and water with a polycarboxylic acid at <50 deg.C, heating to the hydrolyzing temp. of titanium tetrachloride and filtering, drying and heat treating the resultant precipitate. In such a case, the hydrolyzing reaction is executed preferably while suppressing the releasing of generated hydrogen chloride gas by providing a reflux condenser 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は分散性に優れた酸化
チタン微粒子及びその製造法に関し、さらに詳しくは高
性能のコンデンサー、サーミスター、太陽電池等の電子
セラミックス材料や高級化粧品材料、プラスチック添加
剤、塗料、インキ、消臭剤の薬品類の原料として好適な
分散性に優れた酸化チタン微粒子及びその製造法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fine particles of titanium oxide having excellent dispersibility and a method for producing the same, and more particularly to electronic ceramic materials for high-performance capacitors, thermistors, solar cells, high-grade cosmetic materials, and plastic additives. , Fine particles of titanium oxide having excellent dispersibility, which are suitable as raw materials for chemicals such as paints, inks and deodorants, and a method for producing the same.

【0002】[0002]

【従来の技術】酸化チタン粒子をコンデンサーの誘電体
やサーミスターの材料などの焼結材用として使用する場
合は、粒子は小さい方がよく、さらに同じ粒径でも比表
面積が大きい方がよい。これは例えばコンデンサーでは
酸化チタンと例えば酸化バリウムとを反応焼結させるも
のであるが、比表面積が大きい方が反応焼結性が高いか
らである。
2. Description of the Related Art When titanium oxide particles are used for a sintered material such as a capacitor dielectric or a thermistor material, the particles should be small, and even if they have the same particle size, the specific surface area should be large. This is because, for example, in a capacitor, titanium oxide and, for example, barium oxide are reacted and sintered, but the larger the specific surface area is, the higher the reactive sintering property is.

【0003】酸化チタンの粒子を非常に小さい微粒子と
する方法は、大別して四塩化チタンを気相で酸化分解す
る乾式法とチタンのアルコシド化合物(特開昭62−2
26814)や四塩化チタン(特開昭60−18641
8)を加水分解する湿式法がある。乾式法で得られる酸
化チタン微粒子は粒径は十分に小さいが、表面が平滑で
あるため粒径の割には比表面積があまり大きくなく、焼
結材料としては優れているとは言えない。このため比表
面積の大きな微粒子を得る湿式法が数多く提案されてい
る。例えば上記の特開昭60−186418では粒径が
0.05〜0.5μmと非常に小さい微粒子が得られて
いる。
The method of making the particles of titanium oxide into very small particles is roughly classified into a dry method of oxidizing and decomposing titanium tetrachloride in the gas phase, and an alcoside compound of titanium (JP-A-62-2).
26814) and titanium tetrachloride (JP-A-60-18641).
There is a wet method of hydrolyzing 8). Titanium oxide fine particles obtained by the dry method have a sufficiently small particle size, but since the surface is smooth, the specific surface area is not so large relative to the particle size, and it cannot be said that they are excellent as a sintering material. Therefore, many wet methods have been proposed for obtaining fine particles having a large specific surface area. For example, in the above-mentioned JP-A-60-186418, very fine particles having a particle size of 0.05 to 0.5 μm are obtained.

【0004】[0004]

【発明が解決しようとする課題】酸化チタンの微粒子は
活性が大きく、凝集し易い性質をもっている。微粒子が
凝集すると微粒子としての特質が失われ、これは焼結材
料のみでなく各種の添加材や塗料等に使用した場合にも
不都合である。酸化チタンや微粒子の活性に基づく凝集
性は、また酸化チタン微粒子を用いて反応焼結させる際
の加熱過程でも現れる。その結果酸化チタン微粒子から
なる粉末は凝集してなくともこれを他の原料と混合し、
反応焼結させる際、その焼結の前に酸化チタン微粒子が
凝集して焼結し、それと共に他の原料もそれ自体で焼結
する部分が生ずることから均一な反応焼結体が得られな
い。
The fine particles of titanium oxide are highly active and tend to agglomerate. When the fine particles aggregate, the characteristics of the fine particles are lost, which is inconvenient not only when the fine particles are used as a sintering material but also as various additives and paints. The cohesiveness based on the activity of titanium oxide and fine particles also appears in the heating process during reactive sintering using titanium oxide fine particles. As a result, the powder consisting of titanium oxide fine particles is mixed with other raw materials even if they are not aggregated,
During reaction sintering, titanium oxide fine particles agglomerate and sinter before the sintering, and at the same time, there occurs a portion where other raw materials also sinter themselves, so a uniform reaction sintered body cannot be obtained. .

【0005】上記した特許の方法による微粒子は、この
加熱過程での凝集回避について良好とは言えない。その
他酸化チタン微粒子の表面活性を下げる方法として特開
昭57−145007がある。この方法はポリアスパラ
ギン酸塩等のポリアミノ酸塩を酸化チタン微粒子表面に
吸着させた後に酸性物質で処理する方法である。しかし
ながら、このような塩を吸着させる方法は、通常生成し
た粒子に対して処理する方法であり、前提条件として粒
子を一次粒子にまで均一に分散させる必要があり、技術
的困難さを伴う。その結果、均一な吸着処理が十分に行
われないために本発明のような焼結材料として用いた場
合には、異常粒成長が認められるために好ましくない。
これらのことから酸化チタン微粒子に要求される特性と
しては、反応焼結性を高めるに上から粒径は小さく、
かつ比表面積が大きいこと、そのように小さい微粒子
であるが微粒子が凝集してないこと、即ち分散性がよい
こと、この微粒子を反応焼結材料等に用い加熱した際
にも凝集性が小さいことである。 本発明は上記のよう
な特性を有する酸化チタン微粒子を提供することを目的
とする。
The fine particles produced by the method of the above patent are not good in avoiding aggregation during this heating process. As another method for reducing the surface activity of titanium oxide fine particles, there is JP-A-57-145007. This method is a method in which a polyamino acid salt such as polyaspartate is adsorbed on the surface of titanium oxide fine particles and then treated with an acidic substance. However, such a method of adsorbing a salt is a method of treating particles that are usually produced, and it is necessary to uniformly disperse the particles into primary particles, which is technically difficult. As a result, the uniform adsorption treatment is not sufficiently performed, so that when the sintered material is used as in the present invention, abnormal grain growth is observed, which is not preferable.
From these facts, the characteristics required for the titanium oxide fine particles are that the particle size is small from the top in order to enhance the reaction sinterability,
In addition, the specific surface area is large, the particles are so small that they are not aggregated, that is, the dispersibility is good, and the aggregation is small when the particles are used as a reactive sintering material and heated. Is. An object of the present invention is to provide titanium oxide fine particles having the above characteristics.

【0006】[0006]

【課題を解決するための手段】本発明者は四塩化チタン
の加水分解法について種々研究した結果、特定の条件下
で加水分解することにより上記の目的とする酸化チタン
微粒子が得られることを発見し、本発明に到達した。即
ち、本発明の酸化チタン微粒子は、平均粒径が0.1〜
0.5μm、比表面積が40〜95m2 /gであり、該
微粒子を800℃に30分間加熱した場合に比表面積が
10〜30m2 /gとなる特性を有するものである。こ
の酸化チタン微粒子の製造法は、四塩化チタン水溶液の
加水分解による酸化チタン微粒子の製造法において、四
塩化チタン、水及び多価カルボン酸を50℃未満の温度
で混合し、次いでその混合物を加熱して加水分解反応を
行ない、酸化チタンを生成させ、常法に従って濾過、乾
燥、熱処理することからなる。
As a result of various studies on the hydrolysis method of titanium tetrachloride, the present inventor discovered that the desired titanium oxide fine particles can be obtained by hydrolysis under specific conditions. Then, the present invention has been reached. That is, the titanium oxide fine particles of the present invention have an average particle size of 0.1 to 0.1.
0.5 [mu] m, specific surface area of 40~95m 2 / g, the specific surface area when heated for 30 minutes the fine particles to 800 ° C. is one that has a characteristic to be 10 to 30 m 2 / g. This method for producing titanium oxide fine particles is the same as the method for producing titanium oxide fine particles by hydrolyzing an aqueous solution of titanium tetrachloride, in which titanium tetrachloride, water and polycarboxylic acid are mixed at a temperature of less than 50 ° C., and then the mixture is heated. Then, a hydrolysis reaction is carried out to produce titanium oxide, which is then filtered, dried and heat-treated in a conventional manner.

【0007】[0007]

【発明の実施の形態】本発明の酸化チタン微粒子は、平
均粒径が0.1〜0.5μm、比表面積が40〜95m
2 /gからなっている。そしてこの微粒子は集合して粉
末をなしている。この粉末中に含まれる上記の粒径及び
比表面積を有する微粒子は多い程望ましいが、全体が該
微粒子でなくとも大部分、例えば粒子の個数にして80
%以上が該微粒子であれば本発明の目的に適したものと
なる。上記において酸化チタン微粒子の平均粒径が0.
1μm未満であると凝集し易く、特に加熱時の凝集が大
きくなる。また0.5μmを越えるものでは他の原料と
混合した場合にミクロな均一混合に劣り、また表面積も
小さくなるので反応焼結性が悪い。
BEST MODE FOR CARRYING OUT THE INVENTION The titanium oxide fine particles of the present invention have an average particle diameter of 0.1 to 0.5 μm and a specific surface area of 40 to 95 m.
It consists of 2 / g. The fine particles are aggregated to form a powder. It is preferable that the number of fine particles having the above-mentioned particle size and specific surface area contained in this powder is large, but if the whole is not the fine particles, most of them, for example, the number of particles is 80.
If at least 100% of the fine particles are used, it is suitable for the purpose of the present invention. In the above, the average particle diameter of the titanium oxide fine particles is 0.
If it is less than 1 μm, aggregation is likely to occur, and particularly during heating, the aggregation becomes large. On the other hand, if it exceeds 0.5 μm, it is inferior in microscopic uniform mixing when mixed with other raw materials, and the surface area becomes small, so that the reaction sinterability is poor.

【0008】微粒子の比表面積は一般には粒径と相関関
係があるが、粒子の表面状態や気孔等にも関係する。従
って同じ粒径であっても反応焼結性や凝集性は異なる。
本発明の酸化チタンの微粒子の比表面積は40〜95m
2 /gである。比表面積が40m2 /gより小さいと反
応の均一性が十分でなく、また95m2 /gを越えると
凝集性、特に加熱時の凝集が起こり易くなる。なお、こ
の酸化チタン微粒子の平均粒径及び比表面積は湿式法に
より酸化チタンを生成させた後、熱処理した微粒子につ
いてのものである。湿式法で酸化チタン微粒子を得る場
合、一般には乾燥後200〜700℃の範囲、多くは3
00〜500℃の温度範囲で熱処理される。
The specific surface area of the fine particles generally has a correlation with the particle size, but also has a relationship with the surface state of the particles, pores and the like. Therefore, even if the particle size is the same, the reaction sinterability and the cohesiveness are different.
The specific surface area of the titanium oxide fine particles of the present invention is 40 to 95 m.
2 / g. The specific surface area is not sufficient homogeneity of the reaction and 40 m 2 / g less, also 95m and aggregation properties exceeds 2 / g, made especially easily caused aggregation during heating. The average particle diameter and the specific surface area of the titanium oxide fine particles are those of the fine particles which are heat-treated after titanium oxide is produced by the wet method. When titanium oxide fine particles are obtained by a wet method, it is generally in the range of 200 to 700 ° C. after drying, often 3
Heat treatment is performed in the temperature range of 00 to 500 ° C.

【0009】本発明の酸化チタン微粒子は加熱された場
合の凝集性が従来のものに較べ小さいことが一つの特徴
である。本発明者の研究によると同じ平均粒径、比表面
積を持つ微粒子でも上記の凝集性が異なることがわかっ
た。その要因としては粒径や比表面積以外に他の因子が
関係していると思われるが、その因子は定かでないの
で、本発明においては所定の条件で加熱した際の比表面
積を測定し、この値をもって加熱時の凝集特性の尺度と
した。所定の条件としては800℃、30分間、大気中
での加熱を選んだ。800℃としたのは反応焼結では、
多くの場合800℃迄の昇温過程での凝集が問題とされ
るからである。
One of the features of the titanium oxide fine particles of the present invention is that the cohesiveness when heated is smaller than that of the conventional one. According to the research conducted by the present inventor, it has been found that even the fine particles having the same average particle diameter and specific surface area have different aggregation properties. It seems that other factors besides the particle size and the specific surface area are related to the factor, but since the factor is not clear, in the present invention, the specific surface area when heated under predetermined conditions is measured. The value was used as a measure of the agglomeration property upon heating. As the predetermined condition, heating in air at 800 ° C. for 30 minutes was selected. The temperature of 800 ° C is the result of reaction sintering.
In many cases, agglomeration during the temperature rising process up to 800 ° C. is a problem.

【0010】本発明の酸化チタン微粒子は上記の800
℃、30分間、大気中で加熱した際の比表面積は10〜
30m2 /gである。この比表面積は大きい程好ましい
が、30m2 /gより大きくすることは困難である。ま
た10m2 /g未満では凝集を避ける点から不十分であ
る。この加熱後の比表面積が加熱に用いた前記の酸化チ
タン微粒子の比表面積よりかなり小さくなっているのは
加熱により粒子の表面が平滑になったり、細孔が消滅し
たりするためである。本発明の酸化チタン微粒子を80
0℃で加熱処理し、これを実際に顕微鏡で観察すると凝
集が少ないことがわかる。
The titanium oxide fine particles of the present invention are the above 800.
The specific surface area when heated in the air at 30 ° C for 30 minutes is 10
It is 30 m 2 / g. The larger this specific surface area is, the more preferable, but it is difficult to make it larger than 30 m 2 / g. Also, if it is less than 10 m 2 / g, it is insufficient from the viewpoint of avoiding aggregation. The specific surface area after heating is considerably smaller than the specific surface area of the titanium oxide fine particles used for heating because the surface of the particles becomes smooth and the pores disappear. The titanium oxide fine particles of the present invention are 80
When heat-treated at 0 ° C. and observed with a microscope, it can be seen that aggregation is small.

【0011】次に本発明の酸化チタン微粒子の製造法に
ついて説明する。本発明の製造法は四塩化チタン水溶液
の加水分解法であるが、その際に多価カルボン酸を添加
すること、及び四塩化チタンと水及び多価カルボン酸の
混合物を50℃未満の温度で調製することが特徴であ
る。四塩化チタン水溶液の加水分解法で多価カルボン酸
を添加することは特開平2−196029に記載されて
いるように公知である。この特許の方法は、酸化チタン
微粒子の細孔を多くして比表面積を特に大きくしてい
る。ここで得られた酸化チタン微粒子はその細孔内にA
g、Cu,Zn等の超微粒子を担持させ、殺菌や抗菌の
ために使用するものである。この特許の酸化チタン微粒
子の製造方法は、多価カルボン酸を溶解した水溶液を先
ず50℃以上に加熱しておき、これに徐々に四塩化チタ
ンを添加することを特徴としている。この四塩化チタン
の添加により加水分解し、生成する水和酸化チタン〜有
機酸の反応混合物からなる粒子を200〜400℃の温
度に加熱し、粒子内部に含まれている有機酸及び水分の
蒸発、分解ガスの逸散跡として細孔を生成せしめてい
る。
Next, the method for producing the titanium oxide fine particles of the present invention will be described. The production method of the present invention is a method for hydrolyzing an aqueous solution of titanium tetrachloride. At that time, a polyvalent carboxylic acid is added, and a mixture of titanium tetrachloride, water and a polyvalent carboxylic acid is added at a temperature of less than 50 ° C. It is characterized by preparing. It is known to add a polycarboxylic acid by a hydrolysis method of an aqueous titanium tetrachloride solution, as described in JP-A-2-196029. In the method of this patent, the specific surface area is made particularly large by increasing the pores of the titanium oxide fine particles. The titanium oxide fine particles obtained here have A
Ultrafine particles such as g, Cu, Zn, etc. are carried and used for sterilization and antibacterial. The method for producing titanium oxide fine particles of this patent is characterized in that an aqueous solution in which a polycarboxylic acid is dissolved is first heated to 50 ° C. or higher, and titanium tetrachloride is gradually added thereto. Particles composed of a reaction mixture of hydrated titanium oxide and organic acid, which is hydrolyzed by the addition of titanium tetrachloride and is generated, are heated to a temperature of 200 to 400 ° C. to evaporate the organic acid and water contained in the particles. , The pores are generated as traces of the dissociated gas.

【0012】ところで本発明者の研究によると、この特
許のように予め多価カルボン酸水溶液を50℃以上に加
熱しておき、これに四塩化チタンを添加した場合と水、
四塩化チタン及び多価カルボン酸の混合溶液を50℃未
満の温度で調製し、これを加水分解温度に昇温し、加水
分解した場合では得られる酸化チタン微粒子は相違する
ことがわかった。酸化チタン微粒子を殺菌用等に使用す
るため表面積をできるだけ大きくするためには上記特許
の方法が優れている。この方法によると比表面積は10
0m2 /g以上である。しかしこの方法で得られた酸化
チタンの微粒子は加熱による比表面積の低下が大きい。
即ち800℃、30分間の加熱による比表面積は前記し
た本発明の酸化チタン微粒子の比表面積より小さい。事
実凝集性が本発明の微粒子に較べ、大きいことが確認さ
れる。
According to the research conducted by the present inventor, as in this patent, a polyvalent carboxylic acid aqueous solution is preheated to 50 ° C. or higher, and titanium tetrachloride is added to this, and water,
It was found that when a mixed solution of titanium tetrachloride and polyvalent carboxylic acid was prepared at a temperature of less than 50 ° C. and heated to the hydrolysis temperature and hydrolyzed, the obtained titanium oxide fine particles were different. Since the titanium oxide fine particles are used for sterilization or the like, the method of the above patent is excellent in order to maximize the surface area. According to this method, the specific surface area is 10
0 m 2 / g or more. However, the titanium oxide fine particles obtained by this method have a large decrease in specific surface area due to heating.
That is, the specific surface area by heating at 800 ° C. for 30 minutes is smaller than the specific surface area of the titanium oxide fine particles of the present invention described above. In fact, it is confirmed that the cohesiveness is higher than that of the fine particles of the present invention.

【0013】上記した両者の相違についてさらに検討す
ると、上記の方法では高温の多価カルボン酸の水溶液に
四塩化チタンを添加しているから水和反応が優先して行
なわれる。これに対し本発明の方法では水、四塩化チタ
ン、多価カルボン酸の混合溶液において、先ず錯体化反
応が起こり、次いで水和反応が起きると推定される。例
えば、両者における約104℃での反応生成物のX線解
析をみると後述するように相違していることがわかる。
本発明において、多価カルボン酸は酸化チタン微粒子の
表面に凹凸や粒子内に気孔を形成し、比表面積を大きく
する作用を有すると共に上記したような製造条件により
微粒子の加熱過程での凝集を少なくする作用をしてい
る。本発明において水、四塩化チタン及び多価カルボン
酸の混合は50℃未満の温度で行なわれ、その温度の下
限には特に制限なく、例えば常温でよい。混合割合につ
いては三者の混合溶液中、四塩化チタンは0.1〜2モ
ル/リットルが好ましい。四塩化チタンの量が0.1モ
ル/リットル未満であると生産性が悪く、また2モル/
リットルを越えると生成する酸化チタン微粒子が凝集し
てしまい比表面積が小さくなる。多価カルボン酸の量は
三者の混合液中0.025〜0.5モル/リットルが適
する。0.025モル/リットル未満だと酸化チタン微
粒子の比表面積が小さくなり、上記した添加効果が少な
い。また0.5モル/リットルを越えると錯体化が多く
進行し、逆に凝集体が形成され、比表面が小さくなる。
When the difference between the above two is further examined, the hydration reaction is preferentially performed in the above method because titanium tetrachloride is added to the high temperature aqueous solution of polycarboxylic acid. On the other hand, in the method of the present invention, it is presumed that in the mixed solution of water, titanium tetrachloride and polyvalent carboxylic acid, the complexation reaction first occurs and then the hydration reaction occurs. For example, the X-ray analysis of the reaction products at about 104 ° C. in both shows that they are different as described later.
In the present invention, the polyvalent carboxylic acid forms irregularities on the surface of the titanium oxide fine particles and forms pores in the particles, has the effect of increasing the specific surface area, and reduces the aggregation in the heating process of the fine particles due to the production conditions as described above. Acting to do. In the present invention, the mixing of water, titanium tetrachloride and polycarboxylic acid is carried out at a temperature of less than 50 ° C, and the lower limit of the temperature is not particularly limited and may be room temperature, for example. Regarding the mixing ratio, titanium tetrachloride is preferably 0.1 to 2 mol / liter in the mixed solution of the three. When the amount of titanium tetrachloride is less than 0.1 mol / liter, the productivity is poor, and the amount of titanium tetrachloride is 2 mol / liter.
When it exceeds liter, the titanium oxide fine particles produced are aggregated to reduce the specific surface area. The amount of polyvalent carboxylic acid is preferably 0.025 to 0.5 mol / liter in the mixed solution of the three. If it is less than 0.025 mol / liter, the specific surface area of the titanium oxide fine particles becomes small, and the above-mentioned effect of addition is small. On the other hand, if it exceeds 0.5 mol / liter, complexation progresses a lot and conversely, aggregates are formed and the specific surface becomes small.

【0014】使用される多価カルボン酸としてはシュウ
酸、マロン酸、コハク酸、リンゴ酸、酒石酸、クエン
酸、グルコン酸等のカルボキシル基を2個以上有する二
塩基性あるいは三塩基性等の有機多価カルボン酸であ
る。これらは2種以上混合して使用してもよい。カルボ
ン酸でもカルボキシル基が1個の例えば酢酸は適しな
い。その理由は四塩化チタンと錯化合物が生成しないた
めと考えられる。四塩化チタン、水及び多価カルボン酸
の50℃未満の混合溶液は次いで加熱して加水分解す
る。加水分解により塩化水素が発生し、水溶液は白濁状
となる。水溶液には酸化チタン水和物や錯化合物が生じ
ていると思われる。加水分解の温度は60℃以上、水溶
液の沸点までの範囲が好ましい。60℃未満では加水分
解に長時間を要し、また沸点を越える温度では耐高圧装
置が必要となる。加水分解は上記の温度範囲で1〜5時
間程度保持して行なわれる。上記の時間は加水分解温度
が高い場合は短くてよく、温度が低い場合は長い時間が
選ばれる。
Examples of the polycarboxylic acid used include dibasic or tribasic organic compounds having two or more carboxyl groups such as oxalic acid, malonic acid, succinic acid, malic acid, tartaric acid, citric acid and gluconic acid. It is a polycarboxylic acid. You may use these in mixture of 2 or more types. Even carboxylic acids, for example acetic acid with one carboxyl group are not suitable. The reason is considered that titanium tetrachloride and a complex compound are not formed. A mixed solution of titanium tetrachloride, water and a polycarboxylic acid below 50 ° C. is then heated and hydrolyzed. Hydrogen chloride is generated by hydrolysis and the aqueous solution becomes cloudy. It seems that titanium oxide hydrate and complex compounds are generated in the aqueous solution. The hydrolysis temperature is preferably 60 ° C. or higher and up to the boiling point of the aqueous solution. If the temperature is lower than 60 ° C, the hydrolysis takes a long time, and if the temperature exceeds the boiling point, a high pressure resistant device is required. The hydrolysis is carried out in the above temperature range for about 1 to 5 hours. The above time may be short when the hydrolysis temperature is high, and long when the temperature is low.

【0015】加水分解する水溶液の加熱の昇温速度は
0.2〜10℃/min、好ましくは0.5〜5.0℃
/minである。昇温速度は早いほうが得られる酸化チ
タン微粒子は小さくなる傾向がある。加水分解は通常の
加水分解反応槽を用い、発生する塩化水素ガスを逸出さ
せながら行なうこともできるが、望ましくは発生する塩
化水素ガスが反応槽から逸出するのを抑制し、できるだ
け水溶液中に残留させることである。この方法によって
容易に本発明の範囲の酸化チタン微粒子とすることがで
きる。
The heating rate of the aqueous solution to be hydrolyzed is 0.2 to 10 ° C./min, preferably 0.5 to 5.0 ° C.
/ Min. The higher the heating rate, the smaller the obtained titanium oxide fine particles tend to be. Hydrolysis can also be carried out using a normal hydrolysis reaction tank while allowing the generated hydrogen chloride gas to escape, but it is desirable to prevent the generated hydrogen chloride gas from leaking out of the reaction tank and use it in an aqueous solution as much as possible. Is to remain. By this method, the titanium oxide fine particles within the scope of the present invention can be easily obtained.

【0016】この塩化水素ガスの反応槽からの逸出を制
御する方法は特に限定されず、例えば加圧することによ
っても可能であるが、最も容易にして効果的な方法は加
水分解の反応槽に還流冷却器を設置して加水分解を行な
う方法である。この装置を図1に示す。図において1が
四塩化チタン、水及び多価カルボン酸を50℃未満の温
度で混合した溶液2を充填した反応槽で、これに還流冷
却器3が設置されている。4は撹拌機、5は温度計、6
は反応槽を加熱するための装置である。加水分解反応に
よって水及び塩化水素の蒸気が発生するが、その大部分
は還流冷却器により凝縮し、反応槽に戻されるので反応
槽から外に塩化水素が逸出することは殆どない。
The method of controlling the escape of the hydrogen chloride gas from the reaction tank is not particularly limited, and it is possible to pressurize, for example. However, the easiest and most effective method is to use the hydrolysis reaction tank. In this method, a reflux condenser is installed to carry out hydrolysis. This device is shown in FIG. In the figure, 1 is a reaction tank filled with a solution 2 in which titanium tetrachloride, water and a polycarboxylic acid are mixed at a temperature of less than 50 ° C., and a reflux condenser 3 is installed therein. 4 is a stirrer, 5 is a thermometer, 6
Is a device for heating the reaction tank. Although water and hydrogen chloride vapor are generated by the hydrolysis reaction, most of them are condensed by the reflux condenser and returned to the reaction tank, so that hydrogen chloride hardly escapes from the reaction tank.

【0017】反応終了後は反応槽より酸化チタン水和物
の沈澱を含む液を取り出し、例えば公知のロータリーフ
ィルター等で濾過する。濾過により得られたフィルター
ケーキは水洗後、空気中100℃程度の温度で乾燥され
る。乾燥は減圧下で行なうこともできる。乾燥後のケー
キあるいは解砕後の粉末は次に熱処理する。この熱処理
によって酸化チタン微粒子の比表面積の調整や結晶性等
を高めることもできる。熱処理は温度が高くなると粒子
が大きく成長するので平均粒径が0.1〜0.5μmの
範囲になるようにする必要があり、一般的には200〜
700℃が適し、好ましくは300〜500℃である。
熱処理はまた粒子中に微量に存在する塩化水素の脱離作
用にも有効である。
After the completion of the reaction, the liquid containing the titanium oxide hydrate precipitate is taken out from the reaction tank and filtered through, for example, a known rotary filter. The filter cake obtained by filtration is washed with water and then dried in air at a temperature of about 100 ° C. Drying can also be performed under reduced pressure. The cake after drying or the powder after crushing is then heat treated. By this heat treatment, the specific surface area of the titanium oxide fine particles can be adjusted and the crystallinity and the like can be increased. Since the heat treatment causes the particles to grow larger as the temperature rises, it is necessary to set the average particle diameter in the range of 0.1 to 0.5 μm, and generally 200 to
700 ° C is suitable, and preferably 300 to 500 ° C.
The heat treatment is also effective for desorbing a small amount of hydrogen chloride present in the particles.

【0018】以上はバッチ式反応について説明したが、
反応槽の上部から四塩化チタン、水及び多価カルボン酸
の混合溶液を連続的に装入し、反応槽の下部から沈澱物
を含む液を連続的に取り出す連続方式や反応管内に混合
溶液を流しながら加熱して反応させる連続方式も可能で
ある。本発明の四酸化チタン微粒子は前記した平均粒径
及び比表面積を有し、これを加熱した場合にも凝集性が
少ない、即ち比表面積で表わすと、その減少の程度が他
の酸化チタン微粒子に較べ少ない。その理由は四塩化チ
タンの加水分解法において、多価カルボン酸を特定の条
件下で加えることにより酸化チタンの水和物と錯化合物
が生じ、その錯化合物が熱処理された場合に酸化チタン
の表面構造等に関与して表面活性を小さくしていること
が考えられる。
The batch type reaction has been described above.
A mixed solution of titanium tetrachloride, water and polycarboxylic acid is continuously charged from the upper part of the reaction tank, and a liquid containing a precipitate is continuously taken out from the lower part of the reaction tank, or the mixed solution is put into the reaction tube. A continuous system in which the reaction is performed by heating while flowing is also possible. The titanium tetraoxide fine particles of the present invention have the above-mentioned average particle diameter and specific surface area, and even when they are heated, they have little cohesiveness, that is, in terms of specific surface area, the degree of decrease is smaller than that of other titanium oxide fine particles. There are few. The reason is that in the hydrolysis method of titanium tetrachloride, a polyvalent carboxylic acid is added under specific conditions to form a hydrate of titanium oxide and a complex compound, and when the complex compound is heat-treated, the surface of the titanium oxide is It is considered that the surface activity is reduced by being involved in the structure and the like.

【0019】[0019]

【実施例】以下、実施例により具体的に説明する。 (実施例1)図1に示す撹拌装置及び還流装置付きのセ
パラブルフラスコに蓚酸2水和物1.25モルと純水1
000グラムを室温で仕込み蓚酸を完全に溶解させる。
この溶液の温度を室温に保ちながらこれに純水と四塩化
チタンを添加して、蓚酸濃度が0.25モル/リット
ル、四塩化チタンの濃度が1.0モル/リットルとなる
ように調製する。調製終了段階では液には沈澱物はない
状態であった。次に、この水溶液を5℃/minの昇温
速度にて加熱し、沸点(約104℃)に到達してから1
時間保持して加水分解反応を完全に行ない沈澱物を得
た。冷却後、フラスコから沈澱物を含む液を取り出し、
孔径0.1μmの濾紙を用いて濾過した。濾紙上の沈澱
物を十分に水洗し、その後105℃の熱風乾燥機で乾燥
した。引き続き、ボールミルで解砕し、空気雰囲気のも
とマッフル炉で450℃で1時間熱処理して酸化チタン
の微粒子を得た。この微粒子の比表面積をBET法で測
定したところ61m2 /gであった。また、遠心沈降法
を用いて粒度分布を測定した結果、平均粒径で0.3μ
mの微粒子であった。さらにこの酸化チタン微粒子を空
気雰囲気のもとマッフル炉を用いて800℃、30分間
の熱処理を行なった結果、比表面積は26m2 /gであ
った。上記における途中の105℃の熱風乾燥品をボー
ルミルで解砕したものをX線で解析したところ図2の回
折線が得られた。
EXAMPLES The present invention will be specifically described below with reference to examples. (Example 1) In a separable flask equipped with a stirrer and a reflux device shown in FIG. 1, 1.25 mol of oxalic acid dihydrate and 1 part of pure water were added.
Charge 000 grams at room temperature to completely dissolve the oxalic acid.
While keeping the temperature of this solution at room temperature, pure water and titanium tetrachloride are added to the solution so that the oxalic acid concentration is 0.25 mol / liter and the titanium tetrachloride concentration is 1.0 mol / liter. . At the end of preparation, the liquid was in a state of no precipitate. Next, this aqueous solution is heated at a temperature rising rate of 5 ° C./min, and after reaching the boiling point (about 104 ° C.), 1
The hydrolysis reaction was carried out completely for a period of time to obtain a precipitate. After cooling, remove the liquid containing the precipitate from the flask,
It filtered using the filter paper with a pore size of 0.1 micrometer. The precipitate on the filter paper was thoroughly washed with water and then dried with a hot air dryer at 105 ° C. Subsequently, the mixture was crushed with a ball mill and heat-treated at 450 ° C. for 1 hour in a muffle furnace in an air atmosphere to obtain titanium oxide fine particles. The specific surface area of the fine particles was 61 m 2 / g as measured by the BET method. In addition, as a result of measuring the particle size distribution using the centrifugal sedimentation method, the average particle size is 0.3 μm.
m of fine particles. Further, the titanium oxide fine particles were heat-treated at 800 ° C. for 30 minutes in an air atmosphere using a muffle furnace, and as a result, the specific surface area was 26 m 2 / g. When the hot air dried product at 105 ° C. in the middle of the above was crushed by a ball mill and analyzed by X-ray, the diffraction line of FIG. 2 was obtained.

【0020】(比較例1)実施例1と同様にセパラブル
フラスコに純水と蓚酸2水和物を仕込む。次いで加熱し
て蓚酸水溶液を95℃に昇温する。これに純水と四塩化
チタンを1ミリリットル/min.の速度で徐々に添加
し、蓚酸濃度が0.25モル/リットル、四塩化チタン
の濃度が1.0モル/リットルとなるように調整する。
この間セパラブルフラスコを加熱して水溶液の温度を9
5℃に維持する。調整終了段階で液に白い沈澱が一部見
られた。次にこの水溶液を5℃/minの昇温速度にて
加熱し、沸点(約104℃)に到達してから1時間保持
して加水分解反応を完全に行ない、沈澱物を得た。以
下、実施例1と同様に濾過、乾燥、解砕、450℃での
熱処理、及び800℃での熱処理を行なった。この45
0℃で熱処理した酸化チタン微粒子のBET法による比
表面積は、150m2 /g、遠心沈降法を用いて粒度測
定したところ平均粒径が1.0μmであった。また80
0℃で熱処理したものの比表面積は 4m2 /gであっ
た。上記における途中の105℃の熱風乾燥品をボール
ミルで乾燥したものをX線で解析したところ図3の回折
線が得られた。
Comparative Example 1 Pure water and oxalic acid dihydrate are charged in a separable flask in the same manner as in Example 1. Then, the solution is heated to raise the temperature of the oxalic acid aqueous solution to 95 ° C. Pure water and titanium tetrachloride were added to this at 1 ml / min. The oxalic acid concentration is adjusted to 0.25 mol / liter and the titanium tetrachloride concentration is adjusted to 1.0 mol / liter.
During this time, the separable flask is heated to raise the temperature of the aqueous solution to 9
Maintain at 5 ° C. A white precipitate was partially seen in the liquid at the end of adjustment. Next, this aqueous solution was heated at a temperature rising rate of 5 ° C./min, and after reaching the boiling point (about 104 ° C.), it was held for 1 hour to carry out the hydrolysis reaction completely to obtain a precipitate. Thereafter, as in Example 1, filtration, drying, crushing, heat treatment at 450 ° C., and heat treatment at 800 ° C. were performed. This 45
The specific surface area of the titanium oxide fine particles heat-treated at 0 ° C. by the BET method was 150 m 2 / g, and the average particle diameter was 1.0 μm when the particle size was measured by the centrifugal sedimentation method. Also 80
The specific surface area of the product heat-treated at 0 ° C. was 4 m 2 / g. When the hot air dried product at 105 ° C. in the middle of the above was dried by a ball mill and analyzed by X-ray, the diffraction line of FIG. 3 was obtained.

【0021】(実施例2)実施例1において、水、四塩
化チタン及び蓚酸2水和物の混合溶液中、蓚酸2水和物
の濃度を0.5モル/リットル、混合溶液の調整時の温
度を45℃とした以外は実施例1と同様にして酸化チタ
ン微粒子を得た。得られた酸化チタン微粒子の比表面積
は87m2 /gで、平均粒子径は0.2μmであった。
また、同様に800℃、30分間熱処理を行なった結
果、比表面積は20m2 /gであった。
(Example 2) In Example 1, in the mixed solution of water, titanium tetrachloride and oxalic acid dihydrate, the concentration of oxalic acid dihydrate was 0.5 mol / l, and the mixed solution was adjusted. Titanium oxide fine particles were obtained in the same manner as in Example 1 except that the temperature was 45 ° C. The specific surface area of the obtained titanium oxide fine particles was 87 m 2 / g, and the average particle diameter was 0.2 μm.
Further, as a result of similarly performing heat treatment at 800 ° C. for 30 minutes, the specific surface area was 20 m 2 / g.

【0022】(実施例3)実施例1において、蓚酸2水
和物の代わりにクエン酸水和物を用い、混合溶液中のそ
の濃度を0.25モル/リットルとした以外は実施例1
と同様にして酸化チタン微粒子を得た。得られた酸化チ
タン微粒子の比表面積は88m2 /gで、平均粒子径は
0.2μmであった。また同様に800℃、30分間熱
処理した結果、比表面積は15m2 /gであった。
Example 3 Example 1 was repeated except that citric acid hydrate was used in place of oxalic acid dihydrate and the concentration of the mixed solution was 0.25 mol / liter.
Titanium oxide fine particles were obtained in the same manner as in. The specific surface area of the obtained titanium oxide fine particles was 88 m 2 / g, and the average particle diameter was 0.2 μm. Similarly, as a result of heat treatment at 800 ° C. for 30 minutes, the specific surface area was 15 m 2 / g.

【0023】(実施例4)実施例1において、蓚酸2水
和物の代わりにリンゴ酸を用い、混合液中のその濃度を
0.025モル/リットルとした以外は、実施例1と同
様にして酸化チタン微粒子を得た。得られた酸化チタン
微粒子の比表面積は97m2 /gで、平均粒子径は0.
15μmであった。また、同様に800℃、30分間熱
処理した結果、比表面積は14m2 /gであった。
(Example 4) The same as Example 1 except that malic acid was used in place of oxalic acid dihydrate and the concentration thereof in the mixed solution was 0.025 mol / liter. Thus, titanium oxide fine particles were obtained. The obtained titanium oxide fine particles had a specific surface area of 97 m 2 / g and an average particle diameter of 0.1.
It was 15 μm. Similarly, as a result of heat treatment at 800 ° C. for 30 minutes, the specific surface area was 14 m 2 / g.

【0024】(実施例5)実施例1において、蓚酸2水
和物の代わりにアジピン酸を用い、混合液中のその濃度
を0.25モル/リットルとし、但し混合溶液の調整時
に温度を40℃とした以外は実施例1と同様にして酸化
チタン微粒子を得た。得られた酸化チタン微粒子の比表
面積は90m2 /gで、平均粒子径は0.2μmであっ
た。また、同様に800℃、30分間熱処理した結果、
比表面積は12m2 /gであった。
(Example 5) In Example 1, adipic acid was used in place of oxalic acid dihydrate, and the concentration thereof in the mixed solution was 0.25 mol / liter, but the temperature was adjusted to 40 at the time of adjusting the mixed solution. Titanium oxide fine particles were obtained in the same manner as in Example 1 except that the temperature was changed to ° C. The specific surface area of the obtained titanium oxide fine particles was 90 m 2 / g, and the average particle diameter was 0.2 μm. Similarly, as a result of heat treatment at 800 ° C. for 30 minutes,
The specific surface area was 12 m 2 / g.

【0025】(比較例2)実施例1において、蓚酸2水
和物を用いない以外は実施例1と同様にして酸化チタン
微粒子を得た。得られた酸化チタン微粒子の比表面積は
45m2 /gで、平均粒子径は0.35μmであった
が、同様に800℃、30分間熱処理した結果、比表面
積は2m2 /gとなった。比較例2に示すように、多価
カルボン酸を使用しないで作られた酸化チタン微粒子は
比表面積が小さく、また800℃で熱処理した場合に比
表面積の減少が著しい。これは粒子が熱処理で凝集した
ことが主な原因である。比較例1の酸化チタン微粒子は
450℃熱処理では本発明のものと平均粒径や比表面積
に殆ど差異がないが、800℃で熱処理すると比表面積
の減少の度合いが本発明のものより大きくなる。これは
800℃の熱処理による粒子の凝集が本発明のものより
大きいことを示す。
Comparative Example 2 Titanium oxide fine particles were obtained in the same manner as in Example 1 except that oxalic acid dihydrate was not used. Although the specific surface area of the obtained titanium oxide fine particles was 45 m 2 / g and the average particle diameter was 0.35 μm, the specific surface area was 2 m 2 / g as a result of heat treatment at 800 ° C. for 30 minutes in the same manner. As shown in Comparative Example 2, the titanium oxide fine particles produced without using the polycarboxylic acid have a small specific surface area, and when heat-treated at 800 ° C., the specific surface area significantly decreases. The main reason for this is that the particles were aggregated by heat treatment. The titanium oxide fine particles of Comparative Example 1 have almost no difference in average particle diameter and specific surface area from those of the present invention when heat-treated at 450 ° C., but when heat-treated at 800 ° C., the degree of decrease in specific surface area becomes larger than that of the present invention. This indicates that the agglomeration of particles by heat treatment at 800 ° C. is larger than that of the present invention.

【0026】[0026]

【発明の効果】本発明の酸化チタン微粒子は平均粒径が
かなり小さく、比表面積は大きい。それにも拘らず加熱
時の凝集が少ない。従って特に焼結材料として好適であ
る。また分散性がよいので焼結材以外にプラスチックの
添加剤、塗料、インキ、化粧品材料、消臭剤などにも使
用可能である。本発明の四塩化チタンの加水分解反応に
は還流冷却器が設置され、発生する塩化水素が反応槽外
に出ないので、塩化水素ガスの補集装置も不要となり、
装置的にも有利である。
The titanium oxide fine particles of the present invention have a considerably small average particle diameter and a large specific surface area. Nevertheless, there is little aggregation during heating. Therefore, it is particularly suitable as a sintering material. Further, since it has good dispersibility, it can be used not only for sintered materials but also for plastic additives, paints, inks, cosmetic materials, deodorants and the like. A reflux condenser is installed in the hydrolysis reaction of titanium tetrachloride of the present invention, and since hydrogen chloride generated does not go out of the reaction tank, a hydrogen chloride gas collector is not required,
It is also advantageous in terms of equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法に用いられる反応槽の概略断面図
である。
FIG. 1 is a schematic sectional view of a reaction tank used in the method of the present invention.

【図2】本発明における反応生成物の105℃熱風乾燥
品のX線解析図である。
FIG. 2 is an X-ray analysis diagram of 105 ° C. hot air dried product of the reaction product of the present invention.

【図3】比較例1における反応生成物の105℃熱風乾
燥品のX線解析図である。
FIG. 3 is an X-ray analysis diagram of a 105 ° C. hot-air dried product of the reaction product in Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 反応槽 2 四塩化チタンと多価カルボン酸を含む水溶液 3 還流冷却器 4 撹拌機 5 温度計 6 加熱装置 1 Reaction Tank 2 Aqueous Solution Containing Titanium Tetrachloride and Polycarboxylic Acid 3 Reflux Cooler 4 Stirrer 5 Thermometer 6 Heating Device

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が0.1〜0.5μm、比表面
積が40〜95m2/gの酸化チタン微粒子であって、
該微粒子を800℃に30分間加熱した場合に比表面積
が10〜30m2 /gとなる酸化チタン微粒子。
1. Titanium oxide fine particles having an average particle diameter of 0.1 to 0.5 μm and a specific surface area of 40 to 95 m 2 / g,
Titanium oxide fine particles having a specific surface area of 10 to 30 m 2 / g when the fine particles are heated to 800 ° C. for 30 minutes.
【請求項2】 焼結材料用である請求項1記載の酸化チ
タン微粒子。
2. The titanium oxide fine particles according to claim 1, which are for a sintering material.
【請求項3】 四塩化チタン水溶液の加水分解による酸
化チタン微粒子の製造法において、四塩化チタン、水及
び多価カルボン酸を50℃未満の温度で混合し、次いで
その混合溶液を加熱して加水分解反応を行ない、酸化チ
タンを生成させることを特徴とする酸化チタン微粒子の
製造法。
3. A method for producing fine particles of titanium oxide by hydrolysis of an aqueous solution of titanium tetrachloride, wherein titanium tetrachloride, water and a polycarboxylic acid are mixed at a temperature of less than 50 ° C., and then the mixed solution is heated to hydrolyze. A method for producing titanium oxide fine particles, which comprises performing a decomposition reaction to generate titanium oxide.
【請求項4】 上記の加水分解の加熱温度が60℃〜混
合溶液の沸点の範囲である請求項3記載の酸化チタン微
粒子の製造法。
4. The method for producing titanium oxide fine particles according to claim 3, wherein the heating temperature for the hydrolysis is in the range of 60 ° C. to the boiling point of the mixed solution.
【請求項5】 四塩化チタン、水及び多価カルボン酸の
混合溶液中の四塩化チタンの濃度が0.1モル/リット
ル〜2モル/リットル、多価カルボン酸の濃度が0.0
25モル/リットル〜0.5モル/リットルである請求
項3又は4に記載の酸化チタン微粒子の製造法。
5. The concentration of titanium tetrachloride in the mixed solution of titanium tetrachloride, water and polyvalent carboxylic acid is 0.1 mol / liter to 2 mol / liter, and the concentration of polyvalent carboxylic acid is 0.0.
The method for producing titanium oxide fine particles according to claim 3 or 4, wherein the amount is 25 mol / liter to 0.5 mol / liter.
【請求項6】 加水分解により発生する塩化水素の反応
槽からの逸出を抑制しながら加水分解を行なうことを特
徴とする請求項3〜5のいずれかに記載の酸化チタン微
粒子の製造法。
6. The method for producing titanium oxide fine particles according to claim 3, wherein the hydrolysis is carried out while suppressing the escape of hydrogen chloride generated by the hydrolysis from the reaction tank.
【請求項7】 加水分解の反応槽に還流冷却器を設置
し、発生する塩化水素の反応槽からの逸出を抑制するこ
とからなる請求項6に記載の酸化チタン微粒子の製造
法。
7. The method for producing titanium oxide fine particles according to claim 6, wherein a reflux condenser is installed in the hydrolysis reaction tank to suppress the escape of hydrogen chloride generated from the reaction tank.
【請求項8】 請求項3〜7のいずれかにより得られた
微粉末を300〜500℃で熱処理することからなる酸
化チタン微粒子の製造法。
8. A method for producing titanium oxide fine particles, which comprises heat-treating the fine powder obtained by any one of claims 3 to 7 at 300 to 500 ° C.
JP11537996A 1996-04-12 1996-04-12 Titanium oxide fine particles and production method thereof Expired - Fee Related JP3708216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11537996A JP3708216B2 (en) 1996-04-12 1996-04-12 Titanium oxide fine particles and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11537996A JP3708216B2 (en) 1996-04-12 1996-04-12 Titanium oxide fine particles and production method thereof

Publications (2)

Publication Number Publication Date
JPH09278443A true JPH09278443A (en) 1997-10-28
JP3708216B2 JP3708216B2 (en) 2005-10-19

Family

ID=14661079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11537996A Expired - Fee Related JP3708216B2 (en) 1996-04-12 1996-04-12 Titanium oxide fine particles and production method thereof

Country Status (1)

Country Link
JP (1) JP3708216B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058451A1 (en) * 1998-05-14 1999-11-18 Showa Denko Kabushiki Kaisha Titanium oxide sol, thin film, and processes for producing these
WO2002006159A1 (en) * 2000-07-17 2002-01-24 Industrial Research Limited Titanium-containing materials
CN1078565C (en) * 1999-01-22 2002-01-30 清华大学 Method for preparing nano sized titanium dioxide powder by alcoholysis from titanic chloride
EP1279643A3 (en) * 2001-07-19 2004-03-24 Sumitomo Chemical Co.,Ltd. ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
KR20170024073A (en) 2014-07-02 2017-03-06 이시하라 산교 가부시끼가이샤 Titanium oxide fine particles and method for producing same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084179B2 (en) 1998-05-14 2006-08-01 Showa Denko Kabushiki Kaisha Titanium oxide dispersion, thin film and process for producing these
EP1083152A1 (en) * 1998-05-14 2001-03-14 Showa Denko Kabushiki Kaisha Titanium oxide sol, thin film, and processes for producing these
EP1083152A4 (en) * 1998-05-14 2003-09-10 Showa Denko Kk Titanium oxide sol, thin film, and processes for producing these
US6627336B1 (en) 1998-05-14 2003-09-30 Showa Denko Kabushiki Kaisha Titanium oxide sol, thin film, and processes for producing these
WO1999058451A1 (en) * 1998-05-14 1999-11-18 Showa Denko Kabushiki Kaisha Titanium oxide sol, thin film, and processes for producing these
CN1078565C (en) * 1999-01-22 2002-01-30 清华大学 Method for preparing nano sized titanium dioxide powder by alcoholysis from titanic chloride
WO2002006159A1 (en) * 2000-07-17 2002-01-24 Industrial Research Limited Titanium-containing materials
EP1279643A3 (en) * 2001-07-19 2004-03-24 Sumitomo Chemical Co.,Ltd. ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
KR20170024073A (en) 2014-07-02 2017-03-06 이시하라 산교 가부시끼가이샤 Titanium oxide fine particles and method for producing same
EP3339248A1 (en) 2014-07-02 2018-06-27 Ishihara Sangyo Kaisha, Ltd. Titanium oxide fine particles and method for producing same
EP3339249A1 (en) 2014-07-02 2018-06-27 Ishihara Sangyo Kaisha, Ltd. Titanium oxide fine particles and method for producing same
EP3656740A2 (en) 2014-07-02 2020-05-27 Ishihara Sangyo Kaisha, Ltd. Titanium oxide fine particles and method for producing same
EP3656740A3 (en) * 2014-07-02 2020-06-17 Ishihara Sangyo Kaisha, Ltd. Titanium oxide fine particles and method for producing same
EP3705455A1 (en) 2014-07-02 2020-09-09 Ishihara Sangyo Kaisha, Ltd. Method for producing titanium oxide fine particles
US10787369B2 (en) 2014-07-02 2020-09-29 Ishihara Sangyo Kaisha, Ltd. Titanium oxide fine particles and method for producing same

Also Published As

Publication number Publication date
JP3708216B2 (en) 2005-10-19

Similar Documents

Publication Publication Date Title
KR20080078864A (en) Methods for production of metal oxide nano particles, and nano particles and preparations produced thereby
JP7021795B2 (en) Method for preparing indium oxide spherical powder with controllable grain shape
US20080299036A1 (en) Methods for Production of Titanium Oxide Particles, and Particles and Preparations Produced Thereby
CN101508564B (en) Method for producing dielectric powder
TWI616403B (en) Titanium oxide and method of producing the same
KR20070044817A (en) A method for producing iron oxide nano particles
KR20080080350A (en) Methods for production of metal oxide nano particles with controlled properties, and nano particles and preparations produced thereby
JP6149039B2 (en) Ultrafine titanium dioxide and method for producing the same
JP3314944B2 (en) Sinterable barium titanate fine particle powder and method for producing the same
JP3708216B2 (en) Titanium oxide fine particles and production method thereof
JP3198238B2 (en) Fine powder of titanium oxide and method for producing the same
JP3486156B2 (en) Method for producing crystalline barium titanate powder
JPS62278125A (en) Production of fine particles of crystalline titanium oxide
KR100395218B1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
JPH01172221A (en) Synthesis of starting material comprising fine oxide particle
KR101324130B1 (en) Indium tin oxide powder and manufacturing method of producing the same
JP4140695B2 (en) Titanium tetrachloride aqueous solution and method for producing titanium composite oxide powder using the same
KR100396085B1 (en) A Titanium Dioxide powder and The method for preparation thereof
JPH06340421A (en) Acicular, porous and fine-particle titanium oxide and its production
JPH10236824A (en) Titania-zirconia multiple oxide fine powder and its production
KR100503857B1 (en) Preparation of Nano-sized Crystalline Titanic Acid Barium Powder from Aqueous Titanium Tetrachloride and Barium Chloride Solutions Prepared by Use of Inorganic Acids
KR20140115973A (en) Highly crystallized particles and production method thereof
CN110586027A (en) Preparation method of porous microcrystalline glass containing photocatalytic functional crystalline phase and obtained product
TW201509817A (en) Ultramicron titanium dioxide and manufacturing method thereof
JP2005022896A (en) Silica gel carrying heteroelement

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050803

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees