JPS60161338A - Manufacture of mixed fine particle consisting of batio3 and basn(oh)6 and fine particle of ba(snxti1-x)o3 solid solution - Google Patents

Manufacture of mixed fine particle consisting of batio3 and basn(oh)6 and fine particle of ba(snxti1-x)o3 solid solution

Info

Publication number
JPS60161338A
JPS60161338A JP1388084A JP1388084A JPS60161338A JP S60161338 A JPS60161338 A JP S60161338A JP 1388084 A JP1388084 A JP 1388084A JP 1388084 A JP1388084 A JP 1388084A JP S60161338 A JPS60161338 A JP S60161338A
Authority
JP
Japan
Prior art keywords
fine particles
solid solution
mixed
fine particle
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1388084A
Other languages
Japanese (ja)
Other versions
JPH0621035B2 (en
Inventor
Akira Kamihira
上平 曉
Masayuki Suzuki
真之 鈴木
Hiroshi Yamanoi
山ノ井 博
Hidemasa Tamura
英雅 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1388084A priority Critical patent/JPH0621035B2/en
Publication of JPS60161338A publication Critical patent/JPS60161338A/en
Priority to JP5199045A priority patent/JPH0717375B2/en
Publication of JPH0621035B2 publication Critical patent/JPH0621035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled mixed fine particles having high activity, high sintering properties at low temps., and high purity by mixing an Sn compd. and a Ti compd., adding a Ba salt to the mixture, and allowing the mixture to react in a strongly alkaline aq. soln. CONSTITUTION:An Sn compd. or its hydrolysate and a Ti compd. or its hydrolysate are mixed in a specified ratio. SnCl4, Sn(NO3)4, etc. are used as the Sn compd., and the hydrolysate is obtained by hydrolyzing the aq. soln. of said Sn compd. with an alkaline soln. such as NH4OH. Meanwhile, TiCl4, Ti(SO4)2, etc. are used as the Ti compd., and its hydrolysate is obtained by hydrolyzing the aq. soln. of said Ti compd. with an alkaline soln. such as NH4OH. A Ba salt [Ba(NO3)2, etc.] is added to the mixture in 0.7-2.0mol ratio of Ba/(Sn+Ti), and the mixture is allowed to react at >=about 13pH and about 80 deg.C for >=5min. The formed precipitate is then washed, and dried to obtain the fine particles wherein BaTiO3 fine particles and BaSn(OH)6 fine particles are mixed.

Description

【発明の詳細な説明】 本発明は、誘電体拐料の1釉であるBaTiO3とBa
Sn (OH) 6より成る混合微粒子及びBa(Sn
x Ti 1−y)ot固溶体微粒子の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes BaTiO3 and BaTiO3, which are one of the dielectric glazes.
Mixed fine particles consisting of Sn (OH) 6 and Ba (Sn
The present invention relates to a method for producing x Ti 1-y)ot solid solution fine particles.

近年、セラミック材料を微粒子化するための製造方法が
種々の角度からωF究されているが、その微粒子化した
セラミック拐料の用途の一つとしてコンデンサへの応用
がある。電子製品の小形化、高密度化に伴い、コンデン
サについても他の電子部品と同様に小形、軽量にし、更
に大容量化、耐高周波性の向上が要求されている。この
ため、セラミックコンデンサにおいては、セラミック層
の厚みを薄く、均一圧するためにも誘電体材料の微粒子
化が必要となる。また、この微粒子化により、焼結温度
を低く抑えることも可能となる。
In recent years, ωF has been investigated from various angles on manufacturing methods for making ceramic materials into fine particles, and one of the applications of the finely divided ceramic particles is in capacitors. BACKGROUND ART As electronic products become smaller and more dense, capacitors, like other electronic components, are required to be smaller and lighter, as well as to have larger capacity and improved high frequency resistance. For this reason, in ceramic capacitors, it is necessary to make the dielectric material finer in order to reduce the thickness of the ceramic layer and provide uniform pressure. Moreover, this fine particle formation also makes it possible to keep the sintering temperature low.

この他、電子材料、圧電拐料、透明セラミック拐料等の
原料としても、例えば焼結性、温度特性を改新する上か
ら、粒子径が小さく、均一なものが期待されている。
In addition, particles with small and uniform particle diameters are expected to be used as raw materials for electronic materials, piezoelectric materials, transparent ceramic materials, etc., for example, in order to improve sinterability and temperature characteristics.

このような@電体材料の−っとしてチタン酸バリウムと
スズ酸バリウムの固溶体Ba(Snx Ti 1−X)
03(以下、BSTxと略記し、数字XはSnのモル%
を示す。なお、0<x<1)があり、従来この固溶体を
得るためにBaCO3と5n02とTi0z又はBaT
 i03とBaSnO3を原料とする固相反応が行われ
ている。この同相反応により得られたBST固溶体を微
粒子化する場合、仮焼後の粉砕工程においてAI 20
3などの不純物の混入は避けられない面がある。また、
粉砕した固溶体微粒子の粒径が不均一であることによる
成形むらの発生、焼結後の気孔の増加などの問題が生じ
る。更に、このようにして得た固溶体微粒子の固溶均一
性は高いとは言えず、局所的に組成変動即ち、Sn又は
Tiの含有量の多い部分が現われる。この原因は、仮焼
後の微粒子の粒径が不均一で比較的大きいことにより、
SnとTiの微粒子の拡散状態が異るためである。この
結果、誘電特性面では期待される拡散相転移のプロファ
イルが悪くなる等の問題点が生じており、改善の余地が
多い。加えて、現状では固相反応により単−相のBST
固溶体微粒子を得るのが内軸であり、組成によっては1
500℃以上を必要としている。このことは、単−相を
得る上及びこの固溶体微粒子の誘電特性を利用する上で
大きな問題点となっている。
A solid solution of barium titanate and barium stannate Ba (Snx Ti 1-X)
03 (hereinafter abbreviated as BSTx, the number X is the mol% of Sn
shows. Note that 0<x<1), and conventionally, to obtain this solid solution, BaCO3, 5n02, Ti0z or BaT
A solid phase reaction using i03 and BaSnO3 as raw materials is being carried out. When the BST solid solution obtained by this in-phase reaction is made into fine particles, AI 20
The contamination of impurities such as 3 is unavoidable. Also,
Problems such as uneven molding and an increase in pores after sintering occur due to the non-uniform particle size of the pulverized solid solution fine particles. Furthermore, the solid solution uniformity of the solid solution fine particles obtained in this manner cannot be said to be high, and local compositional fluctuations, that is, portions with a high content of Sn or Ti appear. This is because the particle size of the fine particles after calcination is uneven and relatively large.
This is because the diffusion states of Sn and Ti particles are different. As a result, problems have arisen in terms of dielectric properties, such as a worsening of the expected diffusion phase transition profile, and there is much room for improvement. In addition, at present, single-phase BST is produced by solid-phase reaction.
It is the inner axis that obtains solid solution fine particles, and depending on the composition, 1
It requires a temperature of 500°C or higher. This poses a major problem in obtaining a single phase and in utilizing the dielectric properties of this solid solution fine particle.

最近これらの問題点を改善するための試みが多方面でな
されているが、その一つに金属アルコキシド法がある。
Recently, attempts have been made in various fields to improve these problems, one of which is the metal alkoxide method.

金属アルコキシドとは、アルコールの水素原子を金属で
置換した化合物をいう、この金属アルコキシド法にょる
Ba(Zrx Ti 1−X)03の合成法として、例
えば特公昭58−2220号公報に示されているものが
あるが、この方法にょるBa(Snx Ti 1−x)
Oaの合成例に関する報告は未だなされていな〜・。し
かし、この合成法において使用する有機金属化合物であ
る金属アルコキシドは、通常の固相反応法で使用する原
料より遥かに価格が高いという点でも実用化には多くの
問題点がある。
Metal alkoxide refers to a compound in which the hydrogen atom of an alcohol is replaced with a metal.As a method for synthesizing Ba(Zrx Ti 1-X)03 by this metal alkoxide method, for example, Japanese Patent Publication No. 58-2220 discloses There are some, but this method uses Ba (Snx Ti 1-x)
There have been no reports yet on the synthesis of Oa. However, metal alkoxides, which are organometallic compounds used in this synthesis method, have many problems in practical application, including the fact that they are much more expensive than raw materials used in ordinary solid-phase reaction methods.

一方、本出願人は、BaT 103の合成法(%願昭5
7−147226)及びBa5n(OH)6の合成法(
特願昭58−49765)を提案したが、この合成法に
基づき両者を別々に合成した後、混合することにより固
溶体微粒子を得る方法が考えられる。しかし、この方法
による場合、目的の割合に混合するのが単純ではない。
On the other hand, the present applicant has developed a method for synthesizing BaT 103 (%
7-147226) and the synthesis method of Ba5n(OH)6 (
Japanese Patent Application No. 58-49765) has been proposed, but it is conceivable that based on this synthesis method, both may be synthesized separately and then mixed to obtain solid solution fine particles. However, when using this method, it is not simple to mix them in the desired proportions.

即ち、合成時にどちらの化合物にも吸着水のようなM量
損を生じさせるものが伴うため、直ちに秤部のみによっ
て混合するわけにはいかないからである。そこで、−産
熱処理してl量損のなくなった後、目的の割合に混合す
る必要がある。
That is, since both compounds are accompanied by something that causes loss of M amount, such as adsorbed water, during synthesis, it is not possible to immediately mix them only using the weighing section. Therefore, it is necessary to perform a heat-generating treatment to eliminate the amount loss, and then mix the components to the desired ratio.

本発明は、上述のような間勉点を解決することができる
BaTiO3とB a S n (OH)6より成る混
合微粒子及びBa(Snx T目−x)03固溶体微粒
子の製造方法を提供するものである。
The present invention provides a method for producing mixed fine particles of BaTiO3 and BaSn(OH)6 and Ba(SnxT-x)03 solid solution fine particles, which can solve the problems mentioned above. It is.

本発明は、Sn化合物もしくはその加水分解生成物とT
i化合物もしくはその加水分解生成物とを所定の割合に
混合した後、Ba場を加え、強アルカリ性水溶液中、沸
点付近の温度で反応させ、等のアルカリイオンを充分除
去し、濾過、乾燥させることにBaTiO3微粒子とB
a5n(OH,)e微粒子の混合した微粒子を得る製造
方法である。
The present invention relates to a Sn compound or its hydrolysis product and T.
After mixing the i compound or its hydrolysis product in a predetermined ratio, add a Ba field, react in a strong alkaline aqueous solution at a temperature near the boiling point, etc. to sufficiently remove alkali ions, filter, and dry. BaTiO3 fine particles and B
This is a manufacturing method for obtaining fine particles in which a5n(OH,)e fine particles are mixed.

次に、上記操作により得られたBaTiO3とBarn
 (OH) eより成る混合微粒子に熱処理を施すこと
によりBa(Snx Ti 1−X)03固溶体微粒子
を得ることができる。
Next, BaTiO3 obtained by the above operation and Barn
Ba(SnxTi1-X)03 solid solution fine particles can be obtained by heat-treating mixed fine particles consisting of (OH)e.

ここで、Sn化合物としては、5nC14、5n(NO
3)4、Sn(SO4)2 、5n(SOわ2 ・2H
20など、またSn化合物の加水分解生成物としては、
その水溶液をNH40H1LiOI−1、Naα−(、
KOH等のアルカリ溶液で加水分解させたものを使用す
ることができる。世し、硫酸根− 804がある場合には、加水分解した後、デカンテーシ
ョン、濾過を充分繰り返して硫酸根を除去する必要があ
る。また可溶性スズ酸塩であるNa25n03 ・3H
20、K2Sn03 ・3H20等を使用しても良い。
Here, as Sn compounds, 5nC14, 5n(NO
3) 4, Sn(SO4)2, 5n(SOwa2 ・2H
20 etc., and hydrolysis products of Sn compounds include:
The aqueous solution was mixed with NH40H1LiOI-1, Naα-(,
Those hydrolyzed with an alkaline solution such as KOH can be used. However, if sulfate groups -804 are present, it is necessary to remove the sulfate groups by sufficiently repeating decantation and filtration after hydrolysis. Also, soluble stannate Na25n03 ・3H
20, K2Sn03, 3H20, etc. may be used.

Ti化合物としては、TiCl4、Ti(SO4)zな
ど、またTi化合物の加水分解生成物としては、その水
浴液を上記アルカリ溶液で加水分解させたものを使用す
ることができる。但し、Ti(SO4)2を使用する場
合には、硫酸根804 を除去する必要があるので、1
回、アルカリで加水分解してT i02・nH2Oを作
り、デカンテーショ/、濾過を総り返した後使用する。
As the Ti compound, TiCl4, Ti(SO4)z, etc. can be used, and as the hydrolysis product of the Ti compound, a product obtained by hydrolyzing the water bath solution with the above-mentioned alkaline solution can be used. However, when using Ti(SO4)2, it is necessary to remove the sulfate group 804, so 1
It is then hydrolyzed with an alkali to produce Ti02.nH2O, which is then used after repeated decanting/filtration.

Ba塩としては、Ba(NO3)z 、Ba(OI−i
)2 、BaCl2、Ba (CH3COO) 2など
を使用することができる。8:た、これらの加水分解生
成物を使用してもよい。
Ba salts include Ba(NO3)z, Ba(OI-i
)2, BaCl2, Ba(CH3COO)2, etc. can be used. 8: These hydrolysis products may also be used.

BaTiO3とBa5n(OH)6より成る混合微粒子
を合成する際の反応条件として、強アルカリ性水溶液の
pl−(は13.0以上、好ましくは132以上、反応
温度は80°C以上、好ましくは90°C以上、反応時
間は5分以上、好ましくは30分以上、またBa/ (
Sn+Ti )のモル比は0.7〜2.0の範囲、好ま
しくは1.0付近とする。
The reaction conditions for synthesizing mixed fine particles consisting of BaTiO3 and Ba5n(OH)6 are as follows: pl-(of a strongly alkaline aqueous solution is 13.0 or higher, preferably 132 or higher, and the reaction temperature is 80°C or higher, preferably 90°C). C or more, reaction time is 5 minutes or more, preferably 30 minutes or more, and Ba/ (
The molar ratio of Sn+Ti is in the range of 0.7 to 2.0, preferably around 1.0.

BaTiO3とBa5n(OH)6より成る混合微粒子
に対して施す熱処理条件は、BST固溶体微粒子のSn
の含媚によって異なるが、Sn/Tiのモル比か1に近
いものは、1260°C〜1350°C程度でよく、ま
たSn/T iのモル比か十のに近いものは1400°
C〜1460℃程度に温度を上げる必要がある。但し、
この熱処理条件は、単−相のl3ST固溶体微粒子を得
る目的がある場合に適用されるものであり、これ以外の
目的で使用する場合には、混合微粒子の合成時のt マ
でもよく、使用目的によって熱処理温度を設定すればよ
い。
The heat treatment conditions applied to the mixed fine particles consisting of BaTiO3 and Ba5n(OH)6 are as follows:
It depends on the sweetness of the Sn/Ti molar ratio, but if the Sn/Ti molar ratio is close to 1, the temperature may be about 1260°C to 1350°C, and if the Sn/Ti molar ratio is close to 10, the temperature may be 1400°C.
It is necessary to raise the temperature to about 1460°C. however,
These heat treatment conditions are applied when the purpose is to obtain single-phase l3ST solid solution fine particles, and when used for other purposes, the heat treatment conditions may be the temperature during synthesis of mixed fine particles, depending on the purpose of use. The heat treatment temperature can be set by

上述した通り、本発明によれば、BaTiO3とBaS
n (OH) 6より成る混合微粒子を湿式合成した後
、従来の固相反応法と比べて150’C程低い熱処理温
度でBST固溶体微粒子を得ることができる。このBS
T固溶体微粒子は、粒子径の均一性が高いため、高活性
であると同時に低温での焼結性も高い。また、組成変動
の非常に少ない高純度の微粒子であるから、誘11%性
が優れている。更に、混合値粒子におけるSnとTiの
拡散性が高いために、仮焼な必要とせず、1回の熱処理
で直ちに本焼成に入ることも可能である。これは、Ba
 Sn (Q)l) 6が熱処理の途中で一度形骸化し
てアモルファス的になり、次に形成されたBaSnO3
微粒子がBaT i03微粒子に一方的に拡散するため
であると推測される。本発明によれば、混合微粒子の合
成時、結晶質で得られることから、濾過なども容易であ
り、生産性が高い。加えて、出発原料が安価であるから
、同じ湿式゛合成法である金属アルコキシド法などと比
較して、経済面でも非常に有利である。
As mentioned above, according to the present invention, BaTiO3 and BaS
After wet-synthesizing mixed fine particles consisting of n (OH) 6, BST solid solution fine particles can be obtained at a heat treatment temperature that is about 150'C lower than in conventional solid phase reaction methods. This BS
Since T solid solution fine particles have high uniformity in particle size, they have high activity and high sinterability at low temperatures. Furthermore, since the particles are of high purity with very little compositional variation, they have excellent dielectric properties of 11%. Furthermore, since the diffusivity of Sn and Ti in the mixed value particles is high, it is possible to immediately start the main firing with one heat treatment without requiring calcination. This is Ba
Sn (Q)l) 6 becomes amorphous during the heat treatment, and then BaSnO3 is formed.
It is presumed that this is because the fine particles diffuse unilaterally into the BaT i03 fine particles. According to the present invention, since mixed fine particles are obtained in crystalline form during synthesis, filtration is easy and productivity is high. In addition, since the starting materials are inexpensive, it is economically advantageous compared to other wet synthesis methods such as the metal alkoxide method.

以下′、本発明を実施例に基づいて説明する。The present invention will be explained below based on examples.

実施例 実施例1 約200gのTiCl4を氷水中に攪拌しながら加えて
水浴液を作った後、メスフラスコに移し変えて容謔°を
1000ccとする。次に、この溶液から一部を採取し
、アンモニア水を過剰に加えてTiO2を沈澱させる。
Examples Example 1 Approximately 200 g of TiCl4 was added to ice water with stirring to make a water bath solution, and then transferred to a volumetric flask to make a total volume of 1000 cc. Next, a portion is taken from this solution and an excess of aqueous ammonia is added to precipitate TiO2.

この沈澱に約1000℃の熱処理を施した後、l量測定
を行ってメスフラスコ中のT1Cl 4標準溶液の正確
な濃度を決定する(この場合、0.9595moQ、7
gであった)。一方、ABO3ペロプス力イト型化合物
のBサイトが5nout換されたSn化合物として、B
ST 50(即ち、Ba(Sn O,5Ti o、s 
)03 )が得られるように、上記’I’1C14標準
溶次30.67nJとNa 2Sn03 ・3H20を
7.848g正確にビー力に採取し・た後、更にBa(
NO3)zを15.38 g加えて溶解する。
After subjecting this precipitate to a heat treatment of approximately 1000°C, a volume measurement is performed to determine the exact concentration of the T1Cl4 standard solution in the volumetric flask (in this case, 0.9595moQ, 7
g). On the other hand, as a Sn compound in which the B site of the ABO3 peropus powerite type compound has been changed to 5nout, B
ST 50 (i.e. Ba(SnO,5Tio,s
)03), 30.67 nJ of the above 'I'1C14 standard solution and 7.848 g of Na 2Sn03 ・3H20 were accurately sampled with beer force, and then Ba(
Add and dissolve 15.38 g of NO3)z.

次は、予め調整済みの5N−KOH溶液を添加してpH
13,6とし、全溶液量400mgの白濁液を得る。
Next, add a pre-adjusted 5N-KOH solution to adjust the pH.
13.6 to obtain a cloudy white liquid with a total solution amount of 400 mg.

この溶液を沸騰させながら撹拌して、7時間和熟成させ
る。結成後生成した白色沈澱に温水を使用して10回捏
和カンテーションを繰り返すことにより、アルカリイオ
ン等の不純物を除去する。次に、この沈澱を濾過分離し
、90℃で一昼夜乾燥させることにより微粒子粉末を得
る。
This solution is stirred while boiling and aged for 7 hours. After formation, impurities such as alkali ions are removed by repeating kneading and canation of the white precipitate 10 times using hot water. Next, this precipitate is separated by filtration and dried at 90° C. for a day and night to obtain a fine powder.

上記操作により得られた微粒子粉末をX線回折(銅ター
ゲツト、ニッケルフィルタ)により分析した結果、X線
回折パターンは、ASTMカードの5−0626(B、
4Ti(J3)と9− s 3 (BaSn(OH)6
)の合成パターンに相当したものが得られた。従って、
この微粒子粉末は、BaT i03微粒子とBa5n(
OH)6微粒子の混合物であることが確認できた。この
混合微粒子は、化学量論的にBaTiO3:Ba5n(
OH)6= 1 : 1である。この混合微粒子の走査
型電子顕微鏡写真を第1図及び第2図(拡大力真)に示
す。20〜30ttmの針状結晶がBa5n(OH)s
であり、0.1〜0.2 μmの微細な球状結晶がBa
TiO3である。
As a result of analyzing the fine particle powder obtained by the above operation by X-ray diffraction (copper target, nickel filter), the X-ray diffraction pattern was found to be ASTM card 5-0626 (B,
4Ti(J3) and 9-s3(BaSn(OH)6
) was obtained. Therefore,
This fine particle powder contains BaT i03 fine particles and Ba5n (
It was confirmed that it was a mixture of OH)6 fine particles. This mixed fine particle has a stoichiometric BaTiO3:Ba5n (
OH)6=1:1. Scanning electron micrographs of this mixed fine particle are shown in FIGS. 1 and 2 (magnification true). Needle crystals of 20-30ttm are Ba5n(OH)s
The fine spherical crystals of 0.1 to 0.2 μm are Ba
It is TiO3.

次に、上記混合微粒子粉末に1260℃で3時間熱処理
を施す。これにより得られた微粒子粉末を上記と同様に
X線回折により分析した結果を第3図に示す。このX線
回折パターンは、従来の固相反応法により得られたBS
T 50(BaSn(01()6微粒子も混合している
)のX線回折パターン(第4図)と対応して′おり、こ
の微粒子はBST 50であることが確認できた。なお
、従来式のBST 50は、次のようにして作成したも
のである。BaCO3とTiO2と5n02をモル比で
Ba:Ti :Sn = 1:0.5 :0.5となる
ようにとり、全量を0.1 m O・eとした後、ポリ
エチレンのびんに入れ、更に水を約30cc加える。次
に、ボールミルで15時間混合粋砕した後、1415°
Cで熱処理することによりBST50を得る。従って、
同相反応法によれば、本発明による場合よりも150℃
以上高温が必要である。
Next, the mixed fine particle powder is heat treated at 1260° C. for 3 hours. The fine particle powder thus obtained was analyzed by X-ray diffraction in the same manner as above, and the results are shown in FIG. This X-ray diffraction pattern is similar to that of BS obtained by conventional solid-phase reaction method.
This corresponds to the X-ray diffraction pattern (Fig. 4) of T50 (BaSn (which also contains 01()6 fine particles)), and it was confirmed that these fine particles were BST50. BST 50 was prepared as follows: BaCO3, TiO2, and 5n02 were taken at a molar ratio of Ba:Ti:Sn = 1:0.5:0.5, and the total amount was 0.1. m O・e, then put into a polyethylene bottle and add about 30cc of water.Next, after mixing and crushing in a ball mill for 15 hours, 1415°
BST50 is obtained by heat treatment at C. Therefore,
According to the in-phase reaction method, 150° C.
A higher temperature is required.

実施例2 実施例1と同じように調製したTiCl4標準溶液(0
,9595mog/Q)を用意する。次に、約260g
の5nCI 4を氷水中に攪拌しながら加えて水溶液を
作った後、メスフラスコに移し変えて容量を1000c
cとする。そして、TiO14の場合と同様に、この溶
液から一部を採取し、アンモニア水を過剰に加えて5n
02を沈澱させた後、1000℃で約3時間熱処理し、
重量測定を行うことにより5nC14標準溶液の正確な
濃度を決定する(この場合、0.9015moQ/Qで
あった)。次に、BST 50が得られるように、5n
C1,i標準溶液32.64mQ及びT i Cl 4
標準溶液30.67mQを含む溶液にBa (NO3)
 2を15.38 g溶解した後、NaOH溶液でpH
13,7に調整する。この溶液を沸騰させながら攪拌し
て、6時間程熟成させる。
Example 2 TiCl4 standard solution (0
, 9595mog/Q). Next, about 260g
After adding 5nCI4 into ice water with stirring to make an aqueous solution, transfer it to a volumetric flask and bring the volume up to 1000c.
Let it be c. Then, as in the case of TiO14, a portion of this solution was collected and an excess of ammonia water was added to give 5n.
After precipitating 02, heat treatment was performed at 1000°C for about 3 hours,
Determine the exact concentration of the 5nC14 standard solution by performing a gravimetric measurement (in this case it was 0.9015moQ/Q). Then 5n so that BST 50 is obtained
C1,i standard solution 32.64 mQ and T i Cl 4
Ba (NO3) in a solution containing 30.67 mQ of standard solution
After dissolving 15.38 g of 2, pH was adjusted with NaOH solution.
Adjust to 13.7. This solution is stirred while boiling and aged for about 6 hours.

結成後生成した白色沈澱に温水を使用して10回捏和カ
ンテーションを繰り返すことにより、アルカリイオン等
の不純物を除去する。次に、この沈澱を濾過分離し、9
0℃で一昼夜乾燥させることにより微粒子粉末を得る。
After formation, impurities such as alkali ions are removed by repeating kneading and canation of the white precipitate 10 times using hot water. Next, this precipitate was separated by filtration, and 9
A fine particle powder is obtained by drying at 0° C. for a day and night.

上記操作により得られた微粒子粉末をX線回折により分
析した結果は、第3図と同じであり、この微粒子粉末は
BaTiO3微粒子とBa5n(OH)e微粒子の混合
物であることが確認できた。また、この微粒子粉末の走
査型電子顕微鏡写真によれば、第1図及び第2図に類似
した形状の微粒子が観察できた。
The results of X-ray diffraction analysis of the fine particle powder obtained by the above operation were the same as those shown in FIG. 3, and it was confirmed that this fine particle powder was a mixture of BaTiO3 fine particles and Ba5n(OH)e fine particles. Further, according to a scanning electron micrograph of this fine particle powder, fine particles having a shape similar to that shown in FIGS. 1 and 2 could be observed.

次に、この微粒子粉末に対して温度を変えて3時間熱処
理を施すことにより、格子定数の変化を調べた結果を第
5図に示す。このグラフより、1260°Cまで2相混
合状態が続くが、1260°Cを過ぎると単相のBST
 50となることが判明した。この相変化の状態から、
第1相のBaSnO3は1260℃近くまで格子定数が
全く変わらブよいのに対して、@2相ノBaTiO31
4Sn ノ拡散により1000’C前後から格子定数が
徐々に変化し、0≦x<0.5の範囲においてBa(S
nx Ti 1□)03のXが増加する傾向が明らかで
ある。このことは、熱処理による拡散現象の際、Ba5
nQ3が一方的に拡散することをR1明するものである
Next, this fine particle powder was subjected to heat treatment for 3 hours at different temperatures, and the change in lattice constant was investigated. The results are shown in FIG. From this graph, the two-phase mixed state continues up to 1260°C, but after 1260°C, the single-phase BST
It turned out to be 50. From this state of phase change,
While the lattice constant of the first phase BaSnO3 changes completely up to nearly 1260°C, the @2 phase BaTiO3
The lattice constant gradually changes from around 1000'C due to the diffusion of 4Sn, and Ba(Sn) changes gradually in the range 0≦x<0.5.
There is a clear tendency for X of nx Ti 1□)03 to increase. This means that during the diffusion phenomenon caused by heat treatment, Ba5
R1 clearly shows that nQ3 diffuses unilaterally.

実施例3 実施例1と同様にして合成したBaTiO3とBaSn
 (Oi() 6より成る混合微粒子粉末を用意する。
Example 3 BaTiO3 and BaSn synthesized in the same manner as Example 1
A mixed fine particle powder consisting of (Oi() 6 is prepared.

次に、この粉末に1400℃で熱処理を施すことにより
、BST固溶体微粒子を得る。一方、従来の乾式固相反
応法(熱処理温度1430℃)により得たBST固溶体
微粒子も用意する。そして、この両者に対シテ、N17
4にり、1°DS=0.15mm R8”l°SSノス
リット条件及び1/40/minの走査速度、時定数1
秒の条件で面指数(100) (200)(300)(
400)の回折パターンについてX線測定を行った。一
方、Si粉末を標準試料としてBST固溶体試料のみに
よる積分幅βをジョーンズ(Jones) 、の方法が
ら算出し、平均−歪lを与えるβCOSθ/λ−5in
θ/λのプロットを行ったグラフを第6図に示す。直線
Aが本発明による固溶体微粒子、直&!Bが固相反応法
による固溶体微粒子を夫々示す。このグラフで直線の傾
きが2η(η−Δd/d )であるから、傾きの非常に
小さい本発り」により得られたBST固溶体微粒子の方
が、格子定数のゆらぎが少なく、従って組成変動が非常
に小さいことがわかる。これに対して、固相反応法によ
るBST固溶体微粒子の方は、組成変動を調べると0.
400<x(0,600であり、組成変動が著しく大き
いことがわかる。
Next, this powder is heat-treated at 1400°C to obtain BST solid solution fine particles. On the other hand, BST solid solution fine particles obtained by a conventional dry solid phase reaction method (heat treatment temperature: 1430° C.) are also prepared. And against both of them, N17
4, 1°DS=0.15mm R8”l°SS noslit condition, scanning speed of 1/40/min, time constant 1
Surface index (100) (200) (300) (
X-ray measurements were performed on the diffraction pattern of 400). On the other hand, using the Si powder as a standard sample, the integral width β using only the BST solid solution sample is calculated using the method of Jones, and βCOSθ/λ-5in gives the average strain l.
A graph plotting θ/λ is shown in FIG. The straight line A represents the solid solution fine particles according to the present invention, straight &! B indicates solid solution fine particles obtained by solid phase reaction method. In this graph, the slope of the straight line is 2η (η - Δd/d), so the BST solid solution fine particles obtained by this method, which has a very small slope, have less fluctuation in the lattice constant and therefore less compositional fluctuation. You can see that it is very small. On the other hand, BST solid solution fine particles produced by the solid phase reaction method have a composition variation of 0.
400<x(0,600), and it can be seen that the compositional variation is extremely large.

実施例4 実施例1及び2と同様にして作成したTiC+4と5n
CI 4の標準溶液を使用し、BST 10 、20.
30.40.50.60.70180.90が得られる
ようにBa塩を適当JR加えて混合した後、強アルカリ
性水溶液中で反応させることにより9種類の微粒子粉末
を得る。これらの微粒子粉末について得られたX練捏4
ノ「パターンは、組成によってピーク強度が異なるもの
の、全て13aTi03とBarn (OH,)6より
成る混合微粒子であることか確認できた。次に、単−相
のBST[iil浴体機体微粒子るために、上記9釉類
の混合微粒子に対して、1460℃で3時間熱処理を施
した。但し、組成によっては、この温度より遥かに低い
温度で固溶体微粒子を得ることができるが、Sn含有量
の多いもの及びBaTiO3$111に非常に近い組成
のものについては高い熱処理温度が必要である。このよ
うにして作成した各BST固溶体微粒子の格子定数をN
e1son −R11ey ’AJiI閂数の高角度側
(90°以上)を用いて算出した結果を第7図に示す。
Example 4 TiC+4 and 5n produced in the same manner as Examples 1 and 2
Using a standard solution of CI 4, BST 10, 20.
30.40.50.60.70180.90 is obtained by adding appropriate Ba salt and mixing, and then reacting in a strong alkaline aqueous solution to obtain nine types of fine particle powders. X kneading 4 obtained for these fine particle powders
Although the peak intensity of the pattern differs depending on the composition, it was confirmed that all the patterns were mixed fine particles consisting of 13aTi03 and Barn (OH,)6. The mixed fine particles of the above nine glazes were heat-treated at 1460°C for 3 hours.However, depending on the composition, solid solution fine particles can be obtained at a much lower temperature than this temperature, but if the Sn content is A high heat treatment temperature is required for those with a large amount of BaTiO3 and those with a composition very close to BaTiO3$111.The lattice constant of each BST solid solution fine particle prepared in this way is N
Fig. 7 shows the results calculated using the high angle side (90° or more) of the number of bolts.

本発明により湿式合成したBST固溶体微粒子の格子定
数は、ベガード側にきれいに従うものである。なお、こ
のような結果を位来の同相反応法で得ようとする場合、
1500℃以上の非詔に高温の処理温度を必、戟とする
ことは明らかである。
The lattice constant of the BST solid solution fine particles wet-synthesized according to the present invention closely follows the Vegard side. In addition, when trying to obtain such a result using the traditional in-phase reaction method,
It is clear that a very high processing temperature of 1500° C. or higher is required.

実施例5 実施例1と同じ操作で作成した本発明に係る混合微粒子
に単−相となる最低温度である1260℃で熱処理して
得たBST 50固溶体微粒子の走査型電子顕微鏡写真
を第8図及び第9図(拡大写真)K示す。また、実施例
1に示す同相反応法により単−相となる最低温度である
1410℃で熱処理することにより得たBST 50固
溶体微粒子の走査型電子顕微鏡写真を第10図及び第1
1図(拡大写真)に示す。第8図〜第11図から明らか
な通り、本発明により作成したBST固溶体微粒子は、
粒径が1〜2μで非常に均一性が高いのに対して、固相
反応法により作成したBST固溶体微粒子は二次凝集か
ら焼結段階に入っていき、粒径が05〜5.0μと不均
一であることがわかる。これらの比較は、本発明による
漫式合成法が従来の固相反応法より優れていることを実
証するものである。
Example 5 FIG. 8 shows a scanning electron micrograph of BST 50 solid solution fine particles obtained by heat-treating the mixed fine particles according to the present invention prepared in the same manner as in Example 1 at 1260° C., which is the lowest temperature at which a single phase is formed. and FIG. 9 (enlarged photograph) K are shown. In addition, scanning electron micrographs of BST 50 solid solution fine particles obtained by heat treatment at 1410°C, which is the lowest temperature at which a single phase is obtained by the in-phase reaction method shown in Example 1, are shown in Figures 10 and 1.
Shown in Figure 1 (enlarged photo). As is clear from FIGS. 8 to 11, the BST solid solution fine particles prepared according to the present invention are
On the other hand, BST solid solution fine particles created by the solid phase reaction method enter the sintering stage from secondary agglomeration, and have a particle size of 0.5 to 5.0 μ. It can be seen that it is non-uniform. These comparisons demonstrate the superiority of the simple synthesis method according to the present invention over conventional solid phase reaction methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はBaT i03とBa5n(OH)
sより成る混合微粒子の走査型電子顕微鏡写真、第3図
及び第4図は夫々本発明及び固相反応法により合成した
B5150のX線回折ノくターンを示す図、第5図は本
発明における熱処理温度と格子定数の関係を丁す特性図
、第6図は不拘−歪につ℃・てのハ0/λ−ainO/
λを測定した特性図、第7図をまBST固溶体微粒子の
組成と格子定数の関係を示す特性図、第8図及び第9図
は本発明によるBST 50の走査型電子′a微鏡写真
、第10図及び第11図しま固相反応法により合成した
BST 50の走査型電子顕微鏡写真である。 第3図 第5図 @6図 S諸θ/λ〔スー1〕 第7図 Btx (S*xTt1−x)03t>χ〔−]第10
図 二 (Xi、500)
Figures 1 and 2 are BaT i03 and Ba5n(OH)
FIGS. 3 and 4 are scanning electron micrographs of mixed fine particles consisting of B5150 synthesized by the present invention and the solid-phase reaction method, respectively, and FIG. 5 is a scanning electron micrograph of mixed fine particles composed of A characteristic diagram showing the relationship between heat treatment temperature and lattice constant, Figure 6 shows the relationship between heat treatment temperature and lattice constant.
7 is a characteristic diagram showing the relationship between the composition and lattice constant of BST solid solution fine particles, and FIGS. 8 and 9 are scanning electron micrographs of BST 50 according to the present invention. FIGS. 10 and 11 are scanning electron micrographs of BST 50 synthesized by the striped solid phase reaction method. Figure 3 Figure 5 @ Figure 6 S various θ/λ [Sue 1] Figure 7 Btx (S*xTt1-x)03t>χ[-] 10th
Figure 2 (Xi, 500)

Claims (1)

【特許請求の範囲】 1、Sn化合物もしくはその加水分フ剪生成物とTi化
合物もしくはその加水分解生成物とを混合した後、Ba
塩を加え、強アルカリ性水溶液中で反応させることを特
徴とするBaTiO3とB a S n (OH) 6
より成る混合微粒子の製造方法。 2、Sn化合物もしくはその加水分解生成物とTi化合
物もしくはその加水分解生成物とを混合した後、Ba塩
を加え、強アルカリ性水溶液中で反応させることにより
得られたBaTiO3とBaSn (OH) 6より成
る混合微粒子に熱処理をMIIすことを特徴とするBa
(Snx Ti1−X)03(0<x<1 )固溶体微
粒子の製造方法。
[Claims] 1. After mixing the Sn compound or its hydrolysis product and the Ti compound or its hydrolysis product, Ba
BaTiO3 and B a S n (OH) 6 characterized by adding salt and reacting in a strong alkaline aqueous solution
A method for producing mixed fine particles consisting of: 2. From BaTiO3 and BaSn (OH) 6 obtained by mixing a Sn compound or its hydrolysis product and a Ti compound or its hydrolysis product, adding Ba salt, and reacting in a strong alkaline aqueous solution. Ba characterized by performing MII heat treatment on mixed fine particles consisting of
(Snx Ti1-X)03 (0<x<1) Method for producing solid solution fine particles.
JP1388084A 1984-01-27 1984-01-27 Method for producing mixed fine particles comprising BaTiO 3) and BaSn (OH) 6) Expired - Lifetime JPH0621035B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1388084A JPH0621035B2 (en) 1984-01-27 1984-01-27 Method for producing mixed fine particles comprising BaTiO 3) and BaSn (OH) 6)
JP5199045A JPH0717375B2 (en) 1984-01-27 1993-07-16 Method for producing fine particles of Ba (SnxTi1-x) O3 solid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1388084A JPH0621035B2 (en) 1984-01-27 1984-01-27 Method for producing mixed fine particles comprising BaTiO 3) and BaSn (OH) 6)

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5199045A Division JPH0717375B2 (en) 1984-01-27 1993-07-16 Method for producing fine particles of Ba (SnxTi1-x) O3 solid solution

Publications (2)

Publication Number Publication Date
JPS60161338A true JPS60161338A (en) 1985-08-23
JPH0621035B2 JPH0621035B2 (en) 1994-03-23

Family

ID=11845519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1388084A Expired - Lifetime JPH0621035B2 (en) 1984-01-27 1984-01-27 Method for producing mixed fine particles comprising BaTiO 3) and BaSn (OH) 6)

Country Status (1)

Country Link
JP (1) JPH0621035B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911914A (en) * 1986-09-29 1990-03-27 Kazuko Satake Method for producing an exhaust gas sensor
US20150023857A1 (en) * 2013-07-16 2015-01-22 Massachusetts Institute Of Technology Piezoelectric and electrorestrictor materials
JP2021044533A (en) * 2019-09-10 2021-03-18 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic capacitor and method of manufacturing the same
CN113249087A (en) * 2021-05-24 2021-08-13 南京林业大学 High-conductivity antibacterial aldehyde-free adhesive and preparation method and application thereof
CN114054014A (en) * 2021-10-26 2022-02-18 重庆第二师范学院 Novel photocatalyst, preparation method and application thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911914A (en) * 1986-09-29 1990-03-27 Kazuko Satake Method for producing an exhaust gas sensor
US20150023857A1 (en) * 2013-07-16 2015-01-22 Massachusetts Institute Of Technology Piezoelectric and electrorestrictor materials
JP2021044533A (en) * 2019-09-10 2021-03-18 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic capacitor and method of manufacturing the same
CN112563026A (en) * 2019-09-10 2021-03-26 三星电机株式会社 Multilayer ceramic capacitor and method of manufacturing the same
KR20210083233A (en) * 2019-09-10 2021-07-06 삼성전기주식회사 Multi-layered ceramic capacitor and method of manufacturing the same
US11270844B2 (en) 2019-09-10 2022-03-08 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and method of manufacturing the same
US11670454B2 (en) 2019-09-10 2023-06-06 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and method of manufacturing the same
US11923146B2 (en) 2019-09-10 2024-03-05 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and method of manufacturing the same
CN113249087A (en) * 2021-05-24 2021-08-13 南京林业大学 High-conductivity antibacterial aldehyde-free adhesive and preparation method and application thereof
CN113249087B (en) * 2021-05-24 2022-05-27 南京林业大学 High-conductivity antibacterial aldehyde-free adhesive and preparation method and application thereof
CN114054014A (en) * 2021-10-26 2022-02-18 重庆第二师范学院 Novel photocatalyst, preparation method and application thereof
CN114054014B (en) * 2021-10-26 2023-06-13 重庆第二师范学院 Novel photocatalyst, preparation method and application thereof

Also Published As

Publication number Publication date
JPH0621035B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
KR930002232B1 (en) Process for producing composition which includes perovskite compound
Das et al. Low‐Temperature Preparation of Nanocrystalline Lead Zirconate Titanate and Lead Lanthanum Zirconate Titanate Powders Using Triethanolamine
Testinon et al. Synthesis of BaTiO3 particles with tailored size by precipitation from aqueous solutions
JP7382083B2 (en) Nano barium titanate powder and its manufacturing method, ceramic dielectric layer and its manufacturing method
JPS60155532A (en) Production of barium strontium titanate fine particle
Zhang et al. Synthesis of tetragonal BaTiO3 nano-particle via a novel tartaric acid co-precipitation process
US4810484A (en) Method for manufacturing fine lead titanate powders
US20040213730A1 (en) Method of making barium titanate
JP2709222B2 (en) Method for producing spherical fine powder comprising titanate and spherical fine powder obtained thereby
KR20210153705A (en) Nano barium titanate microcrystals and their manufacturing method, and barium titanate powder and their manufacturing method
JPS60161338A (en) Manufacture of mixed fine particle consisting of batio3 and basn(oh)6 and fine particle of ba(snxti1-x)o3 solid solution
Maison et al. Effect of calcination temperature on phase transformation and particle size of barium titanate fine powders synthesized by the catecholate process
JPH06305729A (en) Fine powder of perovskite type compound and its production
JPH0246531B2 (en)
Guo et al. Synthesis of zirconium-rich PZT ceramics by hydroxide coprecipitation under hot-press
Das et al. Low temperature chemical synthesis of nanosized ceramic powders
CN1212997C (en) Preparation method of barium strontium titanate ultra-fine powder
Kimura et al. Preparation of needle-like TiZrO 4 and PZT powders
JPH08119745A (en) Production of ceramic powder
KR100395218B1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
KR100483169B1 (en) Method for the preparation of multielement-based metal oxide powders
JPH0717375B2 (en) Method for producing fine particles of Ba (SnxTi1-x) O3 solid solution
JPH0873219A (en) Production of powdery ceramic
CN112028622B (en) Hard agglomerated large-particle BaTiO3Method for converting into nano and submicron particles
JPWO2003004415A1 (en) Barium titanate powder and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term