JPH0599950A - Dynamics quantity detector - Google Patents

Dynamics quantity detector

Info

Publication number
JPH0599950A
JPH0599950A JP3262195A JP26219591A JPH0599950A JP H0599950 A JPH0599950 A JP H0599950A JP 3262195 A JP3262195 A JP 3262195A JP 26219591 A JP26219591 A JP 26219591A JP H0599950 A JPH0599950 A JP H0599950A
Authority
JP
Japan
Prior art keywords
signal
acceleration
piezoelectric body
mechanical quantity
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3262195A
Other languages
Japanese (ja)
Other versions
JP2734836B2 (en
Inventor
Hiroaki Obayashi
博明 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3262195A priority Critical patent/JP2734836B2/en
Publication of JPH0599950A publication Critical patent/JPH0599950A/en
Application granted granted Critical
Publication of JP2734836B2 publication Critical patent/JP2734836B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable diagnosing malfunctions of a dynamic quantity detection means properly without affecting the detection range oft he dynamic quantity by generating electricmotive force with electrostatic induction. CONSTITUTION:The electric charge obtained as a piezoelectric effect by acceleration give to an piezoelectric body 1 is output to an amplifier 7 as an acceleration signal. The signal from an oscillator 5 due to its driving is amplified in a booster coil 13, cut at the direct current signal part and impressed as a high frequency high voltage to an electrode 11 of a stage 5 and resultantly, a voltage with high inductance is induced between two electrodes of the piezoelectric body 1 by the alternating electric field. As this changes with the abnormality of the piezoelectric body 1 and the like, malfunction can be diagnosed. The acceleration signal mixed and output by the amplifier 7 and the malfunction diagnosing signal are separated with a low-pass filter 17 and a band-pass filter 9, respectively. Based on these signals, the malfunction diagnosis and dynamic quantity calculation are performed with an arithmetic processing means. Thus, using the induction voltage caused by electrostatic induction independent of the voltage generated by acceleration, proper malfunction diagnosis can be done.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に故障診断機能を有
する力学量検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mechanical quantity detector having a fault diagnosis function.

【0002】[0002]

【従来の技術】近年のマイコンによる制御の普及に伴っ
て、種々の力学量を電気的に検出する力学量検出器の開
発が盛んである。そして、この開発においては、力学量
検出器の故障による異常検出値により不的確な制御が行
なわれることを防止するため、力学量検出器の故障診断
方法の確立が重要なテーマの一つである。
2. Description of the Related Art With the spread of control by microcomputers in recent years, development of mechanical quantity detectors for electrically detecting various mechanical quantities has been actively pursued. In this development, establishment of a failure diagnosis method for the mechanical quantity detector is one of the important themes in order to prevent inaccurate control due to an abnormal detected value due to a failure of the mechanical quantity detector. ..

【0003】故障診断機能を有する力学量検出器として
は、従来、例えば実開平1−5114号公報に開示され
るものがある。この力学量検出器は、特に力学量として
加速度を検出するものであるが、梁部を所定の周波数で
強制的に振動させ、この振動に基づく信号を分離して取
出し、該信号のレベルが所定の範囲内かどうかを判別す
ることにより故障の有無を判断する構成である。
As a mechanical quantity detector having a failure diagnosing function, there is one disclosed in, for example, Japanese Utility Model Laid-Open No. 1-5114. This mechanical quantity detector detects acceleration as a mechanical quantity in particular, but forcibly vibrates the beam portion at a predetermined frequency, separates the signal based on this vibration and extracts it, and the level of the signal is predetermined. It is configured to determine whether or not there is a failure by determining whether or not it is within the range.

【0004】[0004]

【発明が解決しようとする課題】上述した力学量検出器
によれば、感度が悪化したり、完全に信号を出さないと
いった異常や故障を検出できる反面、以下の如き改善す
べき課題を有していた。すなわち、加速度を検出する周
波数領域に故障診断のため梁部に与えた振動による信号
が現れるため、検出周波数領域が狭められ、また、この
狭められる領域を抑えるには故障信号を分離、除去する
ための急峻なフィルタを必要とし、コストが高くなる。
また、梁の振幅量には限界があり、故障診断のため常に
与えられる振幅によって、本来検出しなければならない
加速度による振幅量が犠牲になり、加速度の検出レンジ
が小さくなるのである。
According to the mechanical quantity detector described above, an abnormality or failure such as deterioration of sensitivity or complete absence of signal detection can be detected, but it has the following problems to be improved. Was there. That is, a signal due to vibration applied to the beam portion for fault diagnosis appears in the frequency region for detecting acceleration, so that the detection frequency region is narrowed, and in order to suppress this narrowed region, the fault signal is separated and removed. Since a steep filter is required, the cost becomes high.
Further, there is a limit to the amount of amplitude of the beam, and the amount of amplitude due to the acceleration that should be originally detected is sacrificed by the amplitude that is always given for failure diagnosis, and the acceleration detection range becomes smaller.

【0005】本発明は上記に鑑みてなされたもので、そ
の目的としては、力学量の検出レンジに影響を与えるこ
となく的確な故障診断を行なえるようにした力学量検出
器を提供することにある。
The present invention has been made in view of the above, and an object thereof is to provide a mechanical quantity detector capable of performing accurate failure diagnosis without affecting the detection range of the mechanical quantity. is there.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、力学量を電気的な量に変換する圧電体で
構成された力学量検出手段と、この力学量検出手段に対
し静電誘導により起電力を発生させる起電力発生手段
と、前記力学量検出手段から出力された起電力発生手段
による起電力および力学量の検出に基づく起電力を分離
して、それぞれの起電力に基づいて力学量検出手段の故
障診断および力学量の演算を行う演算処理手段とを有す
ることを要旨とする。
In order to achieve the above object, the present invention provides a mechanical quantity detecting means composed of a piezoelectric body for converting a mechanical quantity into an electric quantity and a static quantity detecting means for the mechanical quantity detecting means. Electromotive force generation means for generating electromotive force by electric induction and electromotive force generated by the electromotive force generation means output from the mechanical quantity detection means and electromotive force based on detection of the mechanical quantity are separated, and based on each electromotive force. And a processing unit for performing a failure diagnosis of the mechanical quantity detection means and a calculation of the mechanical quantity.

【0007】[0007]

【作用】本発明に係る力学量検出器にあっては、力学量
検出手段に対し静電誘導により起電力を発生させ、この
起電力に対する応答に基づいて故障診断を行うようにし
ている。
In the mechanical quantity detector according to the present invention, an electromotive force is generated in the mechanical quantity detecting means by electrostatic induction, and the failure diagnosis is performed based on the response to the electromotive force.

【0008】[0008]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は、本発明を加速度検出に適用した場
合の一実施例に係る加速度検出器の構成を示す図であ
る。同図において、1は力学量検出手段を構成する圧電
体であり、加速度が加わることで屈曲して電荷を発生す
るものである。この圧電体1は、図2に示す如く、その
一端側に配置されるスペーサ3を介して台座5により挟
持固定されている。したがって、この圧電体1にあって
は、その他端側において加速度による振動スペースが確
保され、いわゆる片持ち梁となっている。なお、上述し
た圧電体1、スペーサ3および台座5からなる構造体
は、図示しないが、ダイピングのためシリコンオイルに
つけてケースに封入される。
FIG. 1 is a diagram showing the configuration of an acceleration detector according to an embodiment when the present invention is applied to acceleration detection. In the figure, reference numeral 1 denotes a piezoelectric body that constitutes a mechanical quantity detecting means, and is bent by an acceleration being applied to generate an electric charge. As shown in FIG. 2, the piezoelectric body 1 is clamped and fixed by a pedestal 5 via a spacer 3 arranged on one end side thereof. Therefore, in this piezoelectric body 1, a vibration space due to acceleration is secured on the other end side, and it is a so-called cantilever. Although not shown, the structure including the piezoelectric body 1, the spacer 3 and the pedestal 5 described above is soaked in silicone oil for dipping and sealed in a case.

【0010】また、圧電体1の表面には、発生した電荷
をリード線6を介してアンプ7に出力するための図3に
示す如き櫛歯状の電極9が設けられている。台座5の圧
電体側表面には電極11が設けられており、この電極1
1は、昇圧コイル13を介して発振器15に接続されて
いる。なお、電極11、昇圧コイル13および発振器1
5は起電力発生手段を構成するものである。
On the surface of the piezoelectric body 1, there is provided a comb-teeth-shaped electrode 9 as shown in FIG. 3 for outputting the generated charges to the amplifier 7 via the lead wire 6. An electrode 11 is provided on the surface of the base 5 on the piezoelectric body side.
1 is connected to the oscillator 15 via the boosting coil 13. In addition, the electrode 11, the boosting coil 13, and the oscillator 1
Reference numeral 5 constitutes an electromotive force generating means.

【0011】一方、アンプ7の出力には、演算処理手段
を構成するローパスフィルタ17およびバンドパスフィ
ルタ19が並列に接続されている。
On the other hand, the output of the amplifier 7 is connected in parallel with a low-pass filter 17 and a band-pass filter 19 which constitute arithmetic processing means.

【0012】次に、本実施例の作用を説明する。Next, the operation of this embodiment will be described.

【0013】圧電体1に加速度が加わると、片持ち梁の
部位の振動による圧電効果によって加速度に応じた電荷
が得られ、加速度信号としてアンプ7に出力される。な
お、この加速度信号の周波数特性としては、片持ち梁の
剛性とシリコンオイルのダンピング効果により決定さ
れ、信号周波数(検出周波数)には限界がある。
When acceleration is applied to the piezoelectric body 1, a charge corresponding to the acceleration is obtained by the piezoelectric effect due to the vibration of the cantilever portion, and is output to the amplifier 7 as an acceleration signal. The frequency characteristic of the acceleration signal is determined by the rigidity of the cantilever and the damping effect of silicon oil, and the signal frequency (detection frequency) has a limit.

【0014】一方、発振器15の駆動による発振器15
からの信号は、昇圧コイル13で増幅されると共に直流
信号分がカットされ、高周波高電圧となって台座5の電
極11に印加される。これにより、図4に示す如く、圧
電体1が位置する場所に交番電界が作られ、この交番電
界により高い誘電率をもつ圧電体1の両電極間に電圧が
誘起される。
On the other hand, the oscillator 15 driven by the oscillator 15
The signal from is amplified by the boosting coil 13 and the direct current signal is cut off, and becomes a high frequency high voltage and is applied to the electrode 11 of the pedestal 5. As a result, as shown in FIG. 4, an alternating electric field is created at the position where the piezoelectric body 1 is located, and the alternating electric field induces a voltage between both electrodes of the piezoelectric body 1 having a high dielectric constant.

【0015】ところで、この誘起される電圧としては、
圧電体1の誘電率という材料特性に依存するもので、片
持ち梁の構造やヤング率には依存しない。また、誘電率
の周波数特性は一般にMHzオーダに達するため、誘起
される電圧信号としては、通常、数KHz程度の共振周
波数である片持ち梁の屈曲による加速度信号に比べて高
い周波数まで追従できる。したがって、発振器15から
の信号周波数を例えば数十KHzまたは数百KHz以上
で一定とすることにより、圧電体1には片持ち梁の共振
周波数に関係なく一定の電圧が誘起され、しかも、圧電
体1が破断していたり、断線、アンプ7の異常等がある
と、この一定の誘起電圧により一定であるはずのアンプ
7の出力電圧(以下「故障診断信号」と呼ぶ)が変化す
るので、この故障診断信号の変化を監視することで、故
障診断が可能となる。
By the way, as the induced voltage,
It depends on the material property such as the dielectric constant of the piezoelectric body 1, and does not depend on the structure of the cantilever or the Young's modulus. Further, since the frequency characteristic of the permittivity generally reaches the MHz order, the induced voltage signal can follow a higher frequency than the acceleration signal due to bending of the cantilever, which is a resonance frequency of about several KHz. Therefore, by setting the signal frequency from the oscillator 15 constant at, for example, several tens KHz or several hundreds KHz or more, a constant voltage is induced in the piezoelectric body 1 regardless of the resonance frequency of the cantilever, and the piezoelectric body 1 If 1 is broken, a wire is broken, or the amplifier 7 is abnormal, the constant induced voltage changes the output voltage of the amplifier 7 which should be constant (hereinafter referred to as "fault diagnosis signal"). The failure diagnosis can be performed by monitoring the change of the failure diagnosis signal.

【0016】具体的には、本実施例ではアンプ7から混
合出力される加速度信号および故障診断信号をそれぞれ
ローパスフィルタ17およびバンドパスフィルタ19で
分離して、図示しない処理部に出力するのである。な
お、ローパスフィルタ17およびバンドパスフィルタ1
9としては、図5に示す如く、数KHz程度の共振周波
数を有する加速度信号と数十KHzまたは数百KHz以
上の故障診断信号とが混合する信号からそれぞれ加速度
信号および故障診断信号のみを抽出できればよいので、
例えば図6に示す如き特性を有する1次の簡単なもので
足りる。
Specifically, in the present embodiment, the acceleration signal and the failure diagnosis signal mixed and output from the amplifier 7 are separated by the low-pass filter 17 and the band-pass filter 19, respectively, and output to a processing unit (not shown). The low pass filter 17 and the band pass filter 1
As shown in FIG. 5, if only an acceleration signal and a failure diagnostic signal can be extracted from a signal in which an acceleration signal having a resonance frequency of about several KHz and a failure diagnostic signal of several tens KHz or several hundreds KHz or more are mixed, as shown in FIG. So good
For example, a first-order simple one having the characteristics shown in FIG. 6 is sufficient.

【0017】したがって、本実施例によれば、静電誘導
により圧電体に対して加速度により圧電体に発生する電
圧とは無関係の電圧を誘起させ、この誘起電圧の変化に
基づいて故障診断を行うようにしたので、故障診断信号
が従来のように加速度信号の周波数領域に発生すること
がなく(図5参照)、加速度検出の周波数特性を犠牲に
することがない。また、従来のように梁を故障診断のた
めに振動させる必要がないので加速度の検出レンジを低
減することもない。さらに、従来は、加速度信号の周波
数領域内に発生する故障診断信号(図5参照)を加速度
信号になるべく影響を与えないように抽出するために、
図7に示す如き特性を有する急峻なフィルタを必要と
し、コスト高を招来するおそれがあったが、本実施例で
は、1次の簡単なフィルタでよく、コスト低減を図るこ
とができる。
Therefore, according to this embodiment, a voltage irrelevant to the voltage generated in the piezoelectric body due to acceleration is induced in the piezoelectric body by electrostatic induction, and the failure diagnosis is performed based on the change in the induced voltage. Therefore, the failure diagnosis signal does not occur in the frequency region of the acceleration signal as in the conventional case (see FIG. 5), and the frequency characteristic of acceleration detection is not sacrificed. Moreover, since it is not necessary to vibrate the beam for failure diagnosis as in the conventional case, the detection range of acceleration is not reduced. Further, conventionally, in order to extract the failure diagnostic signal (see FIG. 5) generated in the frequency domain of the acceleration signal so as not to affect the acceleration signal as much as possible,
Although a steep filter having the characteristics shown in FIG. 7 is required and there is a risk of increasing the cost, in the present embodiment, a simple filter of the first order is sufficient, and the cost can be reduced.

【0018】図8は本発明の他の実施例を示す図であ
る。その特徴としては、台座5の電極11に印加する電
圧をDC−DCコンバータ21を用いて単一パルスと
し、パルスが印加されたときの出力信号の変動を監視す
ることで故障診断を行うようにしたことにある。
FIG. 8 is a diagram showing another embodiment of the present invention. The feature is that the voltage applied to the electrode 11 of the pedestal 5 is made into a single pulse by using the DC-DC converter 21, and the failure diagnosis is performed by monitoring the fluctuation of the output signal when the pulse is applied. There is something I did.

【0019】したがって、本実施例によれば、特にマイ
クロコンピュータ23で制御する場合に有利であり、印
加する単一パルスの幅が短くても出力信号に変化が生
じ、短時間で故障診断を行なうことができる。
Therefore, according to the present embodiment, it is particularly advantageous when controlled by the microcomputer 23. Even if the width of a single pulse to be applied is short, the output signal changes, and fault diagnosis is performed in a short time. be able to.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、力
学量検出手段に対し静電誘導により起電力を発生させ、
この起電力に対する応答に基づいて故障診断を行うよう
にしたので、力学量の検出レンジに影響を与えることな
く的確な故障診断を行なうことができる。
As described above, according to the present invention, an electromotive force is generated in the mechanical quantity detection means by electrostatic induction,
Since the failure diagnosis is performed based on the response to the electromotive force, the accurate failure diagnosis can be performed without affecting the detection range of the mechanical quantity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示す図である。FIG. 1 is a diagram showing a configuration of an exemplary embodiment of the present invention.

【図2】当該一実施例の構成を説明するための図であ
る。
FIG. 2 is a diagram for explaining a configuration of the embodiment.

【図3】圧電体の構成を説明するための図である。FIG. 3 is a diagram for explaining the configuration of a piezoelectric body.

【図4】当該一実施例の作用を説明するための図であ
る。
FIG. 4 is a diagram for explaining the operation of the embodiment.

【図5】周波数に対する加速度信号および故障診断信号
の関係を示す図である。
FIG. 5 is a diagram showing a relationship between an acceleration signal and a failure diagnosis signal with respect to frequency.

【図6】ローパスフィルタおよびバンドパスフィルタの
特性を示す図である。
FIG. 6 is a diagram showing characteristics of a low-pass filter and a band-pass filter.

【図7】従来のフィルタ特性を示す図である。FIG. 7 is a diagram showing a conventional filter characteristic.

【図8】本発明の他の実施例を示す図である。FIG. 8 is a diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 圧電体 3 スペーサ 5 台座 7 アンプ 9 電極 11 電極 13 昇圧コイル 15 発振器 17 ローパスフィルタ 19 バンドパスフィルタ 21 DC−DCコンバータ 23 マイクロコンピュータ 1 Piezoelectric body 3 Spacer 5 Pedestal 7 Amplifier 9 Electrode 11 Electrode 13 Booster coil 15 Oscillator 17 Low-pass filter 19 Band-pass filter 21 DC-DC converter 23 Microcomputer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 力学量を電気的な量に変換する圧電体で
構成された力学量検出手段と、 この力学量検出手段に対し静電誘導により起電力を発生
させる起電力発生手段と、 前記力学量検出手段から出力された起電力発生手段によ
る起電力および力学量の検出に基づく起電力を分離し
て、それぞれの起電力に基づいて力学量検出手段の故障
診断および力学量の演算を行う演算処理手段とを有する
ことを特徴とする力学量検出器。
1. A mechanical quantity detecting means composed of a piezoelectric body for converting a mechanical quantity into an electric quantity; an electromotive force generating means for generating an electromotive force by electrostatic induction with respect to the mechanical quantity detecting means; The electromotive force generated by the electromotive force generating means output from the mechanical quantity detecting means and the electromotive force based on the detection of the mechanical quantity are separated, and the failure diagnosis of the mechanical quantity detecting means and the calculation of the mechanical quantity are performed based on each electromotive force. A mechanical quantity detector comprising: an arithmetic processing unit.
JP3262195A 1991-10-09 1991-10-09 Physical quantity detector Expired - Lifetime JP2734836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3262195A JP2734836B2 (en) 1991-10-09 1991-10-09 Physical quantity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3262195A JP2734836B2 (en) 1991-10-09 1991-10-09 Physical quantity detector

Publications (2)

Publication Number Publication Date
JPH0599950A true JPH0599950A (en) 1993-04-23
JP2734836B2 JP2734836B2 (en) 1998-04-02

Family

ID=17372401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3262195A Expired - Lifetime JP2734836B2 (en) 1991-10-09 1991-10-09 Physical quantity detector

Country Status (1)

Country Link
JP (1) JP2734836B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2455867A (en) * 2007-12-20 2009-06-24 Gen Electric Verification of accelerometer operation by channelling high frequency signal across leads

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110977U (en) * 1991-01-31 1992-09-25 株式会社東海理化電機製作所 Acceleration sensor with self-diagnosis function

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110977U (en) * 1991-01-31 1992-09-25 株式会社東海理化電機製作所 Acceleration sensor with self-diagnosis function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2455867A (en) * 2007-12-20 2009-06-24 Gen Electric Verification of accelerometer operation by channelling high frequency signal across leads
GB2455867B (en) * 2007-12-20 2011-12-28 Gen Electric Method and apparatus for verifying the operation of an accelerometer
US8099993B2 (en) 2007-12-20 2012-01-24 General Electric Company Method and apparatus for verifying the operation of an accelerometer

Also Published As

Publication number Publication date
JP2734836B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
EP0975982B1 (en) Impedance detection apparatus and method
KR100592985B1 (en) Vibration type angular velocity sensor
US6298709B1 (en) Sensor device
JP5649810B2 (en) Capacitive sensor
JP3894587B2 (en) Micromachined speed sensor system for sensing rotational speed and method for minimizing parasitic drive voltage
US5377523A (en) Acceleration sensor suitable for self-checking and a self-checking circuit therefore
US5375468A (en) Acceleration sensor unit having self-checking function
JP2008216118A (en) Dynamic quantity sensor
JP2889196B2 (en) DC level change detection circuit for sensor signal
JP2002062211A (en) Signal processor of piezoelectric sensor
US6786094B2 (en) Process of making an acceleration detecting element
JPH0599950A (en) Dynamics quantity detector
JP3148940B2 (en) Acceleration sensor
JP3250085B2 (en) Acceleration sensor
JPH09145736A (en) Composite acceleration/angular velocity sensor
JPS5967433A (en) Temperature/pressure detector
JPH09281167A (en) Apparatus for measuring surface potential
JP4831650B2 (en) Servo type sensor diagnosis method and servo type sensor
JP3203525B2 (en) Acceleration sensor
JPH0412398Y2 (en)
JPH10176917A (en) Contact detection system of touch signal probe
JPH0449587Y2 (en)
JP3157907B2 (en) Acceleration detector
JPH01214273A (en) Ultrasonic motor
JPH1030971A (en) Strain detecting apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090405

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100405

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120405

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130405

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140405

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250