JPH1030971A - Strain detecting apparatus - Google Patents

Strain detecting apparatus

Info

Publication number
JPH1030971A
JPH1030971A JP8186267A JP18626796A JPH1030971A JP H1030971 A JPH1030971 A JP H1030971A JP 8186267 A JP8186267 A JP 8186267A JP 18626796 A JP18626796 A JP 18626796A JP H1030971 A JPH1030971 A JP H1030971A
Authority
JP
Japan
Prior art keywords
strain
value
oscillator
frequency
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8186267A
Other languages
Japanese (ja)
Inventor
Shigemi Kurashima
茂美 倉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Fujitsu Component Ltd
Original Assignee
Nagano Fujitsu Component Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Fujitsu Component Ltd filed Critical Nagano Fujitsu Component Ltd
Priority to JP8186267A priority Critical patent/JPH1030971A/en
Publication of JPH1030971A publication Critical patent/JPH1030971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a strain detecting apparatus which is hardly subjected to the influence of a disturbance noise or the like and whose circuit configuration is simple. SOLUTION: This apparatus is constituted of a strain detection part 1 wherein a strain sensor 11 composed of a resistor and of a capacitor and an oscillator 12 whose oscillation frequency is decided by the electric resistance value of the resistor and by the capacitance value of the capacitor are formed on the same substrate, of a frequency detection part 2 which detects the oscillation frequency of the oscillator 12 and of a conversion part 3 in which the value of the detected frequency is converted into a strain value. Thereby, the strain value can be read out directly from a stress which is applied to the strain sensor 11. Alternatively, this apparatus is constituted in such a way that a plurality of strain detection parts 1 are installed and that a computing part which computes the position of a stress on the basis of information on installation positions of strain sensors 11 in the plurality of strain detection parts 1 and on the basis of oscillation frequencies of the oscillators in the respective strain detection parts 1 provided. Thereby, the position of the stress can be detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ひずみ検出装置に
関する。ひずみの検出は通常ひずみセンサを被検体には
り付け、その抵抗値変化を検出してひずみに換算してい
る。
[0001] The present invention relates to a strain detecting device. To detect strain, a strain sensor is usually attached to a subject, and a change in the resistance value is detected to convert the strain into strain.

【0002】一般にひずみによる抵抗値変化の変化量は
小さいため、抵抗値変化から得られる電気信号も微小で
ある。このため、電気信号を増幅する増幅器(アンプ)
の内部雑音を低減するとともに、検出方法(ブリッジ回
路を使用する等)を工夫し、外乱ノイズを抑圧する必要
がある。
[0002] In general, since the amount of change in resistance value due to strain is small, the electric signal obtained from the change in resistance value is also small. For this reason, an amplifier (amplifier) that amplifies electric signals
In addition to reducing internal noise, it is necessary to devise a detection method (such as using a bridge circuit) to suppress disturbance noise.

【0003】[0003]

【従来の技術】従来のひずみ検出装置の代表的な3例に
ついてその概要を説明する。図8に示す第1の従来例で
は、ひずみセンサの抵抗値変化をブリッジの平衡電圧変
化として検出する。図中のRg はひずみセンサ(抵抗)
であり、配線(片道の抵抗値rl/2)とともに、抵抗ブリ
ッジの1辺を構成しており、ひずみの無い状態でバラン
スをとっておけば、ひずみが加わるとひずみの大きさに
比例して、出力が増大する。この場合、ブリッジ駆動電
源には直流(DC)・交流(AC)のいずれかが用いら
れるが、AC電源の場合はその周波数は固定されてい
る。
2. Description of the Related Art The outline of three typical examples of conventional strain detecting devices will be described. In the first conventional example shown in FIG. 8, a change in the resistance value of the strain sensor is detected as a change in the balanced voltage of the bridge. Rg in the figure is a strain sensor (resistance)
It constitutes one side of the resistance bridge together with the wiring (one-way resistance value rl / 2), and if it is balanced in a state without distortion, when the distortion is applied, it is proportional to the magnitude of the distortion. , The output increases. In this case, either direct current (DC) or alternating current (AC) is used as the bridge drive power supply, but in the case of an AC power supply, the frequency is fixed.

【0004】図9に示す第2の従来例では、ひずみセン
サとして発振回路の振動子を用い、その発振周波数の変
化を検出することによりひずみを検出する。これは、ひ
ずみセンサの抵抗値変化を、電圧変化に比べて外乱雑音
の影響を受けにくい周波数変化に変換するものである。
尚、本原理に基づく発明は、特開平第5−157647
号で公開されている。
In a second conventional example shown in FIG. 9, a vibrator of an oscillating circuit is used as a strain sensor, and a change in the oscillating frequency is detected to detect a strain. This is to convert a change in resistance value of the strain sensor into a change in frequency that is less susceptible to disturbance noise than a change in voltage.
Incidentally, an invention based on this principle is disclosed in Japanese Unexamined Patent Publication No. 5-157647.
Published in the issue.

【0005】図10に示す第3の従来例では、第1例と同
様にひずみセンサの抵抗値変化をブリッジの平衡電圧変
化に変換するが、その電圧変化を、積分器とコンパレー
タで構成する発振回路に印加して発振周波数の変化を検
出することによりひずみを検出する。これは、雑音の影
響を受けにくく高感度であるという特徴がある。尚、本
原理に基づく発明は、特開昭第60−122336号で
公開されている。
In the third conventional example shown in FIG. 10, a change in the resistance value of the strain sensor is converted into a change in the balanced voltage of the bridge in the same manner as in the first example. The distortion is detected by detecting a change in the oscillation frequency when applied to a circuit. This is characterized in that it is hardly affected by noise and has high sensitivity. Incidentally, an invention based on this principle is disclosed in Japanese Patent Application Laid-Open No. 60-122336.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、以上説
明した従来のひずみ検出装置においては、それぞれ以下
に述べるような問題点がある。
However, the above-described conventional strain detectors have the following problems.

【0007】第1の従来例では、抵抗値変化をブリッジ
回路を用いて電圧変化として検出しているため、微小電
圧に外乱ノイズが乗り易く、ブリッジ回路は抵抗値を調
整した外付部品が必要である。
In the first conventional example, since a change in resistance is detected as a change in voltage using a bridge circuit, disturbance noise tends to be applied to a minute voltage, and the bridge circuit requires external parts with adjusted resistance. It is.

【0008】第2の従来例では、AGC回路等複雑な回
路構成が必要である。第3の従来例では、構成部材が多
数必要である。本発明は以上のような状況から、外乱ノ
イズ等の影響を受け難く、回路構成が簡単なひずみ検出
装置の提供を目的としたものである。
In the second conventional example, a complicated circuit configuration such as an AGC circuit is required. In the third conventional example, many constituent members are required. An object of the present invention is to provide a distortion detecting apparatus which is hardly affected by disturbance noise and the like and has a simple circuit configuration.

【0009】[0009]

【課題を解決するための手段】本発明は、図1に示すよ
うに、抵抗器と蓄電器とからなるひずみセンサ11及び抵
抗器の電気抵抗の値と蓄電器の静電容量の値とによって
発振周波数が定まる発振器12が同一基板上に形成される
ひずみ検知部1と、前記発振器12の発振周波数を検知す
る周波数検知部2と、前記検知した周波数の値をひずみ
の値に変換する変換部3とで構成することにより、セン
サ11に加わった応力からひずみの値を直読することがで
きる。なお、前記センサの抵抗器と蓄電器とは発振器の
回路素子の一部をなし、これらの素子を含めて発振器が
形成されるが、以下の記述においては、説明の便宜上前
記センサの抵抗器と蓄電器とを除いた電子回路を発振器
と呼ぶことがある。
According to the present invention, as shown in FIG. 1, an oscillation frequency is determined by a strain sensor 11 consisting of a resistor and a capacitor, and the value of the electric resistance of the resistor and the value of the capacitance of the capacitor. A distortion detecting section 1 in which an oscillator 12 is determined on the same substrate, a frequency detecting section 2 for detecting an oscillation frequency of the oscillator 12, and a converting section 3 for converting the value of the detected frequency to a distortion value. With this configuration, the value of the strain can be directly read from the stress applied to the sensor 11. Note that the resistor and the capacitor of the sensor form part of circuit elements of an oscillator, and an oscillator is formed including these elements. In the following description, the resistor and the capacitor of the sensor are used for convenience of explanation. The electronic circuit excluding the above may be called an oscillator.

【0010】前記抵抗器と前記蓄電器とを夫々2個同一
の基板上に構成することにより、ウィーンブリッジ発振
器を用いる構成とすることができる。前記ひずみセンサ
の蓄電器を2個互いに並列接続して構成し、当該2個の
蓄電器は共にくし型電極で構成し、当該2個の蓄電器の
くし型電極のくしの方向を示す線が互いに直交すること
により、主として抵抗値の変化を利用する用途に適用で
きる。
[0010] By arranging two resistors and one capacitor on the same substrate, it is possible to use a Wien bridge oscillator. The two capacitors of the strain sensor are connected in parallel to each other, and the two capacitors are each formed of a comb-shaped electrode, and the lines indicating the comb directions of the comb-shaped electrodes of the two capacitors are orthogonal to each other. Thereby, the present invention can be mainly applied to an application utilizing a change in resistance value.

【0011】前記ひずみ検知部を複数個同一基板上に構
成し、当該各ひずみ検知部の発振器の発振周波数が夫々
異なるものとすることにより、ひずみの分布を知ること
が可能となる。
By disposing a plurality of the strain detecting units on the same substrate and making the oscillation frequencies of the oscillators of the respective strain detecting units different from each other, it becomes possible to know the distribution of the strain.

【0012】前記周波数検知部は前記発振器から誘導さ
れる電磁波を受信するように構成することにより、セン
サの取り付け位置選定の自由度が増す。また、複数のひ
ずみ検知部のひずみセンサの設置位置の情報と、当該各
ひずみ検知部の発振器の発振周波数とから、応力位置を
算出する演算部を設けることにより、応力位置を知るこ
とができるようになる。
The frequency detecting section is configured to receive the electromagnetic wave induced from the oscillator, thereby increasing the degree of freedom in selecting the mounting position of the sensor. In addition, by providing an operation unit that calculates a stress position from information on the installation positions of the strain sensors of the plurality of strain detection units and the oscillation frequency of the oscillator of each of the strain detection units, the stress position can be known. become.

【0013】[0013]

【発明の実施の形態】以下図2〜図7により本発明の実
施例について詳細に説明する。図2は本発明の第1の実
施例であり、発振器にウイーンブリッジ発振器を使用し
た構成である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to FIGS. FIG. 2 shows a first embodiment of the present invention, in which a Wien bridge oscillator is used as an oscillator.

【0014】周知のように、図2の抵抗器の電気抵抗の
値と蓄電器の静電容量の値を夫々R及びCとすれば、発
振周波数fは次の式で与えられる。 f=1/2 πRC 上式中の抵抗器の電気抵抗の値Rと蓄電器の静電容量の
値Cが、ひずみによって次式のように変化するとする。
As is well known, assuming that the value of the electric resistance of the resistor in FIG. 2 and the value of the capacitance of the capacitor are R and C, respectively, the oscillation frequency f is given by the following equation. f = 1 / 2πRC It is assumed that the value R of the electric resistance of the resistor and the value C of the capacitance of the capacitor in the above equation change as follows according to the strain.

【0015】R=R0(1±αε) C=C0(1±βε) 但し、R0 はひずみ発生前の抵抗器の電気抵抗の値、C
0 はひずみ発生前の蓄電器の静電容量の値、αはひずみ
による抵抗変化率、βはひずみによる容量変化率、εは
ひずみ(外力が加わった為に生ずる長さの変化を外力が
加わるまえの全体の長さで除した値)である。
R = R 0 (1 ± αε) C = C 0 (1 ± βε) where R 0 is the value of the electric resistance of the resistor before the occurrence of strain, C
0 is the value of the capacitance of the capacitor before strain is generated, α is the rate of change in resistance due to strain, β is the rate of change in capacity due to strain, and ε is the strain (the change in length caused by the application of external force before the external force is applied). Divided by the total length of

【0016】従って、発振周波数fは次の式で与えられ
る。 f=1/2πR0(1±αε)C0(1±βε) α2 <<1かつβ2 <<1の条件が満たされると、発振周波
数fは次の式で与えられる(複号同順)。
Therefore, the oscillation frequency f is given by the following equation. f = 1 / 2πR 0 (1 ± αε) C 0 (1 ± βε) When the conditions of α 2 << 1 and β 2 << 1 are satisfied, the oscillation frequency f is given by the following equation ( order).

【0017】[0017]

【数1】 (Equation 1)

【0018】即ち、ひずみによる発振周波の変化は、ひ
ずみεで変化する抵抗器の電気抵抗の値の変化および蓄
電器の静電容量の値の変化に比例する。従って、抵抗器
の電気抵抗の値の変化のみを利用する方法に比べて、蓄
電器の静電容量の値の変化をも利用する方法による方
が、周波数の変化が大きくなり、ひずみの検出感度が上
昇することが分かる。
That is, the change in the oscillation frequency due to the strain is proportional to the change in the value of the electrical resistance of the resistor and the change in the value of the capacitance of the capacitor, which change with the strain ε. Therefore, compared to the method using only the change in the electric resistance value of the resistor, the change in the frequency using the method using also the change in the capacitance value of the capacitor becomes larger, and the detection sensitivity of the distortion is increased. You can see that it rises.

【0019】本構成の場合、抵抗器と蓄電器とが同一基
板(例えばポリイミドの基板)上に形成されていれば、
アンプを付加するだけで簡単に発振回路が形成でき、ひ
ずみを周波数変化として検出することができる。
In the case of this configuration, if the resistor and the capacitor are formed on the same substrate (for example, a polyimide substrate),
An oscillation circuit can be easily formed simply by adding an amplifier, and distortion can be detected as a frequency change.

【0020】上記の説明では、ひずみセンサの抵抗器の
電気抵抗の値の変化と蓄電器の静電容量の値の変化の双
方を利用するとして説明したが、抵抗器の電気抵抗の値
のみを変化させる構成にすることも可能である。
In the above description, both the change in the value of the electric resistance of the resistor of the strain sensor and the change in the value of the capacitance of the capacitor are used, but only the value of the electric resistance of the resistor is changed. It is also possible to adopt a configuration in which these are performed.

【0021】図3は、たわみ検出の説明図である。被試
験体はシリコン (Si)基板に抵抗器と蓄電器を構成した
ひずみセンサを貼付したSi 板であり、図のように板の
上部から加圧して板にたわみを発生させるように構成す
る。図はたわみ量vと発振器の発振周波数fの変化Δf
との関係の一例を示す。図のように、発振周波数はたわ
み量に対してほぼ直線的に減少することが分かる。した
がって、適当な換算手段を用いることにより、発振周波
数の変化量からたわみ量を直読することが可能となる。
FIG. 3 is an explanatory diagram of the deflection detection. The test object is a Si (Si) substrate in which a strain sensor comprising a resistor and a capacitor is attached to a silicon (Si) substrate, and is configured to generate a flexure in the plate by applying pressure from above the plate as shown in the figure. The figure shows the change Δf in the amount of deflection v and the oscillation frequency f of the oscillator.
An example of the relationship with is shown. As shown in the figure, the oscillation frequency decreases almost linearly with the amount of deflection. Therefore, by using an appropriate conversion means, it is possible to directly read the deflection amount from the change amount of the oscillation frequency.

【0022】図4はひずみセンサの第1の構成例を示す
図であり、(a) は基板上に形成されるひずみセンサ(抵
抗器と蓄電器)を構成するパターンを示し、(b) はその
等価回路を示す。例えば、基板にはポリイミドフィルム
やシリコン基板等を用い、パターンは金属薄膜材料(C
u Ni 等)を蒸着またはスパッタリングしたものをフォ
トリソグラフィー工程により形成する。
FIG. 4 is a diagram showing a first configuration example of a strain sensor. FIG. 4A shows a pattern forming a strain sensor (resistor and capacitor) formed on a substrate, and FIG. An equivalent circuit is shown. For example, a polyimide film or a silicon substrate is used for the substrate, and the pattern is made of a metal thin film material (C
u Ni or the like is formed by a photolithography process.

【0023】図4では、矢印で図示する方向のひずみに
対し抵抗器の電気抵抗の値も蓄電器の静電容量の値も変
化する。図5はひずみセンサの第2の構成例を示す図で
あり、抵抗器の電気抵抗の値のみを変化させる構成にす
る場合の蓄電器の配置の一例を示す。即ち、ひずみセン
サを2個の蓄電器を互いに並列接続して構成して、2個
の蓄電器は共にくし型電極で構成し、2個の蓄電器のく
し型電極のくしの方向を示す線が互いに直交することに
よって、蓄電器の静電容量の値がひずみに依存し難いよ
うにするものである。すなわち、図中のひずみの方向に
引っ張りの力が印加された場合を想定すると、上の蓄電
器は電極の間隔が広がる効果で静電容量が減少し、下の
蓄電器は電極面積が広がる効果で静電容量が増加すると
考えられる。この場合、蓄電器を構成する基板材料のポ
アソン比が十分小さければ、下の蓄電器の電極の間隔が
縮む効果が無視できるので、上記静電容量の増加量(Δ
1)と減少量(ΔC2)とが、ほぼ同一値となり、図中の
等化回路に示すように、ひずみに依存しない蓄電器を構
成することができる。
In FIG. 4, the value of the electric resistance of the resistor and the value of the capacitance of the capacitor change with respect to the strain in the direction indicated by the arrow. FIG. 5 is a diagram illustrating a second configuration example of the strain sensor, and illustrates an example of the arrangement of the capacitors in a configuration in which only the value of the electrical resistance of the resistor is changed. That is, the strain sensor is configured by connecting two capacitors in parallel to each other, the two capacitors are both formed of comb electrodes, and the lines indicating the comb directions of the comb electrodes of the two capacitors are orthogonal to each other. By doing so, the value of the capacitance of the battery is made hard to depend on the distortion. That is, assuming that a tensile force is applied in the direction of strain in the figure, the upper capacitor has a reduced capacitance due to the effect of increasing the electrode spacing, and the lower capacitor has a static effect due to the effect of increasing the electrode area. It is considered that the electric capacity increases. In this case, if the Poisson's ratio of the substrate material constituting the capacitor is sufficiently small, the effect of reducing the distance between the electrodes of the lower capacitor can be neglected.
C 1 ) and the amount of decrease (ΔC 2 ) have substantially the same value, and a capacitor independent of distortion can be configured as shown in the equalizing circuit in the figure.

【0024】図6は本発明の第2の実施例であり、基板
上に複数のひずみセンサを配置したもので、その各々に
発振器が付加され発振周波数も変えてある(図6の例で
は、f0 〜f3 )。各ひずみセンサの加わるひずみに応
じて発振周波数fi ( i =1〜3、以下同様)が変化量
Δi だけ変化する。
FIG. 6 shows a second embodiment of the present invention, in which a plurality of strain sensors are arranged on a substrate, and an oscillator is added to each of them to change the oscillation frequency (in the example of FIG. 6, f 0 ~f 3). Oscillation frequency f i in response to strain applied by each strain sensor (i = 1 to 3, the same applies hereinafter) is changed by changing the amount of delta i.

【0025】発振周波数が高ければ、発振器から誘導さ
れ又は放射される電磁波を、周波数検知部で検出するワ
イヤレス検知方式も可能となる。この場合は、ひずみセ
ンサの設置場所の自由度が増す。
If the oscillation frequency is high, a wireless detection system in which the electromagnetic wave induced or emitted from the oscillator is detected by the frequency detection unit becomes possible. In this case, the degree of freedom of the installation location of the strain sensor increases.

【0026】図7は本発明の第3の実施例であり、複数
のひずみ検知部のひずみセンサの設置位置の情報と、前
記各ひずみ検知部の発振器の発振周波とから、応力位置
を算出する演算部を設けた構成をとる。本実施例では、
演算部によりどの位置が周波数の変化量Δi が大きいか
を知ること、すなわち応力印加座標の特定が可能とな
る。
FIG. 7 shows a third embodiment of the present invention, in which a stress position is calculated from the information on the installation positions of the strain sensors of the plurality of strain detecting units and the oscillation frequency of the oscillator of each of the strain detecting units. The configuration is such that an arithmetic unit is provided. In this embodiment,
Which position the operation unit to know the amount of change delta i of frequency is large, that it is possible to identify the stress applying coordinates.

【0027】[0027]

【発明の効果】本発明によれば、簡単な構成でひずみを
周波数変化として検出でき、また複数のひずみ検出器を
基板上に配置することにより応力の発生した位置を検出
することがワイヤレスで可能となる。
According to the present invention, strain can be detected as a frequency change with a simple configuration, and a position where a stress has occurred can be wirelessly detected by disposing a plurality of strain detectors on a substrate. Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の原理説明図、FIG. 1 is a diagram illustrating the principle of the present invention,

【図2】 本発明の第1の実施例を示す図、FIG. 2 is a diagram showing a first embodiment of the present invention;

【図3】 たわみ検出の説明図、FIG. 3 is an explanatory diagram of deflection detection,

【図4】 ひずみセンサの第1の構成例を示す図、FIG. 4 is a diagram showing a first configuration example of a strain sensor;

【図5】 ひずみセンサの第2の構成例を示す図、FIG. 5 is a diagram showing a second configuration example of the strain sensor;

【図6】 本発明の第2の実施例を示す図、FIG. 6 is a diagram showing a second embodiment of the present invention;

【図7】 本発明の第3の実施例を示す図、FIG. 7 is a diagram showing a third embodiment of the present invention;

【図8】 第1の従来例を示す図、FIG. 8 is a diagram showing a first conventional example;

【図9】 第2の従来例を示す図、FIG. 9 is a diagram showing a second conventional example;

【図10】 第3の従来例を示す図。FIG. 10 is a diagram showing a third conventional example.

【符号の説明】[Explanation of symbols]

1はひずみ検知部、2は周波数検知部、3は変換部、4
は演算部、11はひずみセンサ、12は発振器。
1 is a strain detecting unit, 2 is a frequency detecting unit, 3 is a converting unit,
Is an operation unit, 11 is a strain sensor, and 12 is an oscillator.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 抵抗器と蓄電器とからなるひずみセン
サ、及び抵抗器の電気抵抗の値と蓄電器の静電容量の値
とによって発振周波数が定まる発振器が同一基板上に形
成されてなるひずみ検知部と、 前記発振器の発振周波数を検知する周波数検知部と、 前記検知した周波数の値をひずみの値に変換する変換部
とを有してなるものであることを特徴とするひずみ検出
装置。
1. A strain sensor comprising a resistor and a capacitor, and a strain detector comprising an oscillator whose oscillation frequency is determined by the value of the electric resistance of the resistor and the value of the capacitance of the capacitor formed on the same substrate. A frequency detecting unit for detecting an oscillation frequency of the oscillator; and a converting unit for converting a value of the detected frequency into a value of distortion.
【請求項2】 前記発振器が前記抵抗器と前記蓄電器と
を夫々2個同一の基板上に構成してなるウィーンブリッ
ジ発振器であることを特徴とする請求項1記載のひずみ
検出装置。
2. The strain detecting apparatus according to claim 1, wherein said oscillator is a Wien bridge oscillator in which each of said resistor and said capacitor is formed on the same substrate.
【請求項3】 前記ひずみセンサは蓄電器が2個互いに
並列接続して構成されており、当該2個の蓄電器は共に
くし型電極で構成されており、当該2個の蓄電器のくし
型電極のくしの方向を示す線が互いに直交することを特
徴とする請求項1または請求項2記載のひずみ検出装
置。
3. The strain sensor comprises two capacitors connected in parallel to each other, the two capacitors both comprising comb-shaped electrodes, and the combs of the comb-shaped electrodes of the two capacitors. 3. The strain detecting device according to claim 1, wherein the lines indicating the directions are orthogonal to each other.
【請求項4】 前記ひずみ検知部が複数個同一基板上に
構成され、当該各ひずみ検知部の発振器のひずみ無印加
時発振周波数が夫々異なるものであることを特徴とする
請求項1又は請求項2記載のひずみ検出装置。
4. The strain detecting section according to claim 1, wherein a plurality of strain detecting sections are formed on the same substrate, and the oscillators of the respective strain detecting sections have different oscillation frequencies when no strain is applied. 2. The strain detection device according to 2.
【請求項5】 前記周波数検知部は、前記発振器から誘
導される電磁波を受信するものであることを特徴とする
請求項4記載のひずみ検出装置。
5. The distortion detection device according to claim 4, wherein the frequency detection unit receives an electromagnetic wave induced from the oscillator.
【請求項6】 演算部を有し、 前記演算部は、前記ひずみ検知部のひずみセンサの位置
情報と、該ひずみセンサのそれぞれに対応する前記発振
器の発振周波数とから、応力が印加された位置を算出す
るものであることを特徴とする請求項4記載のひずみ検
出装置。
6. A position where a stress is applied based on position information of a strain sensor of the strain detecting unit and an oscillation frequency of the oscillator corresponding to each of the strain sensors. The strain detecting apparatus according to claim 4, wherein the distortion detecting apparatus calculates the following.
JP8186267A 1996-07-16 1996-07-16 Strain detecting apparatus Pending JPH1030971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8186267A JPH1030971A (en) 1996-07-16 1996-07-16 Strain detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8186267A JPH1030971A (en) 1996-07-16 1996-07-16 Strain detecting apparatus

Publications (1)

Publication Number Publication Date
JPH1030971A true JPH1030971A (en) 1998-02-03

Family

ID=16185305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8186267A Pending JPH1030971A (en) 1996-07-16 1996-07-16 Strain detecting apparatus

Country Status (1)

Country Link
JP (1) JPH1030971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016212041A (en) * 2015-05-13 2016-12-15 大和製衡株式会社 Weighing device
CN116679125A (en) * 2023-06-07 2023-09-01 海安市综合检验检测中心 Strain resistance measuring circuit device for generating measured signal by using multivibrator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016212041A (en) * 2015-05-13 2016-12-15 大和製衡株式会社 Weighing device
CN116679125A (en) * 2023-06-07 2023-09-01 海安市综合检验检测中心 Strain resistance measuring circuit device for generating measured signal by using multivibrator
CN116679125B (en) * 2023-06-07 2024-04-09 海安市综合检验检测中心 Strain resistance measuring circuit device for generating measured signal by using multivibrator

Similar Documents

Publication Publication Date Title
JP5649810B2 (en) Capacitive sensor
JP3536497B2 (en) Vibration type angular velocity detector
US6348788B1 (en) High resolution current sensing apparatus
CN102057250B (en) Drift-compensated inertial rotation sensor
JP2000046640A (en) Oscillatory wave detection method and device
EP1160574A1 (en) Capacitance-type external-force detecting device with improved sensitivity
JP2000048694A (en) Capacitance type proximity sensor
EP0374870B1 (en) Acceleration sensor
Donzier et al. Integrated magnetic field sensor
JPH1030971A (en) Strain detecting apparatus
US20140338469A1 (en) Load sensor
JP2005114440A (en) Acceleration sensor of capacitance detection type capable of diagnosing malfunction
JPH09281167A (en) Apparatus for measuring surface potential
JPH07260824A (en) Semiconductor sensor of physical quantity
JP7367387B2 (en) Pressure sensitive system and method
JP4959199B2 (en) Voltage detector
EP4145099A1 (en) Strain measuring assembly
JP2976765B2 (en) Coriolis mass flowmeter
JP2734836B2 (en) Physical quantity detector
JPH1078485A (en) Earthquake wave detector
JP2004251702A (en) Vibration piezoelectric acceleration sensor element, vibration piezoelectric acceleration sensor using the same, and vibration piezoelectric acceleration sensor device
KR101774669B1 (en) Occupant classification apparatus for vehicle
RU2173854C1 (en) Compensation accelerometer
JPH08233854A (en) Electrostatic capacity type sensor
JP2004212212A (en) Impedance detecting apparatus and impedance detecting method