JPH0596141A - Production of composite membrane for reverse osmotic method - Google Patents

Production of composite membrane for reverse osmotic method

Info

Publication number
JPH0596141A
JPH0596141A JP3255393A JP25539391A JPH0596141A JP H0596141 A JPH0596141 A JP H0596141A JP 3255393 A JP3255393 A JP 3255393A JP 25539391 A JP25539391 A JP 25539391A JP H0596141 A JPH0596141 A JP H0596141A
Authority
JP
Japan
Prior art keywords
membrane
solvent
composite membrane
film
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3255393A
Other languages
Japanese (ja)
Other versions
JP3132084B2 (en
Inventor
Tetsuo Watanabe
哲男 渡辺
Katsufumi Ooto
勝文 大音
Seriya Takahashi
世理哉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP03255393A priority Critical patent/JP3132084B2/en
Publication of JPH0596141A publication Critical patent/JPH0596141A/en
Application granted granted Critical
Publication of JP3132084B2 publication Critical patent/JP3132084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a composite membrane having stable membrane performances by using polyether sulfone as a polymer, ehtylene glycol as an additive, non-proton polar org. solvent as a solvent, and 2,2-dichloro-1,1,1- trifluoroethane as a solvent for the formation of an active layer. CONSTITUTION:A soln. incorporating polyether sulfone with the repeating unit expressed by formula Ph-SO2-Ph-O (wherein Ph is a phenylene group) as a polymer, ethylene glycol and/or glycerol as an additive, and non-proton polar org. solvent such as dimethylformamide, etc., as a solvent is used as the source liquid to form the membrane Rs a solvent 2,2-dichloro-1,1,1-trifulroethane is used for forming an active layer. Thereby, the membrane having high membrane performances, especially, high removing rate and stable property is obtd. by using the solvent for formation of membrane having a small coefft. for breaking an ozone layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は逆浸透法に使用する複合
膜の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a composite membrane used in a reverse osmosis method.

【0002】[0002]

【従来の技術】従来、逆浸透法用の膜としては、その水
透過性が高いためにポリアミドを活性層とする複合膜が
最もよく使用されている。例えば、米国特許第4、27
7、344号明細書に記載されている架橋芳香族ポリア
ミドを活性層とする複合膜、特表昭56−500062
号明細書に記載されているピペラジン単位を含む架橋ポ
リマ−を活性層とする複合膜等がある。これらの複合膜
の製造方法は、多孔性ポリスルホン支持膜に多官能性ア
ミノ化合物を含む水溶液を塗布した後、多官能性アシル
ハライドを含む1,1,2−トリクロロ−1、2、2−
トリフルオロエタン溶液を接触させることからなる。こ
こでポリスルホンとは、 式 −Ph−C(CH3 2 −Ph−O−Ph−SO2
−Ph−O− (ここでPhはフェニレン基を表す。)で表される繰返
し単位を有する有機ポリマ−であり、多孔性ポリスルホ
ン支持膜は、米国内務省塩水局研究開発報告No.35
9に記載されている方法により製造される。これらの複
合膜の製膜の際に使用される1,1,2−トリクロロ−
1、2、2−トリフルオロエタンは、成層圏のオゾン層
を破壊する性質が大きく、地球環境に悪影響をおよぼす
ことが指摘され、国連環境計画(UNEP)はオゾン層
保護のためのウィ−ン条約(1985年3月採択、19
88年9月発効)およびオゾン層を破壊する物質に関す
るモントリオ−ル議定書(1987年9月採択、198
9年1月発効)によりその使用を規制し、西暦2000
年には全廃される。1,1,2−トリクロロ−1、2、
2−トリフルオロエタンの代わりにオゾン層を破壊しな
いヘキサン等の脂肪族炭化水素を使用しても実用膜性能
が得られるが、これらの炭化水素は可燃性であり、工業
的規模での生産では防爆設備等大袈裟な設備が必要とな
り、実用性は低い。
2. Description of the Related Art Conventionally, as a membrane for a reverse osmosis method, a composite membrane having a polyamide as an active layer is most often used because of its high water permeability. For example, US Pat.
No. 7,344,072, a composite film having a crosslinked aromatic polyamide as an active layer, Japanese Patent Publication No. 56-500062.
There is a composite film having a cross-linked polymer containing a piperazine unit as an active layer, which is described in the specification. These composite membranes are produced by applying an aqueous solution containing a polyfunctional amino compound onto a porous polysulfone support membrane and then applying 1,1,2-trichloro-1,2,2-containing polyfunctional acyl halide.
Contacting with a trifluoroethane solution. Here, the polysulfone has the formula -Ph-C (CH 3) 2 -Ph-O-Ph-SO 2
It is an organic polymer having a repeating unit represented by -Ph-O- (wherein Ph represents a phenylene group), and the porous polysulfone supporting membrane is the US Department of the Interior Salt Water Bureau Research and Development Report No. 35
Manufactured by the method described in No. 9. 1,1,2-trichloro- used in the production of these composite membranes
It has been pointed out that 1,2,2-trifluoroethane has a large property of depleting the ozone layer in the stratosphere and has an adverse effect on the global environment. The United Nations Environment Program (UNEP) states that the Vienna Convention for the Protection of the Ozone Layer (Adopted March 1985, 19
(Effective September 1988) and the Montreal Protocol on Substances that Deplete the Ozone Layer (Adopted September 1987, 198
Its use was restricted by January 9th), and the year 2000
It will be totally abolished in the year. 1,1,2-trichloro-1,2,
Even if an aliphatic hydrocarbon such as hexane that does not destroy the ozone layer is used in place of 2-trifluoroethane, practical membrane performance can be obtained, but these hydrocarbons are flammable and are not produced in industrial scale. Expensive equipment such as explosion-proof equipment is required, and its practicality is low.

【0003】[0003]

【発明が解決しようとする課題】オゾン層の破壊係数が
小さくかつ不燃性の製膜溶媒として、2,2−ジクロロ
−1,1,1−トリフルオロエタンがあるが、多孔性ポ
リスルホンを支持膜とする架橋ポリアミド系複合膜では
低性能しか得られなかった。
As a non-flammable film-forming solvent having a small ozone layer depletion coefficient and 2,2-dichloro-1,1,1-trifluoroethane, porous polysulfone is used as a supporting film. The cross-linked polyamide-based composite film described above obtained only low performance.

【0004】本発明者らは先に多孔性支持膜として 式 −Ph−SO2 −Ph−O− (ここでPhはフェニレン基を表す。)で表される繰返
し単位を有するポリエ−テルスルホンからなる多孔性支
持膜、また製膜溶媒として、2,2−ジクロロ−1,
1,1−トリフルオロエタンを使用することによって高
性能を有する架橋ポリアミドを活性層する複合膜が得ら
れることを見出だしたが、更に検討を進めたところ、該
複合膜は、膜性能、特に排除率の変動が大きく、工業的
に安定して製造することが困難であることが判明した。
The inventors of the present invention previously made up a polyethersulfone having a repeating unit represented by the formula --Ph--SO 2 --Ph--O-- (wherein Ph represents a phenylene group) as the porous support membrane. 2,2-dichloro-1, as a porous supporting membrane or a membrane forming solvent,
It was found that by using 1,1-trifluoroethane, a composite membrane having a high performance of a crosslinked polyamide having an active layer can be obtained, but when further studies were conducted, the composite membrane showed that the membrane performance, particularly It has been found that it is difficult to manufacture industrially stably because the fluctuation of the exclusion rate is large.

【0005】本発明は、これらの問題点を解決し、ポリ
エ−テルスルホンからなる多孔性支持膜の製造におい
て、安定した膜性能を有する複合膜を得ることを目的と
するものである。
An object of the present invention is to solve these problems and obtain a composite membrane having stable membrane performance in the production of a porous support membrane composed of polyethersulfone.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明は下記の構成からなる。
To achieve the above object, the present invention has the following constitution.

【0007】多孔性支持膜上において多官能性アミンと
多官能性アシルハライドを重縮合させて得られる架橋ポ
リアミドを活性層とする逆浸透法用複合膜の製造方法に
おいて、ポリマ−として 式 −Ph−SO2 −Ph−O− (ここでPhはフェニレン基を表す。)で表される繰返
し単位を有するポリエ−テルスルホン、添加剤としてエ
チレングリコ−ルまたは/およびグリセリン、および溶
媒として非プロトン性極性有機溶媒を含む溶液を製膜原
液として湿式製膜で得られる多孔性膜を使用し、活性層
形成溶媒として2,2−ジクロロ−1,1,1−トリフ
ルオロエタンを用いることを特徴とする逆浸透法用複合
膜の製造方法。
In the method for producing a composite membrane for the reverse osmosis method having a cross-linked polyamide obtained by polycondensing a polyfunctional amine and a polyfunctional acyl halide on a porous support membrane as an active layer, the polymer represented by formula -Ph is used. -SO 2 -Ph-O- (wherein Ph represents a phenylene group), a polyether sulfone having a repeating unit, ethylene glycol or / and glycerin as an additive, and an aprotic polar solvent. A porous membrane obtained by wet film formation is used as a solution for forming a film containing a solution containing an organic solvent, and 2,2-dichloro-1,1,1-trifluoroethane is used as an active layer forming solvent. Method for producing composite membrane for reverse osmosis method.

【0008】本発明において、多官能性アミンとは多官
能性アシルハライドと反応して架橋構造を有する重合体
を形成するものが含まれ、例えば、脂肪族アミンとして
は、N,N−ジメチルエチレンジアミン、N,N−ジメ
チルプロパンジアミン、ピペラジン、2−メチルピペラ
ジン、2,5−ジメチルピペラジン、1,3−ビス(4
−ピペリジル)メタン、1,3−ビス(4−ピペリジ
ル)プロパンなどが挙げられる。また、芳香族アミンと
しては、ジアミンあるいは、トリアミンであることが好
ましく、芳香族ジアミンまたは芳香族トリアミン単独、
あるいは芳香族ジアミンおよび芳香族トリアミンの混合
物の形で好ましく用いられる。芳香族ジアミンとして
は、m−フェニレンジアミン、p−フェニレンジアミン
などが挙げられるが、透水性に優れた架橋ポリアミド超
薄膜の形成が可能であることからm−フェニレンジアミ
ンが好ましい。芳香族トリアミンとしては、高い脱塩率
と有機物の排除率、そして高架橋密度による超薄膜層の
構造安定性という点から1,3,5−トリアミノベンゼ
ンが好ましい。
In the present invention, the polyfunctional amine includes a compound which reacts with a polyfunctional acyl halide to form a polymer having a crosslinked structure. For example, the aliphatic amine is N, N-dimethylethylenediamine. , N, N-dimethylpropanediamine, piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, 1,3-bis (4
-Piperidyl) methane, 1,3-bis (4-piperidyl) propane and the like. The aromatic amine is preferably diamine or triamine, and aromatic diamine or aromatic triamine alone,
Alternatively, it is preferably used in the form of a mixture of aromatic diamine and aromatic triamine. Examples of aromatic diamines include m-phenylenediamine and p-phenylenediamine, but m-phenylenediamine is preferable because it can form a crosslinked polyamide ultrathin film having excellent water permeability. As the aromatic triamine, 1,3,5-triaminobenzene is preferable from the viewpoints of high desalination rate, elimination rate of organic substances, and structural stability of the ultrathin film layer due to high crosslinking density.

【0009】本発明において、多官能性アシルハライド
とは多官能性アミンと反応して架橋構造を有する重合体
を形成するものが含まれ、例えば、トリメシン酸ハライ
ド、ベンゾフェノンテトラカルボン酸ハライド、トリメ
リット酸ハライド、ピロメリット酸ハライド、イソフタ
ル酸ハライド、テレフタル酸ハライド、ナフタレンジカ
ルボン酸ハライド、ジフェニルジカルビン酸ハライド、
ピリジンジカルボン酸ハライド、1,3,5−シクロヘ
キサントリカルボン酸ハライド、1,3−シクロヘキサ
ンジカルボン酸ハライド、1,4−シクロヘキサンジカ
ルボン酸ハライド等を用いることができる。これらの多
官能性アシルハライドは、単独で用いることもできる
が、混合物として用いることもできる。多官能性アミン
との反応性を考慮すると、該多官能性アシルハライドは
多官能性アシルクロライドであることが好ましい。
In the present invention, the polyfunctional acyl halide includes those which react with a polyfunctional amine to form a polymer having a crosslinked structure, and examples thereof include trimesic acid halide, benzophenone tetracarboxylic acid halide and trimellitate. Acid halide, pyromellitic acid halide, isophthalic acid halide, terephthalic acid halide, naphthalenedicarboxylic acid halide, diphenyldicarbic acid halide,
Pyridinedicarboxylic acid halide, 1,3,5-cyclohexanetricarboxylic acid halide, 1,3-cyclohexanedicarboxylic acid halide, 1,4-cyclohexanedicarboxylic acid halide and the like can be used. These polyfunctional acyl halides can be used alone or as a mixture. Considering the reactivity with a polyfunctional amine, the polyfunctional acyl halide is preferably a polyfunctional acyl chloride.

【0010】本発明において多孔性ポリエ−テルスルホ
ン支持膜は、多孔性ポリスルホン支持膜と同様に米国内
務省塩水局研究開発報告No.359に記載されている
方法により製造される。
In the present invention, the porous polyethylene sulfone supporting membrane is the same as the porous polysulfone supporting membrane, in the Research and Development Report No. 359.

【0011】製膜原液の調整方法は次のように行う。ま
ず、エチレングリコ−ルまたは/およびグリセリンを非
プロトン性極性有機溶媒に溶解した後、この溶液にポリ
エ−テルスルホンを混合し、80〜95℃に加熱して完
全に溶解させる。そして常温に冷却後製膜に供する。
The method for adjusting the stock solution for film formation is as follows. First, ethylene glycol and / or glycerin is dissolved in an aprotic polar organic solvent, and then polyether sulfone is mixed with this solution and heated to 80 to 95 ° C. to completely dissolve it. Then, after cooling to room temperature, the film is provided for film formation.

【0012】本発明のような逆浸透膜を実用に供する場
合は処理能力を大きくとれるように一定体積当たりの膜
の充填面積を上げるために一般にエレメントまたはモジ
ュ−ルと呼ばれる種々の使用形態がとられる。例えば、
細い多孔性の管の内壁または外壁に膜を適用する管状
型、多孔性の板で膜を支持し重ねて使用する平板型、膜
をのり巻き状にして使用するスパイラル型、膜を薄壁状
中空繊維にする中空糸型等があるが、本発明の場合に
は。スパイラル型が好ましい。
When the reverse osmosis membrane according to the present invention is put to practical use, various usage forms generally called elements or modules are adopted in order to increase the filling area of the membrane per constant volume so that the treatment capacity can be increased. Be done. For example,
A tubular type in which the membrane is applied to the inner or outer wall of a thin porous tube, a flat plate type in which the membranes are supported and stacked with a porous plate, a spiral type in which the membranes are rolled and used, and a thin-walled membrane In the case of the present invention, there are hollow fiber types and the like for making hollow fibers. The spiral type is preferable.

【0013】本発明のような複合膜は機械的強度が低
く、そのままでは工業的規模における製造方法である連
続製膜のような複合膜の製造工程において受ける張力お
よび複合膜の使用時の高い圧力に耐えることができず、
変形または破壊して本来の機能を失ってしまう。この様
な問題点を解決するため繊維からなる織布または不織布
上に複合膜を形成させる、いわゆる繊維補強複合膜とし
て使用される。繊維補強複合膜は、まず、繊維補強多孔
性支持膜を作成し、その繊維補強多孔性支持膜上に活性
層を形成させる。
The composite membrane according to the present invention has a low mechanical strength, and as it is, the tension and the high pressure when the composite membrane is used in the manufacturing process of the composite membrane such as the continuous membrane which is a manufacturing method on an industrial scale. Can not stand,
It deforms or is destroyed and loses its original function. In order to solve such a problem, it is used as a so-called fiber-reinforced composite membrane in which a composite membrane is formed on a woven or non-woven fabric made of fibers. For the fiber-reinforced composite membrane, first, a fiber-reinforced porous support membrane is prepared, and an active layer is formed on the fiber-reinforced porous support membrane.

【0014】繊維補強多孔性支持膜は、湿式製膜によっ
て製膜される。すなわち、製膜原液を織布または不織布
上に流延し、次いで実質的に水からなる媒体中(凝固
浴)で凝固(ゲル化)することによって製造される。こ
の凝固工程によって溶媒およびリチウム塩は凝固浴へ溶
解して、膜中から除去されるが、これが不十分な場合
は、水洗行程を設けて溶媒およびリチウム塩を除去す
る。製膜原液中のポリエ−テルスルホンの濃度は14〜
20重量%が好ましい。この範囲以下では複合膜の膜性
能の排除率が低く、この範囲以上では透水速度が低くな
る。エチレングリコ−ルまたは/およびグリセリンの量
はポリエ−テルスルホンに対する重量比で2〜50%の
範囲で使用する。この範囲以下では本発明の効果が不十
分であり、またこの範囲以上では溶媒に対する溶解性に
問題が出る。
The fiber-reinforced porous support membrane is formed by wet film formation. That is, it is produced by casting a stock solution for film formation on a woven or non-woven fabric, and then coagulating (gelling) it in a medium (coagulation bath) consisting essentially of water. By this coagulation step, the solvent and the lithium salt are dissolved in the coagulation bath and removed from the film. If this is insufficient, a water washing step is provided to remove the solvent and the lithium salt. The concentration of the polyethersulfone in the stock solution for film formation is 14 to
20% by weight is preferred. Below this range, the rejection rate of the composite membrane performance is low, and above this range, the water permeation rate is low. The amount of ethylene glycol and / or glycerin used is in the range of 2 to 50% by weight relative to the polyether sulfone. Below this range, the effect of the present invention is insufficient, and above this range, there is a problem in solubility in a solvent.

【0015】本発明において、多孔性ポリエ−テルスル
ホン支持膜の製膜原液溶媒として使用される非プロトン
性極性有機溶媒としてはジメチルホルムアミド、ジメチ
ルアセトアミド、N−メチル−2−ピロリドン、2−ピ
ロリドン、ヘキサメチルホスホリックトリアミド等があ
るが、ジメチルホルムアミドが好ましい。
In the present invention, as the aprotic polar organic solvent used as a solvent for forming the porous polyethersulfone supporting membrane, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, 2-pyrrolidone, hexa There are methylphosphoric triamides and the like, but dimethylformamide is preferable.

【0016】次に、活性層の形成方法について説明す
る。
Next, a method of forming the active layer will be described.

【0017】本発明においては架橋ポリアミド活性層
は、前述の多官能性アミンを含有する水溶液と、多官能
性アシルハライドを含有する2,2−ジクロロ−1,
1,1−トリフルオロエタン溶液を多孔性ポリエ−テル
スルホン支持膜上で界面重縮合反応によって形成させる
が、まず、支持膜に多官能性アミンを被覆する。
In the present invention, the crosslinked polyamide active layer comprises an aqueous solution containing the above-mentioned polyfunctional amine and 2,2-dichloro-1, containing the polyfunctional acyl halide.
The 1,1-trifluoroethane solution is formed on the porous polyethersulfone support membrane by an interfacial polycondensation reaction, first the support membrane is coated with a polyfunctional amine.

【0018】多官能性アミン水溶液におけるアミノ化合
物の濃度は0.1〜10重量%、好ましくは0.5〜1
0重量%であり、該水溶液には界面重縮合反応を阻害し
ないものであれば、界面活性剤や有機溶媒、酸化防止剤
等が含まれていても良い。
The concentration of the amino compound in the polyfunctional amine aqueous solution is 0.1 to 10% by weight, preferably 0.5 to 1
It is 0% by weight, and the aqueous solution may contain a surfactant, an organic solvent, an antioxidant and the like as long as it does not hinder the interfacial polycondensation reaction.

【0019】支持膜への該アミン水溶液の被覆は、該水
溶液が表面に均一にかつ連続的に被覆されていれば良
く、公知の塗布手段、例えば、該水溶液を支持膜表面に
コ−ティングする方法、支持膜を該水溶液に浸漬する方
法等で行うことができる。
The support membrane may be coated with the aqueous amine solution as long as the surface of the support membrane is uniformly and continuously coated by a known coating means, for example, the surface of the support membrane is coated with the aqueous solution. It can be carried out by a method, a method of immersing the supporting film in the aqueous solution, or the like.

【0020】次いで過剰に塗布された該アミン水溶液を
液切り工程により除去する。液切りの方法としては、例
えば、支持膜表面を垂直方向に保持して自然流下させる
方法などがある。次に、前述の多官能性アシルハライド
の2,2−ジクロロ−1,1,1−トリフルオロエタン
溶液を多官能性アミン水溶液を被覆した支持膜表面に接
触させる。2,2−ジクロロ−1,1,1−トリフルオ
ロエタン溶液中の多官能性アシルハライド濃度は通常、
0.01〜10重量%、好ましくは0.05〜0.5重
量%であり、この範囲以下では排除率が不十分であり、
また、この範囲以上では透水速度が低く、更に支持膜を
損傷して複合膜の膜性能が非常に低レベルとなる恐れが
ある。
Then, the excessively applied aqueous amine solution is removed by a draining process. As a method of draining, for example, there is a method of holding the surface of the supporting film in the vertical direction and allowing it to flow down naturally. Next, the 2,2-dichloro-1,1,1-trifluoroethane solution of the above-mentioned polyfunctional acyl halide is brought into contact with the surface of the supporting membrane coated with the polyfunctional amine aqueous solution. The concentration of polyfunctional acyl halide in the 2,2-dichloro-1,1,1-trifluoroethane solution is usually
It is 0.01 to 10% by weight, preferably 0.05 to 0.5% by weight. Below this range, the exclusion rate is insufficient,
Further, if it exceeds this range, the water permeation rate is low, and further, the supporting membrane may be damaged and the membrane performance of the composite membrane may become extremely low.

【0021】多官能性アシルハライドのアミノ化合物水
溶液相への接触の方法は、アミノ化合物水溶液の支持膜
への被覆方法と同様に行う。この後、過剰に付着した多
官能性アシルハライドを除去するため炭酸ナトリウム等
のアルカリ水溶液で洗浄する。
The method of contacting the polyfunctional acyl halide with the amino compound aqueous solution phase is the same as the method of coating the support film with the amino compound aqueous solution. After that, in order to remove the excessively attached polyfunctional acyl halide, the substrate is washed with an aqueous alkali solution such as sodium carbonate.

【0022】このようにして得られた複合膜は、これだ
けでも十分良好な分離性能を発現するが、さらに該複合
膜をpH6〜13の塩素含有水溶液に浸漬することによ
り分離性能、特に、排除率、透水速度を向上せしめるこ
とができる。塩素発生試薬としては、塩素ガス、サラシ
粉、次亜塩素酸ナトリウム、二酸化塩素、クロラミン
B、クロラミンT、ハラゾ−ン、ジクロロジメチルヒダ
ントイン、塩素化イソシアヌル酸およびその塩などを代
表例として挙げることができ、酸化力の強さによって濃
度を決定することが好ましい。上記の塩素発生試薬の中
で、次亜塩素酸ナトリウム水溶液が、取扱性の点から好
ましい。塩素含有水溶液の酸化力とpHの間には重要な
関係があり、pHが6より低い場合は、十分な酸化力を
示さず、又、pHが13を越えるとアミド結合の加水分
解が生じ、超薄膜層が損傷を受けるため、ともに不適当
である。従って、pH6〜13で塩素含有水溶液に浸漬
するのが好ましい。
The composite membrane thus obtained exhibits a sufficiently good separation performance even by itself, but by further immersing the composite membrane in a chlorine-containing aqueous solution having a pH of 6 to 13, the separation performance, in particular, the exclusion rate is improved. , The water permeation rate can be improved. Typical examples of the chlorine generating reagent include chlorine gas, coconut powder, sodium hypochlorite, chlorine dioxide, chloramine B, chloramine T, halazone, dichlorodimethylhydantoin, chlorinated isocyanuric acid and salts thereof. It is preferable that the concentration is determined by the strength of the oxidizing power. Among the above chlorine generating reagents, an aqueous solution of sodium hypochlorite is preferable from the viewpoint of handleability. There is an important relationship between the oxidizing power of a chlorine-containing aqueous solution and pH, and when the pH is lower than 6, it does not show sufficient oxidizing power, and when the pH exceeds 13, hydrolysis of the amide bond occurs. Both are unsuitable because the ultra-thin layer is damaged. Therefore, it is preferable to immerse in a chlorine-containing aqueous solution at pH 6-13.

【0023】[0023]

【実施例】以下の実施例によって更に詳細に説明する
が、本発明はこれら実施例により何ら限定されるもので
はない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0024】なお、実施例において、排除率は次式によ
り求めた。
In the examples, the rejection rate was calculated by the following equation.

【0025】排除率[%] =(1−膜透過液中の溶質濃度
/膜供給液中の溶質濃度)×100 実施例1 エチレングリコ−ル3.6重量部をジメチルホルムアミ
ド(以下DMFと略す。)78.4重量部に加え、室温
で30分撹拌して完全に溶解した。この溶液にポリエ−
テルスルホン(アイ・シ−・アイ社製のVictrex 4800)
の18重量部を加え、90℃で60分撹拌して完全に溶
解した。この様にして得られた製膜原液をタテ30cmヨ
コ20cmの大きさのポリエステル繊維からなるタフタ
(タテ糸、ヨコ糸とも150デニ−ルのマルチフィラメ
ント糸、織密度タテ90本/インチ、ヨコ67本/イン
チ、厚さ160μm)をガラス板上に固定し、200μ
mの厚みで室温(20℃)で流延し、ただちに純水中に
浸漬して5分間放置することによって繊維補強ポリエ−
テルスルホン支持膜(以下FR−PES支持膜と略す)
を作製した。
Exclusion rate [%] = (1-Solute concentration in membrane permeate / Solute concentration in membrane feed) × 100 Example 1 3.6 parts by weight of ethylene glycol was added to dimethylformamide (hereinafter abbreviated as DMF). .) 78.4 parts by weight and stirred at room temperature for 30 minutes to completely dissolve it. To this solution,
Tersulphone (Victrex 4800 manufactured by ICI Corporation)
18 parts by weight of was added and completely stirred by stirring at 90 ° C. for 60 minutes. The stock solution thus obtained was used for taffeta made of polyester fiber having a size of 30 cm in length and 20 cm in width (multi-filament yarn of 150 denier for both warp and weft yarns, weaving density 90 warp / inch, weft 67 200 / μm by fixing a book / inch, thickness 160μm) on a glass plate.
It is cast at room temperature (20 ° C.) with a thickness of m, immediately immersed in pure water and left for 5 minutes to obtain fiber-reinforced polyethylene.
Tersulphone support membrane (hereinafter abbreviated as FR-PES support membrane)
Was produced.

【0026】FR−PES支持膜を1重量%の1,3,
5−トリアミノベンゼンと1重量%のm−フェニレンジ
アミンを含んだ水溶液中に1分間浸漬した。該支持膜を
垂直方向にゆっくりと引上げ、支持膜表面から余分な水
溶液を取り除いた後、0.05重量%のテレフタル酸ク
ロライドと0.05重量%のトリメシン酸クロライドを
含んだ2,2−ジクロロ−1,1,1−トリフルオロエ
タン溶液を支持膜表面が完全に濡れるように塗布して1
分間静置した。次に支持膜を垂直にして余分な溶液を液
切りして除去した後、炭酸ナトリウムの0.2重量%水
溶液に5分間浸漬して複合膜を得た。
The FR-PES support film was made up of 1% by weight of 1,3,3.
It was immersed in an aqueous solution containing 5-triaminobenzene and 1% by weight of m-phenylenediamine for 1 minute. The supporting film was slowly pulled up vertically to remove excess aqueous solution from the surface of the supporting film, and then 2,2-dichloro containing 0.05% by weight of terephthalic acid chloride and 0.05% by weight of trimesic acid chloride. Apply -1,1,1-trifluoroethane solution so that the surface of the support membrane is completely wet.
Let stand for a minute. Next, the support membrane was made vertical and the excess solution was drained and removed, and then immersed in a 0.2 wt% sodium carbonate aqueous solution for 5 minutes to obtain a composite membrane.

【0027】以上のFR−PES支持膜の製膜および複
合膜化を5回繰り返して行った。
The above-mentioned formation of the FR-PES support membrane and formation of a composite membrane were repeated 5 times.

【0028】このようにして得られた複合膜を製膜回数
ごと各3点、合計15点サンプリングし、pH6.5に
調製した1500ppm食塩水を原水とし、15Kg/
cm2 、25℃の条件下で逆浸透テストした結果、排除
率99.1〜99.6%(平均値;99.4%)、透水
速度0.58〜0.70m3 /m2 ・日(平均値;0.
64m3 /m2 ・日)の膜性能であった。
The composite membrane thus obtained was sampled at 3 points each for a number of times of film formation, for a total of 15 points, and 1500 ppm saline adjusted to pH 6.5 was used as raw water to obtain 15 kg /
As a result of reverse osmosis test under the conditions of cm 2 and 25 ° C., the exclusion rate was 99.1 to 99.6% (average value: 99.4%), the water permeation rate was 0.58 to 0.70 m 3 / m 2 · day. (Average value; 0.
The film performance was 64 m 3 / m 2 · day).

【0029】実施例2 実施例1においてFR−PES支持膜の製膜の際に製膜
原液にエチレングリコ−ルの代わりにグリセリン3.6
重量部を使用する以外は同様に行った結果、排除率9
9.0〜99.6%(平均値;99.3%)、透水速度
0.57〜0.71m3 /m2 ・日(平均値;0.63
3 /m2 ・日)の膜性能であった。
Example 2 In Example 1, glycerin 3.6 was used instead of ethylene glycol in the stock solution for forming the FR-PES support film.
As a result of performing the same except that the weight part is used, the rejection rate is 9
9.0 to 99.6% (average value; 99.3%), water permeation rate 0.57 to 0.71 m 3 / m 2 · day (average value; 0.63)
The film performance was m 3 / m 2 · day).

【0030】比較例1 実施例1においてFR−PES支持膜の製膜の際に製膜
原液にエチレングリコ−ルを添加しない以外は同様に行
った結果、排除率95.6〜99.46%(平均値;9
8.4%)、透水速度0.61〜0.72m3 /m2
日(平均値;0.67m3 /m2 ・日)の膜性能であっ
た。
Comparative Example 1 The same procedure as in Example 1 was carried out except that ethylene glycol was not added to the stock solution for forming the FR-PES support film, and the exclusion rate was 95.6 to 99.46%. (Average value: 9
8.4%), water permeation rate 0.61 to 0.72 m 3 / m 2 ·
The film performance was one day (average value: 0.67 m 3 / m 2 · day).

【0031】実施例3 実施例1のFR−PES支持膜を4重量%の1,3,5
−トリアミノベンゼンを含んだ水溶液中に1分間浸漬し
た。該支持膜を垂直方向にゆっくりと引上げ、支持体表
面から余分な水溶液を取り除いた後、0.1重量%のイ
ソフタル酸クロライドを含んだ1,2−ジクロロ−1,
1,1−トリフルオロエタン溶液を表面が完全に濡れる
ように塗布して1分間静置した。次に支持体を垂直にし
て余分な溶液を液切りして除去した後、炭酸ナトリウム
の0.2重量%水溶液に5分間浸漬した。
Example 3 The FR-PES support film of Example 1 was added with 4% by weight of 1,3,5.
Immersed in an aqueous solution containing triaminobenzene for 1 minute. The support film was slowly pulled vertically to remove excess aqueous solution from the surface of the support, and then 1,2-dichloro-1, containing 0.1% by weight of isophthalic acid chloride,
The 1,1-trifluoroethane solution was applied so that the surface was completely wet, and allowed to stand for 1 minute. Next, the support was made vertical and the excess solution was drained and removed, and then immersed in a 0.2 wt% aqueous solution of sodium carbonate for 5 minutes.

【0032】以上のFR−PES支持膜の製膜および複
合膜化を5回繰り返して行った。
The production of the FR-PES support membrane and the formation of a composite membrane were repeated 5 times.

【0033】このようにして得られた複合膜を製膜回数
ごと各3点、合計15サンプリングし、実施例1の条件
で逆浸透テストした結果、排除率98.6〜99.2%
(平均値;99.0%)透水量0.63〜0.71m3
/m2 ・日(平均値;0.67m3 /m2 ・日)の膜性
能であった。
The composite membrane thus obtained was subjected to reverse osmosis test under the conditions of Example 1 as a result of 15 samplings, 3 points each for each number of times of film formation, and a rejection rate of 98.6 to 99.2%.
(Average value; 99.0%) Water permeability 0.63 to 0.71 m 3
The film performance was / m 2 · day (average value: 0.67 m 3 / m 2 · day).

【0034】比較例2 実施例3においてFR−PES支持膜の製膜の際に製膜
原液にエチレングリコ−ルを添加しない以外は同様に行
った結果、排除率92.3〜99.0%(平均値;9
7.4%)透水量0.65〜0.74m3 /m2 ・日
(平均値;0.70m3 /m2 ・日)の膜性能であっ
た。
COMPARATIVE EXAMPLE 2 The same procedure as in Example 3 was repeated except that ethylene glycol was not added to the stock solution for forming the FR-PES support film, resulting in an exclusion rate of 92.3 to 99.0%. (Average value: 9
The membrane performance was a water permeability of 0.65 to 0.74 m 3 / m 2 · day (average value: 0.70 m 3 / m 2 · day).

【0035】[0035]

【発明の効果】本発明によりオゾン層の破壊係数の小さ
い製膜溶媒を使用し、膜性能、特に排除率が高くてかつ
安定した性能が得られるようになる。
According to the present invention, a film-forming solvent having a small ozone layer depletion coefficient is used, and film performance, particularly a high rejection rate and stable performance can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多孔性支持膜上において多官能性アミン
と多官能性アシルハライドを重縮合させて得られる架橋
ポリアミドを活性層とする逆浸透法用複合膜の製造方法
において、ポリマ−として 式 −Ph−SO2 −Ph−O− (ここでPhはフェニレン基を表す。)で表される繰返
し単位を有するポリエ−テルスルホン、添加剤としてエ
チレングリコ−ルまたは/およびグリセリン、および溶
媒として非プロトン性極性有機溶媒を含む溶液を製膜原
液として湿式製膜で得られる多孔性膜を使用し、活性層
形成溶媒として2,2−ジクロロ−1,1,1−トリフ
ルオロエタンを用いることを特徴とする逆浸透法用複合
膜の製造方法。
1. A method for producing a composite membrane for a reverse osmosis method, comprising a crosslinked polyamide obtained by polycondensing a polyfunctional amine and a polyfunctional acyl halide on a porous support membrane as an active layer, wherein the polymer is used as a polymer. -Ph-SO 2 -Ph-O- polyether (where Ph represents a phenylene group.) having a repeating unit represented by - Terusuruhon, ethylene glycol as an additive - le and / or glycerol, and as solvents aprotic It is characterized in that a solution containing a polar organic solvent is used as a stock solution for film formation and a porous film obtained by wet film formation is used, and 2,2-dichloro-1,1,1-trifluoroethane is used as a solvent for forming an active layer. A method for producing a composite membrane for reverse osmosis.
JP03255393A 1991-10-02 1991-10-02 Method for producing composite membrane for reverse osmosis method Expired - Fee Related JP3132084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03255393A JP3132084B2 (en) 1991-10-02 1991-10-02 Method for producing composite membrane for reverse osmosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03255393A JP3132084B2 (en) 1991-10-02 1991-10-02 Method for producing composite membrane for reverse osmosis method

Publications (2)

Publication Number Publication Date
JPH0596141A true JPH0596141A (en) 1993-04-20
JP3132084B2 JP3132084B2 (en) 2001-02-05

Family

ID=17278143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03255393A Expired - Fee Related JP3132084B2 (en) 1991-10-02 1991-10-02 Method for producing composite membrane for reverse osmosis method

Country Status (1)

Country Link
JP (1) JP3132084B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718030A2 (en) * 1994-12-22 1996-06-26 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane, method of producing the same, and method of using the same
EP0718029A3 (en) * 1994-12-22 1997-01-22 Nitto Denko Corp Method for producing highly permeable composite reverse osmosis membrane
US5783124A (en) * 1993-07-28 1998-07-21 Toyo Boseki Kabushiki Kaisha Cellulose acetate hemodialysis membrane
US5989426A (en) * 1995-07-05 1999-11-23 Nitto Denko Corp. Osmosis membrane
US6024873A (en) * 1996-03-21 2000-02-15 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane and a reverse osmosis membrane module using the same
US6171497B1 (en) 1996-01-24 2001-01-09 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
WO2019143225A1 (en) * 2018-01-22 2019-07-25 고려대학교 산학협력단 Method for manufacturing high-performance thin film composite separation membrane through post-solution treatment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102054204B1 (en) * 2018-05-14 2019-12-10 한국에너지기술연구원 Defect-free membrane formed on mesh support layer, method for manufacturing the same and subtle energy harvesting device using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783124A (en) * 1993-07-28 1998-07-21 Toyo Boseki Kabushiki Kaisha Cellulose acetate hemodialysis membrane
EP0718030A2 (en) * 1994-12-22 1996-06-26 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane, method of producing the same, and method of using the same
EP0718030A3 (en) * 1994-12-22 1997-01-22 Nitto Denko Corp Highly permeable composite reverse osmosis membrane, method of producing the same, and method of using the same
EP0718029A3 (en) * 1994-12-22 1997-01-22 Nitto Denko Corp Method for producing highly permeable composite reverse osmosis membrane
US5989426A (en) * 1995-07-05 1999-11-23 Nitto Denko Corp. Osmosis membrane
US6171497B1 (en) 1996-01-24 2001-01-09 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
US6024873A (en) * 1996-03-21 2000-02-15 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane and a reverse osmosis membrane module using the same
WO2019143225A1 (en) * 2018-01-22 2019-07-25 고려대학교 산학협력단 Method for manufacturing high-performance thin film composite separation membrane through post-solution treatment

Also Published As

Publication number Publication date
JP3132084B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
PT100088A (en) METHOD FOR THE MANUFACTURE OF COMPOSITE THIN MEMBRANE MEMBRANES
JPH01180208A (en) Production of compound semipermeable membrane
JPH04281830A (en) Reverse multi-layer osmosis membrane of polyamide urea
JPH0374128B2 (en)
JPS63218208A (en) Composite semipermeable membrane and its production
JPS6354905A (en) Production of semiosmosis composite membrane
JPH0380049B2 (en)
JP3132084B2 (en) Method for producing composite membrane for reverse osmosis method
KR102573508B1 (en) Gas separation membrane, gas separation membrane element, and gas separation method
JPH08281085A (en) Composite hollow fiber membrane and its production
JPH02115027A (en) Manufacture of conjugate semipermeable membrane
JPH06182166A (en) Composite reverse osmosis membrane and manufacture thereof
JP3132090B2 (en) Method for producing composite membrane for reverse osmosis method
JP3106595B2 (en) Method for producing composite membrane for reverse osmosis method
JPS6225402B2 (en)
JP4923913B2 (en) Composite semipermeable membrane and method for producing the same
JPH07114944B2 (en) Method for manufacturing semipermeable composite membrane
JP3849263B2 (en) Composite semipermeable membrane and method for producing the same
EP0465649B1 (en) Composite semipermeable membrane and production thereof
JP4543296B2 (en) Composite semipermeable membrane, method for producing the same, and composite semipermeable membrane separation element incorporating the same
JPH05317667A (en) Production of composite membrane for reverse osmosis method
JPH03120A (en) Hollow-fiber membrane
JPH04161234A (en) Manufacture of composite membrane
JP2508732B2 (en) Selectively permeable hollow fiber composite membrane and method for producing the same
JPH04104825A (en) Manufacture of composite membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees