JPH0595993A - Hydration reaction-type calcium phosphate biomaterial having room temperature caking properties - Google Patents

Hydration reaction-type calcium phosphate biomaterial having room temperature caking properties

Info

Publication number
JPH0595993A
JPH0595993A JP3284119A JP28411991A JPH0595993A JP H0595993 A JPH0595993 A JP H0595993A JP 3284119 A JP3284119 A JP 3284119A JP 28411991 A JP28411991 A JP 28411991A JP H0595993 A JPH0595993 A JP H0595993A
Authority
JP
Japan
Prior art keywords
calcium phosphate
metal oxide
biomaterial
water
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3284119A
Other languages
Japanese (ja)
Other versions
JP3063013B2 (en
Inventor
Seiichiro Sawano
征一郎 沢野
Katsujiro Kuroki
克二郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankin Industry Co Ltd
Original Assignee
Sankin Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankin Industry Co Ltd filed Critical Sankin Industry Co Ltd
Priority to JP3284119A priority Critical patent/JP3063013B2/en
Publication of JPH0595993A publication Critical patent/JPH0595993A/en
Application granted granted Critical
Publication of JP3063013B2 publication Critical patent/JP3063013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

PURPOSE:To improve ordinary temp. caking properties and to attempt to improve strength without spoiling workability by forming a biomaterial being useful as a hard system replacing material having biocompativility from a powder wherein calcium phosphate compd. is a main ingredient and a soln. wherein fine particles of a metal oxide are dispersed in water. CONSTITUTION:A biomaterial being suitable for curing and repairing of a loss or cavity part of a tooth in the dental region consists of a powder wherein calcium phosphate is a main ingredient and a soln. wherein using water as a dispersing medium, fine particles of a metal oxide are coloidally dispersed in water. As the calcium phosphate compd., alpha-type tricalcium phosphate and tetracalcium phosphate are pref. used and as the metal oxide, silicic anhydride, zirconia and zircon are used. In addition, the soln. is a mixture of a colloidal soln. of at least one among silicic anhydride, zirconia and zircon and a colloidal soln. of another metal oxide. This biomaterial is cured by being accompanied with conversion to hydroxyapatite.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は生体親和性を有する硬組
織代替材料として有用な生体材料に関するものであり、
とくに歯科領域における歯牙欠損空隙部の治療や修復に
際して様々に応用するのに適した水和反応型リン酸カル
シウム系生体材料に関するものである。
TECHNICAL FIELD The present invention relates to a biomaterial useful as a hard tissue substitute material having biocompatibility,
In particular, the present invention relates to a hydration-reactive calcium phosphate-based biomaterial suitable for various applications in the treatment and repair of tooth-deficient voids in the dental field.

【0002】[0002]

【従来の技術】医科及び歯科領域における硬組織代替材
料として、骨および歯質の無機成分ときわめて近似する
組成を持つリン酸カルシウム系化合物は、生体親和性材
料としての中心的存在意義が日増しに高まっている。
2. Description of the Related Art As a hard tissue substitute material in the fields of medicine and dentistry, a calcium phosphate-based compound having a composition extremely similar to an inorganic component of bone and dentin is increasingly important as a biocompatible material. ing.

【0003】無機成分の主体は、いうまでもなくハイド
ロキシアパタイトであるが、合成ハイドロキシアパタイ
ト粉状体を固型物とするには、この合成物自体は自己反
応硬化性を有していないので、たとえば高温での焼成体
として得られたものを成形加工して適用する等の特殊な
方法に頼らざるをえない。従って、臨床の場で多くの材
料に一般的にみられる粉剤と液剤との常温硬化反応によ
る臨床処法を採用することが出来ず、直接の利用は限定
されたものになっている。
Needless to say, the main component of the inorganic component is hydroxyapatite. However, in order to make the synthetic hydroxyapatite powdery substance into a solid product, the synthetic product itself does not have self-reaction hardening property. For example, there is no choice but to rely on a special method such as applying a material obtained as a fired body at a high temperature by molding. Therefore, the clinical treatment method based on the room temperature curing reaction between the powder and the liquid, which is generally found in many materials in the clinical field, cannot be adopted, and its direct use is limited.

【0004】ところが、近年、α型リン酸三カルシウム
に代表されるアパタイト類似のリン酸カルシウム系化合
物の幾つかは水との水和反応により凝結し、しかも固型
化したものはハイドロキシアパタイトに転化するので、
それを応用した方法が見出だされた。たとえば、そのよ
うな方法は特公昭61−9265号、特開昭59−18
2263号等に開示されている。特に歯科領域等では従
来の材料と同様の操作方法で用いることが出来るにもか
かわらず、組成は従来品とは全く異なっており、反応硬
化後の固型物は患部生体組織に限りなく近い組成物にな
る。しかしながら、水との練和物は、パサパサの湿り砂
状あるいはスラリー液状で操作性に難点がある、硬化に
時間がかかりすぎる、強度が十分でない等の幾つかの問
題点が残されており、このままではすぐ臨床応用可能と
ならないことも判明した。
However, in recent years, some of the apatite-like calcium phosphate compounds represented by α-type tricalcium phosphate are condensed by the hydration reaction with water, and the solidified ones are converted into hydroxyapatite. ,
A method of applying it was found. For example, such a method is disclosed in JP-B-61-9265 and JP-A-59-18.
2263 and the like. Especially in the dental field, etc., although the composition can be used by the same operation method as conventional materials, the composition is completely different from the conventional product, and the solid product after reaction curing is a composition that is as close as possible to the affected tissue. Become a thing. However, the kneaded product with water has some problems such as difficulty in operability in the form of dry sand or slurry liquid, too much time for curing, insufficient strength, etc., It was also found that this could not be immediately applied clinically.

【0005】そこで、これらの問題点を解決すべく、そ
の後数多くの提案が報告されている。例えば、特公昭6
2−42625号に示されるごとく硬化液剤に水溶性の
高分子酸を用いる方法、あるいは特開昭62−1270
5号に示されるごとく有機酸水溶液を用いる方法等が提
案された。しかし、これらの組成物の硬化反応は水和反
応とは異なる反応機構である。すなわち、常温環境にて
短時間で硬化が完了するものの、硬化物は反応によって
直ちにハイドロキシアパタイトへは転化せず、リン酸カ
ルシウム組成物はそのまま基材マトリックス中に核質体
として留まる。この核質体としてのリン酸カルシウム組
成物、例えばα型リン酸三カルシウムは経日的に生体環
境中でハイドロキシアパタイトへ転化する可能性を有し
ているが、その進行速度は極めて緩慢で長い日数を必要
とすると同時に、組成物の種類と環境がどの様な状態で
あるかによって、硬化物全体がハイドロキシアパタイト
へ転化しない場合もある。
Therefore, in order to solve these problems, many proposals have been reported thereafter. For example, Japanese Patent Publication 6
As disclosed in JP-A-2-42625, a method using a water-soluble polymeric acid as a curing liquid agent, or JP-A-62-1270.
As shown in No. 5, a method using an organic acid aqueous solution has been proposed. However, the curing reaction of these compositions has a different reaction mechanism than the hydration reaction. That is, although the curing is completed in a short time in a room temperature environment, the cured product is not immediately converted into hydroxyapatite by the reaction, and the calcium phosphate composition remains as a nucleophile in the base matrix as it is. The calcium phosphate composition as the nucleosome, for example, α-type tricalcium phosphate has the possibility of being converted into hydroxyapatite in the living environment over time, but its progress rate is extremely slow and the number of days is long. At the same time, the entire cured product may not be converted to hydroxyapatite depending on the kind of the composition and the state of the environment.

【0006】一方、水和反応によるハイドロキシアパタ
イト転化型組成物を中心とする本来の改善提案もいくつ
か出されている。例えば特公平3−33676号に示さ
れているごとくα型リン酸三カルシウムに第2リン酸カ
ルシウム水和物を混合する方法や、特開平3−1280
63号に示されるごとくα型リン酸三カルシウムに第2
リン酸カルシウム無水物を混合する方法等が提案されて
いる。しかしながら、これらの改善組成物であっても、
基本的には操作性、硬化性、強度等は前述の特公昭61
−9265号および特開昭59−182263号と同様
のものであり、更なる改善を必要としている。
[0006] On the other hand, some original proposals for improvement have been made mainly on a hydroxyapatite conversion type composition by a hydration reaction. For example, as disclosed in JP-B-3-33676, a method of mixing dicalcium phosphate hydrate with α-type tricalcium phosphate, or JP-A-3-1280.
As shown in No. 63, the second addition to α-type tricalcium phosphate
A method of mixing anhydrous calcium phosphate has been proposed. However, even with these improved compositions,
Basically, operability, curability, strength, etc. are as described above
It is the same as that of JP-A-9265 and JP-A-59-182263, and needs further improvement.

【0007】また、別のアプローチとしては、特公平3
−41423号や特開昭63−25291号等に示され
るごとく、リン酸カルシウム化合物にフッ素化合物を添
加する方法が提案されている。操作性、硬化時間、機械
的強度等、多方面にわたる改善がなされ、臨床応用への
可能性が示唆されるものも出現している。しかしなが
ら、これらの方法によると、組成物にはいずれも水和反
応を目的とするには過量ともいえる酸がその硬化用液剤
に用いられている。特公平3−41423号では、水和
自硬性の組成物を規定に従って練和し水和硬化せしめる
とフッ化アパタイトからなる硬度の優れた硬化物が得ら
れる。一方、特開昭63−25291号では、水と練和
することにより基本的に水和硬化するものである。他
方、使用の実際は、いずれの報告も、硬化性材料には硬
化促進剤として有機酸類及び無機酸類等の酸類を含んで
いる。また、硬化反応を生体温度付近で比較的短時間の
うちに進行させるためあるいは調整するために硬化促進
剤として有機又は無機の酸を用いる。このことからも明
らかなように、これらは完全な水和反応型組成物ではな
いと推察される。すなわち、酸水溶液反応型と水和反応
型との中間的機構によってバランス良く硬化が達成され
るタイプと考えられる。これらの報告の中では、硬化完
了後直ちに完全なアパタイト構造への転化が完了してい
ることの実証は明示されていない。
[0007] Another approach is Japanese Patent Publication No. 3
As disclosed in JP-A-41423 and JP-A-63-25291, a method of adding a fluorine compound to a calcium phosphate compound has been proposed. Improvements have been made in various fields such as operability, curing time, and mechanical strength, and some have been suggested to have potential for clinical application. However, according to these methods, an acid, which can be said to be an excessive amount for the purpose of hydration reaction, is used in the curing liquid agent in any of the compositions. In Japanese Examined Patent Publication No. 3-41423, a hydrated self-hardening composition is kneaded in accordance with the regulations and hydrated to give a cured product of fluorapatite having excellent hardness. On the other hand, in JP-A No. 63-25291, hydration hardening is basically carried out by mixing with water. On the other hand, in practical use, in all reports, curable materials contain acids such as organic acids and inorganic acids as curing accelerators. In addition, an organic or inorganic acid is used as a curing accelerator in order to proceed or adjust the curing reaction in the vicinity of the living body temperature in a relatively short time. As is clear from this, it is presumed that these are not completely hydration type compositions. That is, it is considered that curing is achieved in a well-balanced manner by an intermediate mechanism between the acid aqueous solution reaction type and the hydration reaction type. In these reports, there is no explicit demonstration that the conversion to the complete apatite structure is completed immediately after the completion of curing.

【0008】[0008]

【発明が解決しようとする課題】ここで注目しなければ
ならないことは、これら従来技術による水和凝結反応は
環境温度に支配されるものである点である。
It should be noted here that these conventional hydration-condensation reactions are controlled by the ambient temperature.

【0009】この反応は、室温(約25℃以下、本分中
これを常温と記す)でも進行し、ハイドロキシアパタイ
トへの転化をともなって凝結が完了するが、この場合は
かなりの長時間(日数)を必要とし、かつ絶えることの
ない水の供給が不可欠である。従って実際にはα型リン
酸三カルシウム系組成物と水との混和物は、常温の室内
に放置された場合、混和物の水分はまもなく蒸発、揮散
してしまうため、反応進行の途中で水分の無い状態とな
ってしまい、単に粉末の凝集体としての固型物になっ
て、その反応進行は停止してしまう。
This reaction proceeds even at room temperature (about 25 ° C. or lower, which will be referred to as room temperature in the present), and the condensation is completed with the conversion to hydroxyapatite, but in this case, it takes a considerably long time (days). A) and a continuous supply of water is essential. Therefore, in practice, when the mixture of the α-type tricalcium phosphate composition and water is left to stand in a room at room temperature, the water content of the mixture will soon evaporate and volatilize. Then, the reaction proceeds to a solid state as a powder agglomerate and the reaction progresses.

【0010】この固型物自体は、ある種の規定された方
法、例えば棒状金属針等による数百グラムの一定荷重に
てその表面を押した場合には針跡がつかず、凝結完了と
判定することも可能で、一定の目安とすることもある
が、真の凝結ではなく、当然の事ながら、この固型物は
わずかな応力で破砕され元の粉状物へ戻ってしまう。た
とえば圧縮強度を測定すれば、強度値は0か、ほとんど
0に近い値である。
When the surface of the solid material itself is pushed under a certain prescribed method, for example, a constant load of several hundred grams by a rod-shaped metal needle, no needle mark is left and it is judged that the solidification is completed. It is also possible to do it, and it may be used as a certain standard, but it is not true condensation, and naturally, this solid material is crushed with a slight stress and returns to the original powdery material. For example, when compressive strength is measured, the strength value is 0 or a value close to 0.

【0011】このような現象も、環境温度が生体温度付
近である37℃の場合は短時間(数時間)で反応は大き
く進行し、ハイドロキシアパタイトへ完全に転化し、強
度を備えた硬化体としての固型物となる。しかしながら
更に速い硬化を求めるため、前述の特公昭61−926
5号や特開昭59−182263号等では、各種水溶性
の酸、塩等の硬化促進剤を添加することによって目的を
達成しているが、この場合も37℃の環境を必要とする
ことは言うまでもない。
[0011] Even with such a phenomenon, when the environmental temperature is 37 ° C, which is close to the living body temperature, the reaction greatly progresses in a short time (several hours) and is completely converted into hydroxyapatite, and as a cured product having strength. It becomes a solid object of. However, in order to obtain a faster curing, the above-mentioned Japanese Patent Publication No. 61-926.
No. 5, JP-A-59-182263 and the like achieve the object by adding a curing accelerator such as various water-soluble acids and salts, but in this case also, an environment of 37 ° C. is required. Needless to say.

【0012】一方、これらの基本組成物を改善した前述
の特公平3−33676号、同平3−41423号、特
開平3−128063号等に報告されるリン酸カルシウ
ム組成物においても、硬化時の環境は全て37℃を要求
している。
On the other hand, the calcium phosphate compositions reported in Japanese Patent Publication Nos. 3-33676, 3-41423, and JP-A-3-128063, which are obtained by improving these basic compositions, have an environment at the time of curing. All require 37 ° C.

【0013】常温でα型リン酸三カルシウム系組成物を
完全な硬化体としての固型物とするには、現在では別の
反応機構、すなわち水溶性高分子の酸溶液あるいは各種
の有機酸水溶液等による硬化反応を用いなければならな
いが、この場合は前述のように初期硬化完了時点では、
ハイドロキシアパタイトへの転化は発現せず、その後の
転化の進行も極めて遅い。
At present, in order to make an α-type tricalcium phosphate-based composition into a solid product as a completely hardened product, at present, another reaction mechanism, namely, an acid solution of a water-soluble polymer or various organic acid aqueous solutions is used. However, in this case, as described above, at the time of completion of initial curing,
Conversion to hydroxyapatite does not occur and the subsequent conversion is extremely slow.

【0014】口腔内は閉ざされた生体環境ではなく、変
化の多い外界環境に絶えず接しており、材料の適応時に
その温度環境は必ずしも37℃に保たれているわけでは
なく、むしろそれ以下の場合も多い。したがって、水和
反応型でも37℃以下の低い温度環境での硬化能を有す
る材料が望まれるところである。一方、加温によりその
硬化反応はさらに促進されてハイドロキシアパタイトへ
の転化も速やかに進行し完全な凝結体としての固型物と
なれば、室温凝結能を有するリン酸カルシウム系組成物
としては極めて好都合のはずである。
The inside of the oral cavity is not a closed living environment, but is constantly in contact with the changing external environment, and the temperature environment is not always kept at 37 ° C. at the time of adapting the material. There are also many. Therefore, even a hydration reaction type material having a curing ability in a low temperature environment of 37 ° C. or less is desired. On the other hand, if the curing reaction is further promoted by heating and the conversion to hydroxyapatite also progresses rapidly and becomes a solid product as a complete aggregate, it is extremely convenient as a calcium phosphate-based composition having room temperature setting ability. Should be.

【0015】α型リン酸三カルシウムあるいはリン酸四
カルシウムのような水和活性組成物が常温でも真の凝結
体となり、加えてハイドロキシアパタイトへの転化も短
時間で完了することが可能であれば、生体親和性材料と
してのその応用範囲は更に広がる。
If a hydration active composition such as α-type tricalcium phosphate or tetracalcium phosphate becomes a true aggregate even at room temperature, and conversion to hydroxyapatite can be completed in a short time. , Its application range as a biocompatible material is further expanded.

【0016】本発明は、前述の実情に鑑みて、有機酸や
高分子酸水溶液硬化法とは異なる常温硬化法、すなわち
ハイドロキシアパタイト転化能を有する水硬化型リン酸
カルシウム系組成物を提供しようとするものである。
In view of the above-mentioned circumstances, the present invention intends to provide a room temperature curing method different from an organic acid or polymer acid aqueous solution curing method, that is, a water-curable calcium phosphate-based composition having a hydroxyapatite conversion ability. Is.

【0017】[0017]

【課題を解決するための手段】本発明は、リン酸カルシ
ウム化合物を主体とする粉剤と水を主分散媒として使用
して水に金属酸化物の微粒子をコロイド状に分散させた
溶液とからなる室温凝結能を有する水和反応型リン酸カ
ルシウム系生体材料を要旨としている。
DISCLOSURE OF THE INVENTION The present invention is a room temperature coagulation comprising a powder having a calcium phosphate compound as a main component and a solution in which water is used as a main dispersion medium and fine particles of a metal oxide are colloidally dispersed in water. The main point is a hydration-reactive calcium phosphate-based biomaterial having the ability.

【0018】[0018]

【発明の効果】従来からの水硬化性リン酸カルシウム系
組成物の操作性の悪さを改善し、すなわち練和物がパサ
パサした湿り砂状にならず、適度の粘性を有して扱いや
すく、操作性のよいペースト状となる。
EFFECTS OF THE INVENTION The conventional water-curable calcium phosphate-based composition is improved in operability, that is, the kneaded product does not have a dry, dry sandy form, has an appropriate viscosity, and is easy to handle and easy to operate. It becomes a good paste.

【0019】硬化反応は常温でも進行し、しかも硬化体
は完全な凝結体としての固型物であり、圧縮強度が0や
それに近い状態になることはない。
The curing reaction proceeds even at room temperature, and the cured product is a solid product as a complete aggregate, and the compressive strength does not become 0 or close thereto.

【0020】37℃温度環境では、その反応は後退する
ことなくさらに前進する。
In the 37 ° C. temperature environment, the reaction proceeds further without receding.

【0021】高分子酸水溶液や有機酸水溶液を用いる他
の常温硬化型リン酸カルシウム系組成物のように、ハイ
ドロキシアパタイトへの転化が遅れることなく、速やか
に転化が完了する。
The conversion to hydroxyapatite can be completed promptly without delaying the conversion to hydroxyapatite like other room temperature-curable calcium phosphate-based compositions using an aqueous solution of a polymeric acid or an organic acid.

【0022】[0022]

【実施例】本発明は、水和反応型組成物を、リン酸カル
シウム化合物を主体とする粉剤と水を主分散媒として使
用して水に金属酸化物の微粒子をコロイド状に分散させ
た溶液とからなる室温凝結能を有する水和反応型リン酸
カルシウム系生体材料としたものである。
EXAMPLES The present invention comprises a hydration reaction type composition comprising a powdery agent mainly composed of a calcium phosphate compound and a solution in which water is used as a main dispersion medium and fine particles of a metal oxide are colloidally dispersed. A hydration-type calcium phosphate-based biomaterial having the following room temperature coagulation ability.

【0023】ここで、リン酸カルシウム系化合物は、α
型リン酸三カルシウムが好適であるが、水和活性を持つ
化合物であれば他のリン酸カルシウム化合物たとえばリ
ン酸四カルシウムでも良い。
Here, the calcium phosphate compound is α
Type tricalcium phosphate is preferred, but other calcium phosphate compounds such as tetracalcium phosphate may be used as long as they have hydration activity.

【0024】金属化合物としては、無水ケイ酸(SiO
2)、ジルコニア(ZrO2)、ジルコン(ZrSiO
4)等が最も好ましい。この場合の溶液は、一般にシリ
カゾルやジルコニアゾルと呼ばれる公知のものでもさし
つかえない。また、その他の金属酸化物、たとえばアル
ミニウム、リチウム、アンチモン、鉄、セリウム、イッ
トリウム、クロム等の酸化物でも、あるいは上記各酸化
物の混合された溶液であってもよく、本発明はその使用
を制限するものではない。
As the metal compound, silicic acid anhydride (SiO 2
2), zirconia (ZrO2), zircon (ZrSiO)
4) etc. are the most preferable. The solution in this case may be a known one generally called silica sol or zirconia sol. Further, other metal oxides such as aluminum, lithium, antimony, iron, cerium, yttrium, chromium, and the like, or a mixed solution of the above oxides may be used. There is no limit.

【0025】これら金属酸化物コロイド溶液の分散媒
は、リン酸カルシウム化合物の水和反応をそこなわず、
凝結の促進効果を与え、生体に有害作用を発現させない
目的からも、水が最も好ましい。
The dispersion medium of these metal oxide colloidal solutions does not impair the hydration reaction of the calcium phosphate compound,
Water is most preferable also for the purpose of giving an effect of promoting coagulation and not exerting a harmful effect on the living body.

【0026】また、このような溶液には、各種界面活性
剤を添加して操作性改善をはかることも可能であるし、
各種有機酸、無機酸、あるいはエタノール等の有機溶剤
の少量を添加して諸物性の向上に寄与させることも可能
である。たとえば、リン酸の添加では、電解質のシリカ
ゾル安定性へ及ぼす序列をみると、リン酸イオンはゲル
化を起こしにくい側に序列されているので、安定期間は
短くなるが、使用は可能である。
Further, various surfactants may be added to such a solution to improve operability,
It is also possible to add a small amount of various organic acids, inorganic acids, or organic solvents such as ethanol to contribute to the improvement of various physical properties. For example, when phosphoric acid is added, the order in which the electrolyte influences the stability of the silica sol is examined. Since the phosphate ions are arranged on the side where gelation is unlikely to occur, the stability period is shortened, but it can be used.

【0027】金属酸化物の微粒子の大きさは一般に1〜
100nmの超微粒子であるが、本発明はこの大きさに
限定されるものではない。微粒子の形状は球形状が一般
的であるが、棒状であったり、針状、繊維状のような細
長い形状、あるいは不定形であっても一向に差し支えな
い。加うるに、上述の大きさと形状の異なるものをそれ
ぞれ組合せて性能の向上をはかって用いることもでき
る。この金属酸化物の濃度は、一般に20wt%〜40
wt%が品種として市販されているが、ゾルの安定性を
考慮した上で更に高濃度のものも使用可能である。たと
えば、市販のゾルに目的濃度のものがみつからない場合
は、適当濃度のゾルを濃縮し、濃度を上げて用いればよ
い。
The particle size of the metal oxide is generally from 1 to
Although it is an ultrafine particle of 100 nm, the present invention is not limited to this size. The shape of the fine particles is generally spherical, but may be rod-shaped, needle-shaped, elongated such as fibrous, or indeterminate. In addition, it is also possible to combine the above-mentioned materials having different sizes and shapes to improve performance. The concentration of this metal oxide is generally 20 wt% to 40%.
Although wt% is commercially available as a variety, a higher concentration can be used in consideration of the stability of the sol. For example, if a sol having a desired concentration cannot be found in a commercially available sol, a sol having an appropriate concentration may be concentrated and the concentration may be increased before use.

【0028】シリカゾルを代表とする金属酸化物コロイ
ド溶液は、その特殊な性質から、窯業、金属工業、触媒
科学、繊維工業、食品工業等あらゆる方面に進出してい
るが、近年はこれまであまり検討されていない分野まで
その有効利用を求める動きが出始めている。
The metal oxide colloidal solution represented by silica sol has advanced to various fields such as the ceramic industry, the metal industry, the catalyst science, the textile industry and the food industry due to its special property, but in recent years, much study has been made so far. Movements are beginning to be made for effective use even in fields that have not been developed.

【0029】本発明は、微粒子コロイド溶液の持つ電気
二重層の破壊によるゲル化現象とその結合能を、生体材
料としてのリン酸カルシウム系化合物、なかんずく水和
活性を有するα型リン酸三カルシウムやリン酸四カルシ
ウム等へ応用せんと着想し、各種の試験を試みた結果、
様々な新知見が得られ、その有用性を見出したものであ
る。
In the present invention, the gelation phenomenon due to the destruction of the electric double layer possessed by the fine particle colloidal solution and its binding ability are evaluated by using calcium phosphate compounds as biomaterials, especially α-type tricalcium phosphate or phosphate having hydration activity. As a result of trying various tests with the idea of applying it to tetracalcium etc.,
We obtained various new findings and found their usefulness.

【0030】α型リン酸三カルシウム−水系水和反応凝
結物の内部構造は、一般に気孔率が高い微細な多孔質構
造を呈す。すなわち空隙を持った凝結物であるので、こ
れはある意味では生体親和性材料として好都合の場合も
あるが、反面、諸物性の面では、たとえば強度が十分に
得られない等の問題点も有している。したがって、本発
明の組成物のように金属酸化物コロイド溶液の硬化液剤
への応用は、このような水和活性物質には好適であり、
微細な多孔質構造の間隙を適度に緻密化して、強度の上
昇に貢献する。
The internal structure of the α-type tricalcium phosphate-water hydration reaction aggregate generally exhibits a fine porous structure having a high porosity. That is, since it is a coagulate having voids, it may be convenient as a biocompatible material in a sense, but on the other hand, in terms of various physical properties, there are problems such as insufficient strength. is doing. Therefore, the application of the metal oxide colloidal solution to the curing liquid agent such as the composition of the present invention is suitable for such a hydration active substance,
It contributes to the increase in strength by appropriately densifying the pores of the fine porous structure.

【0031】一方、凝結能に関しては、従来の水系組成
物の水和反応が37℃以上の高温領域で活発となるのに
比して、本発明の組成物のように金属酸化物コロイド溶
液の硬化液剤への応用によって、常温であっても強固な
凝結が完了し、後に生体環境で確実なハイドロキシアパ
タイトへの転化が速やかに進行する現象は、初期物性が
低くその取扱いに困難さを感じていた従来の水和反応組
成物に代る極めて好ましい性能といえる。
On the other hand, with respect to the coagulation ability, the hydration reaction of the conventional water-based composition is active in the high temperature region of 37 ° C. or higher, as compared with the composition of the present invention. Due to its application as a curing liquid agent, strong coagulation is completed even at room temperature, and the phenomenon of rapid rapid conversion to hydroxyapatite in the biological environment later is difficult to handle due to its low initial physical properties. It can be said that the performance is extremely favorable in place of the conventional hydration reaction composition.

【0032】ある種のゾルはシュルツ−ハーディの法
則、ホフマイスター順列等で説明されるように、陽イオ
ンでは原子価の大きな多価カチオンにより凝集を起こす
という電解質のコロイドへの不安定要因をもっていた
り、その他にも多くの興味深い現象を示す未知の用途を
期待させるものがあるが、本発明ではそれらの現象を生
体材料に応用し、特に水和活性を有するリン酸カルシウ
ム化合物との適性を探索したものである。
As described in Schulz-Hardy's law, Hofmeister permutation, etc., some sols have a destabilizing factor to the colloid of the electrolyte, in which cations cause aggregation due to polyvalent cations having large valences. In addition, although there are those that are expected to have unknown uses that exhibit many other interesting phenomena, in the present invention, those phenomena were applied to biomaterials, and the suitability with calcium phosphate compounds having hydration activity was searched for. Is.

【0033】この金属酸化物コロイド溶液自体の不安定
要因はpHにも支配されるが、本発明の組成物では、た
とえばシリカゾルの通常安定域であるpH8〜10及び
準安定域であるpH2〜4の双方において上述の目的を
達成できるという応用範囲の広いことを特徴としてい
る。特に従来の酸水溶液組成物はもちろんのこと、水硬
化性組成物でも、必ず酸性物質にて硬化調整がなされて
きたが、これがアルカリ性領域でも凝結可能であること
は、リン酸カルシウム化合物の応用範囲を広げる点で重
要である。また、たとえゾルのpHが酸性範囲の準安定
域溶液であっても、組成物の練和ペーストのpHを測定
したところ、8.0付近で酸性を示さず、生体に用いる
組成物として好適であることが判明した。
The instability factor of the metal oxide colloidal solution itself is governed by the pH as well, but in the composition of the present invention, for example, the silica sol usually has a stable range of pH 8 to 10 and a metastable range of pH 2 to 4. Both are characterized by a wide range of applications in which the above object can be achieved. In particular, not only conventional acid aqueous solution compositions but also water-curable compositions have always been adjusted with an acidic substance, but the fact that they can be set even in the alkaline range expands the application range of calcium phosphate compounds. Important in terms. In addition, even if the pH of the sol is a metastable region solution in the acidic range, the pH of the kneading paste of the composition was measured and showed no acidity around 8.0, which is suitable as a composition for living organisms. It turned out to be.

【0034】操作性の面では、金属酸化物コロイド溶液
そのものに適度な粘性があるので、練和物の状態は極め
て扱いやすいペースト状となり、従来の水系組成物のよ
うなパサパサの状態あるいは湿り砂状の扱いにくさを解
消することが可能となった。
In terms of operability, since the metal oxide colloidal solution itself has an appropriate viscosity, the state of the kneaded product becomes a paste that is extremely easy to handle, and the state of dry or dry sand like conventional aqueous compositions or wet sand. It has become possible to eliminate the difficulty of handling the condition.

【0035】このゾルの粘性は自由にコントロールでき
るので、当然、練和ペーストの状態も自由に選択するこ
とが可能となる。
Since the viscosity of this sol can be freely controlled, the state of the kneading paste can naturally be freely selected.

【0036】ここで、さらに注目すべき点は、上記練和
ペーストの粘性を術者の好みに応じて或いは用途に応じ
て選択しても、強度へ及ぼす影響が極めて少ないことで
ある。従来の粉液タイプの組成物は、水硬化性組成物で
も酸硬化性組成物でも、強度的に粉液比の影響が大き
い。すなわち、粉剤の量が液剤の量に比して多い凝結物
の強度は高くなるが、逆に少ない凝結物の強度は低くな
ってしまう。そこで使用に際しては、高い強度を得るた
めに粉部を多くしたいところであるが、粉部の多い練和
物は上述のパサパサ状がさらに過度となり、事実上一定
範囲以上の粉液比を求めることができず、強度の限界が
発生する。また無理に粉部を多くしても水和反応に必要
な水の供給が追いつかず、反応速度よりも練和物の破壊
要因の方が優位に作用してしまい、逆に強度の低下を招
いてしまう。ところが、本発明の組成物では粉液比の強
度に及ぼす影響が従来型に比べて非常に少なくなってお
り、術者の好みに応じた適度の粘性を選択することが可
能である。すなわち、前述の金属酸化物コロイド溶液特
有の様々な要因が複合されて発現することから、粉部の
少ない軟らかく扱いやすいペースト状としても、常に高
強度の凝結体を安定して得ることが可能である。
Here, it should be further noted that even if the viscosity of the kneading paste is selected according to the operator's preference or the application, the effect on the strength is extremely small. Conventional powder-liquid type compositions, whether they are water-curable compositions or acid-curable compositions, are greatly affected by the powder-liquid ratio in terms of strength. That is, the strength of the coagulum having a larger amount of the powder agent than that of the liquid agent becomes higher, but the strength of the condensate having a smaller amount becomes lower. Therefore, at the time of use, it is desirable to increase the powder portion in order to obtain high strength, but the kneaded product with many powder portions becomes more excessively dry and the powder-liquid ratio above a certain range may be actually obtained. It cannot be done, and the strength is limited. Moreover, even if the amount of powder is increased forcibly, the supply of water necessary for the hydration reaction will not catch up, and the factor of destruction of the kneaded substance will act more dominantly than the reaction rate, which will in turn reduce the strength. I will leave. However, in the composition of the present invention, the influence of the powder-liquid ratio on the strength is much smaller than in the conventional type, and it is possible to select an appropriate viscosity according to the operator's preference. That is, since various factors peculiar to the metal oxide colloidal solution described above are compounded and expressed, it is possible to always stably obtain a high-strength aggregate even in the form of a paste that has few powder parts and is easy to handle. is there.

【0037】このように、金属酸化物のコロイド状分散
溶液を水和活性を有するリン酸カルシウム化合物の硬化
剤として用いることにより、従来型にはみられない様々
な好要因を与えることが判明した。
As described above, it was found that the use of the colloidal dispersion solution of the metal oxide as the curing agent for the calcium phosphate compound having the hydration activity gives various favorable factors not found in the conventional type.

【0038】なお、この水和活性を有するリン酸カルシ
ウム化合物の製造方法はどのような方法でも良く、特に
制限を加えるものではない。諸特性向上の目的から他の
リン酸カルシウム化合物、例えばハイドロキシアパタイ
ト、リン酸八カルシウム、第二リン酸カルシウム、第一
リン酸カルシウム、β型リン酸三カルシウム等を骨材と
して加えたり、レントゲン造影性や薬理作用やpH調整
能を付与するために各種の添加物質、例えば硫酸バリウ
ム、次炭酸ビスマス、タングステン酸カルシウム、ヨー
ドホルム、ジルコニウム化合物、フッ素化合物、抗菌
剤、水酸化カルシウム、酸化カルシウム、水酸化マグネ
シウム、酸化マグネシウム等を加えることがありうる。
The method for producing the calcium phosphate compound having hydration activity may be any method and is not particularly limited. For the purpose of improving various properties, other calcium phosphate compounds such as hydroxyapatite, octacalcium phosphate, dibasic calcium phosphate, monobasic calcium phosphate, β-tricalcium phosphate, etc. are added as an aggregate, and X-ray contrast property, pharmacological action and pH are added. Various additives for imparting adjustability, such as barium sulfate, bismuth subcarbonate, calcium tungstate, iodoform, zirconium compounds, fluorine compounds, antibacterial agents, calcium hydroxide, calcium oxide, magnesium hydroxide, magnesium oxide, etc. It is possible to add.

【0039】以下、実験例を示し、本発明の効果につい
て具体的に述べる。
The effects of the present invention will be specifically described below by showing experimental examples.

【0040】実験例1〜4と比較例1〜2 本発明の組成物が常温凝結能を有することを確認するた
め、室温23±2℃、相対湿度50±10%の環境下に
て、粉剤と液剤との練和ペーストを直径4mm×高さ8
mmの円柱状固形物試料体とすべく型に填塞し、そのま
まの環境下に5時間及び30時間放置した後、型から取
り出し圧縮強度を測定した。
Experimental Examples 1 to 4 and Comparative Examples 1 to 2 In order to confirm that the compositions of the present invention have room temperature coagulation ability, powders were prepared in an environment of room temperature of 23 ± 2 ° C. and relative humidity of 50 ± 10%. 4 mm diameter x 8 height
The sample was filled in a mold so as to obtain a cylindrical solid sample body of mm, left for 5 hours and 30 hours in the same environment, and then taken out from the mold and the compression strength was measured.

【0041】粉剤は、50wt%における平均粒径が4
μmで、比表面積が0.8m2 /gであるα型リン酸三
カルシウム(実験例1,2)およびリン酸四カルシウム
(実験例3,4)を用いた。
The powder has an average particle size of 4 at 50 wt%.
α-type tricalcium phosphate (Experimental Examples 1 and 2) and tetracalcium phosphate (Experimental Examples 3 and 4) having a specific surface area of 0.8 m 2 / g in μm were used.

【0042】液剤は、酸性タイプの小粒径通常濃度ゾル
として、無水ケイ酸含有量20〜21%、粒子径10〜
20nm、pH2〜4のST−O(日産化学工業社製)
(実験例1−1、3−1)、同ジルコニアゾルとして酸
化ジルコニウム含有量20%、粒子径5〜10nm、p
H0.7〜1の溶液(日産化学工業社製)(実験例1−
2、3−2)、同ジルコンゾルとして珪酸ジルコニウム
含有量28%、粒子径10nm、pH1.0〜1.3の
溶液(日産化学工業社製)(実験例2−2、4−2)、
それにアルカリ性タイプの大粒径高濃度ゾルとして、無
水ケイ酸含有量40〜41%、粒子径70〜100n
m、pH9〜10.5のST−ZL(日産化学工業社
製)(実験例2−1、4−1)を用いた。
The solution is an acidic type sol having a small particle diameter and a normal concentration and having a silicic acid anhydride content of 20 to 21% and a particle diameter of 10 to 10.
20nm, pH 2-4 ST-O (manufactured by Nissan Chemical Industries, Ltd.)
(Experimental Examples 1-1 and 3-1), the same zirconia sol having a zirconium oxide content of 20%, a particle diameter of 5 to 10 nm, and a p
H0.7-1 solution (manufactured by Nissan Chemical Industries, Ltd.) (Experimental Example 1-
2, 3-2), a solution having a zirconium silicate content of 28%, a particle diameter of 10 nm, and a pH of 1.0 to 1.3 (manufactured by Nissan Chemical Industries, Ltd.) (Experimental Examples 2-2, 4-2) as the zircon sol.
In addition, as an alkaline type large-sized high-concentration sol, silicic anhydride content 40-41%, particle size 70-100n
ST-ZL (manufactured by Nissan Chemical Industries, Ltd.) (Experimental Examples 2-1 and 4-1) having a pH of 9 to 10.5 was used.

【0043】これらの粉剤と液剤を粉液比2.0〜2.
5の範囲で練和して各種試料を作成して測定に供した。
A powder-liquid ratio of 2.0 to 2.
Various samples were prepared by kneading in the range of 5 and used for measurement.

【0044】一方、従来の水和反応固形物試料体とし
て、実験例1,2で用いたα型リン酸三カルシウム(比
較例1)および実験例3,4で用いたリン酸四カルシウ
ム(比較例2)をそれぞれ生理食塩液を液剤として、実
験例と同様の方法で試料を作成し、同一温度環境下に保
管して比較例とし、測定に供した。
On the other hand, as conventional hydration reaction solid sample bodies, α-type tricalcium phosphate used in Experimental Examples 1 and 2 (Comparative Example 1) and tetracalcium phosphate used in Experimental Examples 3 and 4 (Comparative Samples were prepared in the same manner as in the experimental example using physiological saline as a liquid agent, and stored in the same temperature environment as a comparative example, and used for the measurement.

【0045】[0045]

【表1】 これらの結果を表1に示す。表1から明らかなように、
従来型では圧縮強度は全く測定不可能な程脆弱なもので
あるのに対し、本発明の組成物では酸性タイプゾルにお
いても、アルカリ性タイプゾルにおいても、あるいはい
ずれの金属酸化物ゾルにおいても、5時間後にすでに耐
圧縮性能が出現し、30時間後では200Kgf/cm
2 以上の強い圧縮強度を示した。なお、比較例1の圧縮
強度は0ではないが、この試料を指ではさんで潰すと簡
単に崩れて粉状となってしまうほどの弱い固形物であっ
た。
[Table 1] The results are shown in Table 1. As is clear from Table 1,
In the conventional type, the compressive strength is so weak that it cannot be measured at all, whereas in the composition of the present invention, the acidic type sol, the alkaline type sol, or any of the metal oxide sols after 5 hours. Compression resistance has already appeared, and after 30 hours, 200 Kgf / cm
It showed a strong compressive strength of 2 or more. Although the compressive strength of Comparative Example 1 was not 0, it was a weak solid substance that easily collapsed into a powder when crushed with fingers.

【0046】実験例5〜9と比較例3〜7 本発明の組成物は、従来の水硬化性組成物に比較して圧
縮強度に優れている。そこで、生体環境温度を考慮して
37℃水中浸漬による圧縮強度を求め、水和反応による
影響を従来型と比較した。なお、参考数値として37℃
空気中保管による水和反応強度も求めた。試料の大きさ
他の作成条件は実験例1〜4と同様である。
Experimental Examples 5-9 and Comparative Examples 3-7 The compositions of the present invention are superior in compressive strength as compared with the conventional water-curable compositions. Therefore, the compressive strength by immersion in water at 37 ° C. was calculated in consideration of the biological environment temperature, and the effect of the hydration reaction was compared with the conventional type. The reference value is 37 ℃
The hydration reaction strength after storage in air was also determined. The size of the sample and other preparation conditions are the same as in Experimental Examples 1 to 4.

【0047】粉剤は実験例1〜2で用いたα型リン酸三
カルシウム(実験例5〜9)とし、液剤は実験例1,3
で用いたST−O(実験例5〜7)と、これの無水ケイ
酸濃度を約3倍に濃縮したゾル(実験例8)およびリン
酸を少量添加したゾル(実験例9)を追加した。
The powder was the α-type tricalcium phosphate used in Experiments 1 and 2 (Experiments 5-9), and the liquid was Experiments 1 and 3.
The ST-O used in Example 1 (Experimental Examples 5 to 7), a sol obtained by concentrating the silicic acid anhydride concentration thereof about 3 times (Experimental Example 8) and a sol to which a small amount of phosphoric acid was added (Experimental Example 9) were added. ..

【0048】一方、比較のための従来型水和試料は実験
例1〜2で用いたα型リン酸三カルシウムを粉剤とし、
液剤に比較例1〜2で用いた生理食塩水(比較例3〜
5)と、他に希薄リン酸水溶液(比較例6)、および1
N硝酸水溶液(比較例7)を使用した。
On the other hand, a conventional hydrated sample for comparison was prepared by using the α-tricalcium phosphate used in Experimental Examples 1 and 2 as a powder,
The physiological saline used in Comparative Examples 1 and 2 as a liquid agent (Comparative Example 3 to
5), dilute aqueous phosphoric acid solution (Comparative Example 6), and 1
An N-nitric acid aqueous solution (Comparative Example 7) was used.

【0049】[0049]

【表2】 24時間後の強度を示すと、表2のごとくである。実験
例5〜9と比較例3〜7の強度差は統計学的に有意差が
認められ、本発明の組成物は高い圧縮強度を示した。ま
た、本発明の組成物は、37℃空気中保管の値からみ
て、空気中保管にても水和反応が進行することが推定で
きる。
[Table 2] The strength after 24 hours is shown in Table 2. A statistically significant difference was found between the strengths of Experimental Examples 5-9 and Comparative Examples 3-7, and the composition of the present invention showed high compressive strength. Further, from the value of the composition of the present invention stored in air at 37 ° C., it can be estimated that the hydration reaction proceeds even when stored in air.

【0050】実験例10〜13と比較例8〜9と対照例
1〜2 α型リン酸三カルシウムを粉剤とした場合の、凝結物の
速やかなハイドロキシアパタイトへの転化の確認は、X
線回折法により定性的に回折図形ピーク高さの比較を行
い実施した。ハイドロキシアパタイトの最大回折強度は
d=2.81(JCPDSNo.9−432)に発生す
るが、これはα型リン酸三カルシウムの回折線d=2.
86(JCPDSNo.29−359)に近似してお
り、転化率が低い場合にはその存在の確認が困難なため
除外し、両者の回折線が重ならず、しかも精密分析のた
めのピークとして多用され比較的鋭く発生するd=3.
44(hkl:002)を着目線とした。この回折線の
高さが、α型リン酸三カルシウムの最大回折強度である
d=2.91回折線高さに対して何倍となるかを次式に
より算出し、転化率の評価指標とした。
Experimental Examples 10 to 13, Comparative Examples 8 to 9 and Control Example
1-2 , in the case of using α-type tricalcium phosphate as a powder, confirmation of rapid conversion of the aggregate to hydroxyapatite can be confirmed by X
The peak heights of the diffraction patterns were qualitatively compared by the line diffraction method to carry out. The maximum diffraction intensity of hydroxyapatite occurs at d = 2.81 (JCPDS No. 9-432), which is the diffraction line of α-type tricalcium phosphate d = 2.8.
86 (JCPDS No. 29-359), and it is difficult to confirm its existence when the conversion rate is low, so it is excluded, and the diffraction lines of both do not overlap, and are often used as peaks for precise analysis. Generated relatively sharply d = 3.
The line of interest was 44 (hkl: 002). The height of this diffraction line was calculated by the following formula to find out how many times the height of the d-2.91 diffraction line height, which is the maximum diffraction intensity of α-type tricalcium phosphate, was calculated by the following formula and used as an evaluation index of the conversion rate. did.

【0051】転化率の評価指標={(I HAP)/
(I TCP)}×100 ここで、I HAPは、ハイドロキシアパタイト(d=
3.44)の回折線強度を示し、I TCPは、α型リ
ン酸三カルシウム(d=2.91)回折線強度を示す。
Evaluation index of conversion rate = {(I HAP) /
(I TCP)} × 100 where I HAP is hydroxyapatite (d =
3.44) shows the diffraction line intensity, and I TCP shows the α-type tricalcium phosphate (d = 2.91) diffraction line intensity.

【0052】未添加の残留α型リン酸三カルシウムは、
この値が大きいほど少ないことになる。この値は指数関
数的な差がみられるので、細かい数値を比較してもあま
り意味がない。したがって、転化率の最終評価は次の記
号で表すことにする。
Unadded residual α-type tricalcium phosphate is
The larger this value is, the smaller it is. There is an exponential difference in this value, so comparing small numbers does not make much sense. Therefore, the final evaluation of conversion will be represented by the following symbols.

【0053】記号 転化率の評価指数 ∞ 1000以上 ++ 100〜999 + 10〜99 ± 9以下 水硬化性組成物の場合、ピークは比較的鋭く発生するの
で、転化率の評価指標10以上では回折図形から確実に
ハイドロキシアパタイトへの転化が認められる。また、
9以下では転化の始まりは判別し難く、どちらともいえ
ない場合である。
Symbol conversion rate evaluation index ∞ 1000 or more ++ 100 to 999 +10 to 99 ± 9 or less In the case of a water-curable composition, peaks occur relatively sharply. The conversion to hydroxyapatite is confirmed. Also,
In the case of 9 or less, it is difficult to determine the start of conversion, and it cannot be said that it is either.

【0054】[0054]

【表3】 表3に本発明の組成物の実験例と、従来型の高分子酸水
溶液硬化型組成物および有機酸水溶液硬化型組成物によ
る比較例を示し、加えて、従来の水硬化型組成物のハイ
ドロキシアパタイトへの転化能を対照例としてそれぞれ
まとめた。ここで使用した粉剤は、すべて実験例1〜2
と同じα型リン酸三カルシウムで共通とした。液剤はそ
れぞれ表中記載のごとく異なるものとした。液剤に酸性
タイプゾルを用いたものの転化率は最も高く(図1)、
次いでアルカリ性タイプであった。表中、記号からは判
別出来ないが、生理食塩液を用いた従来の水硬化型組成
物の転化能はこれよりも僅かであるが低い(図3)。無
機酸添加による水溶液ではなお遅れる傾向がみられる。
これらの違いを明確にする意味で一部の記号表記には数
値を付記した。更にその差を明確にする数値を加えるな
らば、常温環境で初期凝結完了と判定された試料を注意
深く1週間後に37℃水中に浸漬し、転化率の評価指数
が100以上(記号:++)となる経過時間を調べたと
ころ、対照例1が14日、対照例2が95日必要であっ
たのに対し、実験例11では1日であった。
[Table 3] Table 3 shows an experimental example of the composition of the present invention and a comparative example using a conventional polymeric acid aqueous solution curable composition and an organic acid aqueous solution curable composition. The conversion ability to apatite was summarized as a control example. All the powders used here are Experimental Examples 1 and 2.
The same α-type tricalcium phosphate was used in common. The liquid agents were different as described in the table. The conversion rate of the one using acidic type sol as the liquid is the highest (Fig. 1),
It was then of alkaline type. Although not distinguishable from the symbols in the table, the conversion ability of the conventional water-curable composition using physiological saline is slightly lower than this (FIG. 3). A delay tends to be seen in aqueous solutions with the addition of inorganic acids.
Numerical values are added to some symbolic representations to clarify these differences. If a value is added to clarify the difference, the sample judged to have completed the initial setting in a room temperature environment is carefully immersed one week later in 37 ° C. water, and the conversion index is 100 or more (symbol: ++). When the elapsed time was examined, it was found that Control Example 1 required 14 days and Control Example 2 required 95 days, while Experimental Example 11 required 1 day.

【0055】もう一方の従来型である酸硬化性組成物、
すなわち比較例8〜9で示した高分子酸水溶液硬化型組
成物や特に有機酸水溶液硬化型組成物では進行は極めて
遅くなっている(図2)。
Another conventional acid-curable composition,
That is, the progress is extremely slow in the polymeric acid aqueous solution curable compositions shown in Comparative Examples 8 to 9 and particularly in the organic acid aqueous solution curable compositions (FIG. 2).

【0056】これらの結果から明らかなように、本発明
の組成物のハイドロキシアパタイトへの転化能は、極め
て優れており、短時間で進行することが証明された。こ
の転化能は、対照としての従来の水硬化型組成物のそれ
に勝るとも劣らないものであった。さらに、この特性は
従来の常温硬化型組成物、すなわち高分子酸水溶液硬化
型組成物や有機酸水溶液硬化型組成物にはみられないも
のである。
As is clear from these results, the ability of the composition of the present invention to be converted into hydroxyapatite was extremely excellent, and it was proved that the composition could proceed in a short time. This conversion ability was not inferior to that of the conventional water-curable composition as a control. Further, this characteristic is not found in the conventional room temperature curable composition, that is, in the aqueous polymer acid aqueous solution curable composition or the organic acid aqueous solution curable composition.

【0057】実験例14と比較例10 本発明の組成物は粉液比の強度へ及ぼす影響が少ない。
粉剤に50wt%における平均粒径が7μmで、比表面
積が0.6m2 /gであるα型リン酸三カルシウムを用
い、液剤に無水ケイ酸含有量16%、粒子大きさ10〜
20μm、pH2.8の非球形状ゾルST−OUP(日
産化学工業社製)を用いた本発明の組成物の37℃空気
中硬化24時間後の各粉液比における測定結果を図4に
示す(実験例14)。
Experimental Example 14 and Comparative Example 10 The composition of the present invention has little influence on the strength of the powder-liquid ratio.
An α-type tricalcium phosphate having an average particle size of 7 μm at 50 wt% and a specific surface area of 0.6 m 2 / g is used as a powder, and a silicic acid content of 16% and a particle size of 10 are used as a liquid.
FIG. 4 shows the measurement results at each powder-liquid ratio after 24 hours of curing at 37 ° C. in air of the composition of the present invention using a non-spherical sol ST-OUP (manufactured by Nissan Chemical Industries, Ltd.) having a particle size of 20 μm and a pH of 2.8. (Experimental example 14).

【0058】図4中の比較例は、液剤に精製水を用いた
場合である(比較例10)。
The comparative example in FIG. 4 is a case where purified water is used as the liquid agent (Comparative Example 10).

【0059】図4から明らかなように、本発明の組成物
は、従来型水和硬化組成物のように粉液比が低くなって
も強度の低下が顕著に現れず、影響を受けにくいことが
判明した。
As is clear from FIG. 4, the composition of the present invention is unlikely to be affected by the reduction of the powder-liquid ratio as in the conventional hydration hardening composition, and is not easily affected. There was found.

【0060】実験例15 実験例14の凝結前の練和物の一部をディッシュに移
し、フラット型pH電極を直接練和物に接触させてpH
の値を読取ったところ、一回目測定値が7.9で、二回
目測定値が8.0であった。この値は時間の経過ととも
に変化せず、酸性液剤を用いても練和物のpHは、酸水
溶液による従来の常温硬化型組成物に長時間存続するよ
うな低い値にはならなかった。
Experimental Example 15 A part of the kneaded product of Experimental Example 14 before coagulation was transferred to a dish, and a flat pH electrode was brought into direct contact with the kneaded product to adjust pH.
When the value of was read, the first measurement value was 7.9 and the second measurement value was 8.0. This value did not change with the passage of time, and the pH of the kneaded product did not become such a low value that it would last for a long time in a conventional room temperature curable composition using an aqueous acid solution even when an acidic liquid agent was used.

【0061】実験例16 実験例14の各粉液比における練和物をそれぞれ採取
し、スパチラにて様々な操作観察を行ったところ、練和
物は流動性があり、適度の粘性及び洩糸性を保持したペ
ースト状を呈し、極めて扱いやすい操作性に優れたもの
であった。
Experimental Example 16 The kneaded product of each of the powder-liquid ratios of Experimental Example 14 was sampled and subjected to various operation observations with a spatula. The kneaded product had fluidity and had an appropriate viscosity and leakage thread. It had a paste-like shape with excellent properties and was extremely easy to handle and had excellent operability.

【0062】以上をまとめると、本発明により、水和反
応型リン酸カルシウム系組成物の常温(室温)凝結能が
向上し、操作性をそこなわないで強度を高め、ハイドロ
キシアパタイトへの転化を促進する水和活性に優れた組
成物とすることが可能となった。
In summary, according to the present invention, the room temperature (room temperature) setting ability of the hydration reaction type calcium phosphate-based composition is improved, the strength is enhanced without impairing the operability, and the conversion to hydroxyapatite is promoted. It has become possible to obtain a composition having excellent hydration activity.

【図面の簡単な説明】[Brief description of drawings]

【図1】ハイドロキシアパタイトへの転化を示すX線回
折図形の一例を示す図であり、実験例11の3日後の状
態を示す。
FIG. 1 is a diagram showing an example of an X-ray diffraction pattern showing conversion into hydroxyapatite, showing the state of Experimental Example 11 after 3 days.

【図2】比較例8の3日後の状態を表す。FIG. 2 shows the state of Comparative Example 8 after 3 days.

【図3】対照例1の3日後の状態を示す。FIG. 3 shows the state of Control Example 1 after 3 days.

【図4】圧縮強度と粉液比との関係を示すグラフ。FIG. 4 is a graph showing the relationship between compressive strength and powder-liquid ratio.

【符号の説明】[Explanation of symbols]

H:ハイドロキシアパタイト、 T:α型リン酸三カルシウムのそれぞれの主要ピーク ◆ H: Hydroxyapatite, T: α-tricalcium phosphate main peaks ◆

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 //(C04B 28/34 22:14) A 2102−4G 22:10 24:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location // (C04B 28/34 22:14) A 2102-4G 22:10 24:00

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 生体親和性を有する硬組織代替材料とし
て有用な生体材料において、リン酸カルシウム化合物を
主体とする粉剤と水を主分散媒として使用して水に金属
酸化物の微粒子をコロイド状に分散させた溶液とからな
ることを特徴とする室温凝結能を有する水和反応型リン
酸カルシウム系生体材料。
1. A biomaterial useful as a hard tissue substitute material having biocompatibility, wherein fine particles of a metal oxide are colloidally dispersed in water by using a powder agent mainly composed of a calcium phosphate compound and water as a main dispersion medium. A hydration-reactive calcium phosphate-based biomaterial having room-temperature coagulation ability, which is characterized in that it is composed of a prepared solution.
【請求項2】 前記リン酸カルシウム化合物がα型リン
酸三カルシウムである請求項1の生体材料。
2. The biomaterial according to claim 1, wherein the calcium phosphate compound is α-type tricalcium phosphate.
【請求項3】 前記リン酸カルシウム化合物がリン酸四
カルシウムである請求項1の生体材料。
3. The biomaterial according to claim 1, wherein the calcium phosphate compound is tetracalcium phosphate.
【請求項4】 前記金属酸化物が無水ケイ酸である生体
材料。
4. A biomaterial, wherein the metal oxide is silicic acid anhydride.
【請求項5】 前記金属酸化物がジルコニアである請求
項1ないし3のいずれか1項の生体材料。
5. The biomaterial according to any one of claims 1 to 3, wherein the metal oxide is zirconia.
【請求項6】 前記金属酸化物がジルコンである請求項
1ないし3のいずれか1項の生体材料。
6. The biomaterial according to any one of claims 1 to 3, wherein the metal oxide is zircon.
【請求項7】 前記金属酸化物の微粒子をコロイド状に
分散させた溶液が無水ケイ酸、ジルコニア及びジルコン
の内少くともいずれか1種のコロイド溶液と他の金属酸
化物のコロイド溶液との混合物である請求項1の生体材
料。
7. A solution in which fine particles of the metal oxide are dispersed in a colloidal form is a mixture of at least one colloidal solution of silicic acid anhydride, zirconia and zircon and a colloidal solution of another metal oxide. The biomaterial according to claim 1, which is
【請求項8】 前記室温凝結能が生体温度以下である2
5℃を越えない範囲の環境温度で硬化体となりうる請求
項1の生体材料。
8. The room temperature coagulation ability is equal to or lower than a living body temperature.
The biomaterial according to claim 1, which can be a cured product at an environmental temperature not exceeding 5 ° C.
【請求項9】 前記硬化体がハイドロキシアパタイトへ
転化する請求項5の生体材料。
9. The biomaterial according to claim 5, wherein the cured product is converted into hydroxyapatite.
JP3284119A 1991-10-04 1991-10-04 Hydration-reactive calcium phosphate-based biomaterial with room-temperature setting ability Expired - Fee Related JP3063013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3284119A JP3063013B2 (en) 1991-10-04 1991-10-04 Hydration-reactive calcium phosphate-based biomaterial with room-temperature setting ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3284119A JP3063013B2 (en) 1991-10-04 1991-10-04 Hydration-reactive calcium phosphate-based biomaterial with room-temperature setting ability

Publications (2)

Publication Number Publication Date
JPH0595993A true JPH0595993A (en) 1993-04-20
JP3063013B2 JP3063013B2 (en) 2000-07-12

Family

ID=17674430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3284119A Expired - Fee Related JP3063013B2 (en) 1991-10-04 1991-10-04 Hydration-reactive calcium phosphate-based biomaterial with room-temperature setting ability

Country Status (1)

Country Link
JP (1) JP3063013B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512405A (en) * 1999-10-28 2003-04-02 スリーエム イノベイティブ プロパティズ カンパニー Radiopaque dental materials with nano-sized particles
JP2005013261A (en) * 2003-06-23 2005-01-20 Kikuji Yamashita Artificial biomaterial and its production method
JP2009183548A (en) * 2008-02-07 2009-08-20 Kuraray Medical Inc Calcium phosphate composition and its manufacturing method
JP2009195454A (en) * 2008-02-21 2009-09-03 Kuraray Medical Inc Calcium phosphate composition and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102051341B1 (en) * 2017-12-29 2019-12-04 한국기계연구원 Apparatus and method for measuring of two osculating flat surface

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512405A (en) * 1999-10-28 2003-04-02 スリーエム イノベイティブ プロパティズ カンパニー Radiopaque dental materials with nano-sized particles
JP2011207890A (en) * 1999-10-28 2011-10-20 Three M Innovative Properties Co Radiopaque dental material with nano-sized particle
JP2005013261A (en) * 2003-06-23 2005-01-20 Kikuji Yamashita Artificial biomaterial and its production method
JP2009183548A (en) * 2008-02-07 2009-08-20 Kuraray Medical Inc Calcium phosphate composition and its manufacturing method
JP2009195454A (en) * 2008-02-21 2009-09-03 Kuraray Medical Inc Calcium phosphate composition and method for producing the same

Also Published As

Publication number Publication date
JP3063013B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
JPH04135562A (en) Hydraulic calcium phosphate cement
JPH0645487B2 (en) Curing material
JPS6272363A (en) Medical or dental cement composition
JP3063013B2 (en) Hydration-reactive calcium phosphate-based biomaterial with room-temperature setting ability
JPH06321515A (en) High-strength hardenable material
JPS6283348A (en) Curable composition for medical use
JP2002000718A (en) Calcium phosphate cement for reinforcing and curing bio-bone capable of forming high strength hardened body
JP2956249B2 (en) Calcium phosphate cement for living body
JPH0699181B2 (en) Tetracalcium phosphate curable composition
JPS63153069A (en) Medical or dental cement composition
JPS61161206A (en) Dental cement composition
JPS6323671A (en) Medical curable composition
JP4111422B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JP4111418B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JP4111420B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JP2001170161A (en) Calcium phosphate medical hardening composition
JP4111419B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JP2001269399A (en) Material composition for therapy of hard tissue
JPH04348755A (en) Hydraulic calcium phosphate cement
JPH0763502B2 (en) Human hard tissue replacement composition
JP2000169199A (en) Quick-hardening calcium phosphate cement
JPS60225568A (en) Living body hard tissue repairing material
JPH0459911B2 (en)
JP2002291866A (en) Calcium phosphate cement powder and calcium phosphate cement
JP4111421B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees