JPH0459911B2 - - Google Patents

Info

Publication number
JPH0459911B2
JPH0459911B2 JP63057890A JP5789088A JPH0459911B2 JP H0459911 B2 JPH0459911 B2 JP H0459911B2 JP 63057890 A JP63057890 A JP 63057890A JP 5789088 A JP5789088 A JP 5789088A JP H0459911 B2 JPH0459911 B2 JP H0459911B2
Authority
JP
Japan
Prior art keywords
acid
paa
molecular weight
acids
medical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63057890A
Other languages
Japanese (ja)
Other versions
JPH01230367A (en
Inventor
Minoru Matsukura
Tadashi Hiraiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63057890A priority Critical patent/JPH01230367A/en
Publication of JPH01230367A publication Critical patent/JPH01230367A/en
Publication of JPH0459911B2 publication Critical patent/JPH0459911B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は医科用として、骨欠損部充填剤、骨接
合剤、人工骨および人工関節と生体との合着充填
剤等、歯科用として、合着セメント、充填セメン
ト、仮封セメント、根管充填剤等に用いられる医
療用硬化組成物に関する。 従来の技術および発明が解決しようとする課題 従来使用されている医療用硬化組成物にはZnO
−正リン酸水溶液系のリン酸亜鉛セメント、ZnO
−ポリカルボン酸水溶液系のカルボキシレートセ
メント、SiO2、Al2O3−ポリカルボン酸水溶液系
のグラスイオノマーセメント、ZnO−ユージノー
ル系のユージノールセメント、SiO2−BISGMA
樹脂系のレジンセメント、ポリメタアクリル酸メ
チル粉末−メチルメタアクリル酸系のボーンセメ
ント等があるが、近年、これらに比べて生体親和
性の優れたハイドロキシアパタイト(以下HAP
と略す)、α−リン酸三カルシウム(以下α−
TCPと略す)、リン酸四カルシウム(以下4CPと
略す)が医療用材料として普及してきている。こ
の中でも4CPは、HAP、α−TCPに比べて骨誘
導性が優れており、特に注目されている材料であ
る。 生体材料として用いる際には、耐圧強度に優
れ、崩壊率が低い事が要求されるが、上記の材料
を用いた硬化組成物は、クエン酸等の酸と混合練
和すると、高い耐圧強度を示すが、崩壊率が高
く、またポリアクリル酸(以下PAAと略す)等
のポリマーと混合練和すると、低崩壊率を示す
が、耐圧強度が低く、現実には、この両者の良い
特性を満たす事が出来ていない。 課題を解決するための手段 上記の現状を鑑み、本発明者等は、鋭意研究の
結果、特定分子量のPAA等のポリマーとクエン
酸等の酸とを一定比率で混合して水溶液とし、こ
の水溶液中のPAA等を特定の濃度にしたものを
硬化剤として使用し、これに4CPを混合すること
により、従来にない高耐圧強度、低崩壊率の医療
用硬化組成物が得られることを知見し本発明に至
つた。 すなわち、本発明は、 (A) 分子量5000〜70000のPAA、または、同一分
量のPAAとイタコン酸との共重合体と (B) クエン酸またはリンゴ酸、マレイン酸、酒石
酸、グリコール酸の1種以上の酸または混合酸
とを (A):(B)=2.0〜4.5:1の比率で混合し、混合物
中の(A)成分の濃度を25〜55wt.%の水溶液とした
ものを硬化剤として使用し、この硬化剤と4CPを
主成分とする粉末を混練してなる医療用硬化組成
物に関する。 以後発明の詳細について説明する。 本発明に於ける4CPは、カルシウム源として
CaCO3、CaO、Ca(OH)2、リン源としてP2O5
H3PO4、(NH4)H2PO4、(NH42HPO4、Caと
Pの両者を含有するCaHPO4、Ca(H2PO42
Ca2P2O7等が考えられ、公知の方法で造られる。
CaCO3とCa2P2O7を1300℃以上で2時間前後保持
する乾式製造法で化学反応式、 2CaCO3+Ca2P2O7→ Ca4(PO42O+2CO2 により合成される4CPを粉砕して微粉末として用
いる。好ましくは、24μm以下の微粉末にする。
この際、粗粒が混在していると練和時にざらつき
があり、粒径分布幅が大きいと硬化反応速度が均
一に進行しないため良好な硬化組成物が得られな
い。この様な方法で製造された4CPの粉末は有機
酸水溶液と練和すれば、硬化作用を示し、医療用
硬化組成物の粉末基剤として極めて有用である。 硬化剤として分子量5000〜70000のPAAまたは
PAAとイタコン酸との共重合体のみを使用した
場合、低崩壊率を示すが、耐圧強度は700Kg/cm2
未満となる。また、クエン酸またはリンゴ酸、マ
レイン酸、酒石酸、グリコール酸の一種類の酸あ
るいは二種類以上の混合酸のみを硬化剤として使
用した場合、高耐圧強度硬化組成物を形成する
が、崩壊率が1.5%を越えて好ましくない。以上
の様に単独の場合、耐圧強度と低崩壊率の両特性
を維持することが出来ない。 分子量5000〜70000のPAAまたは同一分子量の
PAAとイタコン酸との共重合体を(A)とし、クエ
ン酸またはリンゴ酸、マレイン酸、酒石酸、グリ
コール酸の1種以上の酸または混合酸を(B)とした
場合、(A):(B)=2.0〜4.5:1の一定比率で混合
し、(A)成分濃度が25〜55wt.%である水溶液を硬
化剤として、初めて、耐圧強度と低崩壊率を両立
できる。PAAにイタコン酸を共重合させるのは、
有効カルボキシル基を増やし特性を増すためであ
る。 分子量5000未満および70000を越えるPAAを使
用した場合や(A):(B)=2.0:1の比率を越えて(B)
である酸を過剰に入れた場合は崩壊率が1.5%を
越え、一方(A):(B)=4.5:1の比率より(B)である
酸を少なく添加した場合は、耐圧強度が700Kg/
cm2未満となる。また、硬化剤中のPAAの濃度が
55wt.%を越えると、硬化剤の粘度が高く練和が
困難となり、25wt.%未満になると硬化時間が長
くなり気泡を巻き込むため、低崩壊率、耐圧強度
共に悪影響を及ぼし、良好な硬化組成物が得られ
ず、硬化剤として25〜55wt.%の範囲のPAAの濃
度が必要となる。また、硬化剤1重量部に対し
4CPを混練する割合は、0.7〜1.7重量部の範囲で
行なわれるのが好ましい。 この様に上記の条件を全て満たさなければ生体
材料として用いるのに十分な特性を示さず硬化組
成物が得られない。条件を全て満して調製された
硬化剤と4CPを混合練和して得られる硬化体は耐
圧温度が700Kg/cm2以上、崩壊率が1.5%以下の優
れた特性を持つ医療用組成物として使用される。 実施例 以下、本発明を実施例をもつて説明する。 実施例 1 乾式製造法で合成した4CPを微粉砕して24μm
以下の微粉末とした。この4CP粉末を分子量
29000のPAAとクエン酸を用いた硬化剤とを4CP
と硬化剤との混合比率を1.3:1にして均一に混
合練和し、パテ状物を得て、歯科用リン酸亜鉛セ
メント試験法(JIST6602−1979)に準じて硬化
時間、圧壊強度、崩壊率を測定した。その結果を
表1に示す。 比較例 1 実施例1と同様に微粉砕化した4CPに対し、分
子量29000のPAAのみを使用した場合とPAAと
クエン酸との混合比率が2.0〜4.5:1の範囲外の
場合につき、実施例1と同様の測定をした結果を
表2に示す。
Industrial Application Fields The present invention is applicable to medical applications such as bone defect fillers, bone bonding agents, artificial bones and artificial joints, and adhesive fillers for living bodies, and dental applications such as luting cements, filling cements, temporary sealants, etc. This invention relates to medical hardening compositions used in cement, root canal filling materials, etc. Problems to be solved by the conventional technology and the invention Conventionally used medical curing compositions include ZnO.
- Orthophosphoric acid aqueous solution based zinc phosphate cement, ZnO
- Carboxylate cement based on polycarboxylic acid aqueous solution, SiO 2 , Al 2 O 3 - Glass ionomer cement based on polycarboxylic acid aqueous solution, ZnO - Eugenol cement based on eugenol, SiO 2 - BISGMA
There are resin-based resin cements, polymethyl methacrylate powder-methyl methacrylic acid-based bone cements, etc., but in recent years, hydroxyapatite (hereinafter referred to as HAP), which has better biocompatibility than these, has been developed.
), α-tricalcium phosphate (hereinafter α-
Tetracalcium phosphate (abbreviated as TCP) and tetracalcium phosphate (hereinafter abbreviated as 4CP) are becoming popular as medical materials. Among these, 4CP is a material that is attracting particular attention because it has superior osteoinductivity compared to HAP and α-TCP. When used as a biomaterial, it is required to have excellent pressure resistance and a low rate of disintegration, but when cured compositions using the above materials are mixed and kneaded with acids such as citric acid, they exhibit high pressure resistance. However, when mixed with a polymer such as polyacrylic acid (hereinafter abbreviated as PAA), it shows a low disintegration rate, but the pressure resistance is low, and in reality, it satisfies both of these favorable characteristics. I haven't been able to do anything. Means for Solving the Problems In view of the above-mentioned current situation, as a result of intensive research, the present inventors prepared an aqueous solution by mixing a polymer such as PAA of a specific molecular weight and an acid such as citric acid at a certain ratio, and created an aqueous solution. We found that by using a specific concentration of PAA, etc. in the material as a hardening agent and mixing it with 4CP, a medical hardening composition with unprecedented high pressure resistance and low disintegration rate could be obtained. This led to the present invention. That is, the present invention comprises (A) PAA having a molecular weight of 5,000 to 70,000, or a copolymer of PAA and itaconic acid in the same amount, and (B) citric acid or one of malic acid, maleic acid, tartaric acid, and glycolic acid. A curing agent is prepared by mixing the above acids or mixed acids at a ratio of (A):(B)=2.0 to 4.5:1, and making an aqueous solution with a concentration of component (A) in the mixture of 25 to 55 wt.%. This invention relates to a medical curing composition prepared by kneading this curing agent and a powder containing 4CP as a main component. The details of the invention will be explained below. 4CP in the present invention is used as a calcium source.
CaCO 3 , CaO, Ca(OH) 2 , P 2 O 5 as a phosphorus source,
H 3 PO 4 , (NH 4 )H 2 PO 4 , (NH 4 ) 2 HPO 4 , CaHPO 4 containing both Ca and P, Ca(H 2 PO 4 ) 2 ,
Possible examples include Ca 2 P 2 O 7 , which can be produced using known methods.
4CP is synthesized by the chemical reaction formula: 2CaCO 3 + Ca 2 P 2 O 7 → Ca 4 (PO 4 ) 2 O + 2CO 2 using a dry manufacturing method in which CaCO 3 and Ca 2 P 2 O 7 are held at 1300°C or higher for about 2 hours. It is crushed and used as a fine powder. Preferably, it is made into a fine powder of 24 μm or less.
At this time, if coarse particles are mixed, it will be rough during kneading, and if the width of the particle size distribution is large, the curing reaction rate will not proceed uniformly, making it impossible to obtain a good cured composition. The 4CP powder produced by this method exhibits a curing action when mixed with an aqueous organic acid solution, and is extremely useful as a powder base for medical curing compositions. PAA with a molecular weight of 5000-70000 as a curing agent or
When only a copolymer of PAA and itaconic acid is used, the disintegration rate is low, but the compressive strength is 700Kg/cm 2
less than Furthermore, when only one type of acid or a mixture of two or more types of acids such as citric acid, malic acid, maleic acid, tartaric acid, or glycolic acid is used as a curing agent, a cured composition with high pressure resistance is formed, but the disintegration rate is low. Exceeding 1.5% is unfavorable. As described above, when used alone, it is not possible to maintain both properties of pressure resistance and low collapse rate. PAA with a molecular weight of 5000-70000 or the same molecular weight
When (A) is a copolymer of PAA and itaconic acid, and (B) is one or more acids or mixed acids of citric acid, malic acid, maleic acid, tartaric acid, and glycolic acid, (A): ( Only by mixing at a constant ratio of B) = 2.0 to 4.5:1 and using an aqueous solution having a concentration of component (A) of 25 to 55 wt.% as a hardening agent can both compressive strength and low disintegration rate be achieved. Copolymerizing itaconic acid with PAA is
This is to increase the number of effective carboxyl groups and improve properties. When using PAA with a molecular weight of less than 5,000 or more than 70,000, or when the ratio of (A):(B)=2.0:1 is exceeded (B)
If too much acid is added, the disintegration rate will exceed 1.5%, while if less acid (B) is added than the ratio of (A):(B) = 4.5:1, the compressive strength will be 700 kg. /
less than cm2 . In addition, the concentration of PAA in the curing agent
If it exceeds 55wt.%, the viscosity of the curing agent will be high and it will be difficult to mix it, and if it is less than 25wt.%, the curing time will be longer and air bubbles will be involved, which will have a negative effect on both low disintegration rate and pressure resistance, making it difficult to obtain a good curing composition. A concentration of PAA in the range of 25-55 wt.% is required as a curing agent. Also, for 1 part by weight of curing agent
The proportion of 4CP to be kneaded is preferably in the range of 0.7 to 1.7 parts by weight. As described above, unless all of the above conditions are satisfied, a cured composition cannot be obtained because it does not exhibit sufficient properties to be used as a biomaterial. The cured product obtained by mixing and kneading 4CP with a curing agent prepared in accordance with all the conditions is a medical composition with excellent properties such as a pressure resistance of 700 kg/cm 2 or more and a disintegration rate of 1.5% or less. used. Examples Hereinafter, the present invention will be explained with examples. Example 1 4CP synthesized by dry manufacturing method is finely pulverized to 24 μm
The following fine powder was prepared. This 4CP powder has a molecular weight of
4CP with 29000 PAA and hardening agent using citric acid
and curing agent at a mixing ratio of 1.3:1 to obtain a putty. The rate was measured. The results are shown in Table 1. Comparative Example 1 For 4CP finely pulverized in the same manner as in Example 1, Example Table 2 shows the results of measurements similar to those in 1.

【表】【table】

【表】 実施例 2 分子量29000のPAAと15wt.%のイタコン酸の
共重合体を用いて実施例1と同様の測定をした結
果を表3に示す。 比較例 2 分子量29000のPAAと15wt.%のイタコン酸の
共重合体のみを使用した場合と、共重合体と酸と
の混合率が2.0〜4.5:1の範囲外の場合、共重合
濃度が20wt.%の場合につき実施例1と同様の測
定をした結果を表4に示す。
[Table] Example 2 Table 3 shows the results of the same measurements as in Example 1 using a copolymer of PAA with a molecular weight of 29,000 and itaconic acid with a weight of 15 wt.%. Comparative Example 2 When only a copolymer of PAA with a molecular weight of 29,000 and 15 wt.% itaconic acid was used, and when the mixing ratio of the copolymer and acid was outside the range of 2.0 to 4.5:1, the copolymer concentration was Table 4 shows the results of the same measurements as in Example 1 for the case of 20 wt.%.

【表】【table】

【表】 比較例 3 酸のみを用いた場合の例を表5に示す。【table】 Comparative example 3 Table 5 shows an example in which only acid was used.

【表】 実施例 3 分子量65000のPAAを用いた場合につき実施例
1と同様な測定の結果を表6に示す。
[Table] Example 3 Table 6 shows the results of the same measurements as in Example 1 when PAA with a molecular weight of 65,000 was used.

【表】 比較例 4 分子量65000のPAAを用いた請求範囲外の比較
例を表7に示す。
[Table] Comparative Example 4 Table 7 shows a comparative example using PAA with a molecular weight of 65,000, which is outside the scope of the claims.

【表】 実施例 4 分子量5000のPAAを用いた場合につき、実施
例1と同様な測定の結果を表8に示す。
[Table] Example 4 Table 8 shows the results of the same measurements as in Example 1 when PAA with a molecular weight of 5000 was used.

【表】 比較例 5 分子量5000のPAAを用いた請求範囲外の比較
例を表9に示す。
[Table] Comparative Example 5 Table 9 shows a comparative example using PAA with a molecular weight of 5000, which is outside the scope of the claims.

【表】 比較例 6 PAAの分子量が2000の場合、90000の場合につ
きそれぞれ表10、表11に示す。
[Table] Comparative Example 6 Tables 10 and 11 show cases in which the molecular weight of PAA was 2000 and 90000, respectively.

【表】【table】

【表】 発明の効果 本発明は、上記の様に4CPに対し、分子量5000
〜70000のPAAまたは同一分子量のPAAとイタ
コン酸との共重合体とクエン酸またはリンゴ酸等
の1種以上の酸または混合酸とを一定比率にて混
合した硬化剤を使用することにより初めて、高耐
圧強度と低崩壊率の両特性を両立させることがで
き、医科および歯科の医療用硬化組成物として使
用され従来にない優れた特性を示すものが得られ
る。
[Table] Effects of the invention As mentioned above, the present invention has a molecular weight of 5000 for 4CP.
For the first time, by using a curing agent that is a mixture of ~70,000 PAA or a copolymer of PAA and itaconic acid with the same molecular weight and one or more acids such as citric acid or malic acid or mixed acids at a certain ratio, It is possible to achieve both high compressive strength and low disintegration rate, and it is possible to obtain a composition that is used as a cured composition for medical and dental applications and exhibits unprecedented properties.

Claims (1)

【特許請求の範囲】 1 (A) 分子量5000〜70000のポリアクリル酸、
または、同一分子量のポリアクリル酸とイタコ
ン酸との共重合体と (B) クエン酸またはリンゴ酸、マレイン酸、酒石
酸、グリコール酸の1種以上の酸または混合酸
とを (A):(B)=2.0〜4.5:1の比率で混合し、混合物
中の(A)成分の濃度を25〜55wt.%の水溶液とした
ものを硬化剤として使用し、この硬化剤とリン酸
四カルシウムを主成分とする粉末を混練してなる
医療用硬化組成物。
[Claims] 1 (A) polyacrylic acid with a molecular weight of 5,000 to 70,000;
Alternatively, a copolymer of polyacrylic acid and itaconic acid with the same molecular weight and (B) one or more acids or mixed acids of citric acid, malic acid, maleic acid, tartaric acid, and glycolic acid (A): (B) ) = 2.0 to 4.5:1, an aqueous solution with a concentration of component (A) in the mixture of 25 to 55 wt.% is used as a hardening agent, and this hardening agent and tetracalcium phosphate are used as main components. A medical cured composition made by kneading powders as ingredients.
JP63057890A 1988-03-10 1988-03-10 Medical hardening composition Granted JPH01230367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63057890A JPH01230367A (en) 1988-03-10 1988-03-10 Medical hardening composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63057890A JPH01230367A (en) 1988-03-10 1988-03-10 Medical hardening composition

Publications (2)

Publication Number Publication Date
JPH01230367A JPH01230367A (en) 1989-09-13
JPH0459911B2 true JPH0459911B2 (en) 1992-09-24

Family

ID=13068582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63057890A Granted JPH01230367A (en) 1988-03-10 1988-03-10 Medical hardening composition

Country Status (1)

Country Link
JP (1) JPH01230367A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6642285B1 (en) * 1999-02-02 2003-11-04 Robert Mathys Stiftung Implant comprising calcium cement and hydrophobic liquid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101893A (en) * 1976-02-24 1977-08-26 Nippon Kayaku Kk Liquid hardener for dental glass ionomer cement
JPS6168054A (en) * 1984-09-10 1986-04-08 増原 英一 Artificial bone and tooth
JPS61270249A (en) * 1985-05-25 1986-11-29 株式会社はいる Tetracalcium phosphate settable composition
JPS6272363A (en) * 1985-09-25 1987-04-02 名神株式会社 Medical or dental cement composition
JPS6283348A (en) * 1985-10-08 1987-04-16 株式会社アドバンス Curable composition for medical use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101893A (en) * 1976-02-24 1977-08-26 Nippon Kayaku Kk Liquid hardener for dental glass ionomer cement
JPS6168054A (en) * 1984-09-10 1986-04-08 増原 英一 Artificial bone and tooth
JPS61270249A (en) * 1985-05-25 1986-11-29 株式会社はいる Tetracalcium phosphate settable composition
JPS6272363A (en) * 1985-09-25 1987-04-02 名神株式会社 Medical or dental cement composition
JPS6283348A (en) * 1985-10-08 1987-04-16 株式会社アドバンス Curable composition for medical use

Also Published As

Publication number Publication date
JPH01230367A (en) 1989-09-13

Similar Documents

Publication Publication Date Title
US4668295A (en) Surgical cements
AU2005338323B2 (en) Bone repair material
US4677140A (en) Surgical cement containing α-tricalcium phosphate, poly(carboxylic acid) and water
JPH0645487B2 (en) Curing material
GB2197329A (en) Hard tissue substitute composition
JPS6272363A (en) Medical or dental cement composition
JPS6283348A (en) Curable composition for medical use
JPS59182263A (en) Production of calcium phosphate cement set body
JPH11335155A (en) Calcium phosphate cement and calcium phosphate cement composition
JP3987220B2 (en) Fast-setting calcium phosphate cement
JPH0459911B2 (en)
JPH01111762A (en) Hardening composition
JP2780120B2 (en) Hardening calcium phosphate dental composition
JPH0699181B2 (en) Tetracalcium phosphate curable composition
JPH0526503B2 (en)
JPS63153069A (en) Medical or dental cement composition
JPH11130491A (en) Calcium phosphate cement and calcium phosphate cement composition
JPS6323671A (en) Medical curable composition
JPH0585914A (en) Curing type paste material
JP2001170161A (en) Calcium phosphate medical hardening composition
JPH0763502B2 (en) Human hard tissue replacement composition
JPH05285214A (en) Medical hardened composition
JPS6368173A (en) Composition for filling bone and tooth
JPS61161206A (en) Dental cement composition
WO1990008530A1 (en) Root canal filling material comprising hardenable paste