JPS6168054A - Artificial bone and tooth - Google Patents

Artificial bone and tooth

Info

Publication number
JPS6168054A
JPS6168054A JP59188143A JP18814384A JPS6168054A JP S6168054 A JPS6168054 A JP S6168054A JP 59188143 A JP59188143 A JP 59188143A JP 18814384 A JP18814384 A JP 18814384A JP S6168054 A JPS6168054 A JP S6168054A
Authority
JP
Japan
Prior art keywords
bone
artificial
hydroxyapatite
calcium phosphate
phosphate compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59188143A
Other languages
Japanese (ja)
Other versions
JPS6344379B2 (en
Inventor
英一 増原
義則 門磨
志村 介三
木下 靭彦
幹也 尾野
啓泰 竹内
昌弘 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP59188143A priority Critical patent/JPS6168054A/en
Publication of JPS6168054A publication Critical patent/JPS6168054A/en
Publication of JPS6344379B2 publication Critical patent/JPS6344379B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は腫瘍摘出、外傷等により失われた骨組織を修復
治療するための人工骨並びに歯牙疾患などにより失われ
た歯を修復治療するための歯根を備えた人工歯に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to artificial bone for restoring bone tissue lost due to tumor removal, trauma, etc., and for restoring teeth lost due to dental disease. This invention relates to an artificial tooth with a tooth root.

[従来技術] 生体の硬組織代替物質としては、各種金属合金及び有機
物等が用いられてきたが、生体内における環境下での溶
解劣化若しくは生体に対する毒性を示し、異物反応を伴
う場合がある。現在では生体との親和性に優れ、かつ上
記の欠点のないセラミックス系材料が用いられつつある
。このセラミックス系材料の中でも生体親和性に優れた
アルミナ、カーボン、リン酸三カルシウムあるいはヒド
ロキシアパタイトの焼結体若しくは単結晶からなる人工
骨、人工歯などが開発されつつあり注目を集めている。
[Prior Art] Various metal alloys, organic substances, and the like have been used as hard tissue substitutes for living organisms, but they may deteriorate due to dissolution in the environment of living organisms or become toxic to living organisms, and may be accompanied by foreign body reactions. Currently, ceramic materials are being used that have excellent compatibility with living organisms and do not have the above-mentioned drawbacks. Among these ceramic materials, artificial bones and artificial teeth made of sintered bodies or single crystals of alumina, carbon, tricalcium phosphate, or hydroxyapatite, which have excellent biocompatibility, are being developed and are attracting attention.

これらの焼結体若しくは単結晶を人工骨及び人工歯とし
て使用する試みもなされているが、実際治療を必要とす
る骨欠損部の形状は一定でなく、かつ、複雑な形状をし
ており、その形状に適合するようこれらの焼結体若しく
は単結晶を加工することは困難であり、さらにこれら焼
結体若しくは単結晶を充てんしたとしても、充てんした
周囲の骨組織よりも著しく硬いため充てん材周辺でその
刺激による骨吸収がおこり、ルーズニングなどの問題が
生じ、いまだ実用の域には達していない。
Attempts have been made to use these sintered bodies or single crystals as artificial bones and artificial teeth, but the shape of the bone defect that requires actual treatment is not uniform and complex. It is difficult to process these sintered compacts or single crystals to fit the shape, and even if these sintered compacts or single crystals are filled, they are significantly harder than the surrounding bone tissue, so filling materials cannot be used. The stimulation causes bone resorption in the surrounding area, causing problems such as loosening, and it has not yet reached the level of practical use.

一方、焼結体を機械的方法により、若しくは粉末に可燃
性ファイバーを成型時に加えて成型しこれを焼結する方
法などにより多孔体とし、これを骨欠損部及び空隙部の
充てん材として使用する方法も考えられるが、人工骨及
び人工歯として用いるには強度的に不十分であるため、
これら用途に用いることは困難である。
On the other hand, the sintered body is made into a porous body by a mechanical method or by adding combustible fiber to powder at the time of molding, molding, and sintering, and this is used as a filling material for bone defects and voids. Although this method is considered, it is insufficient in strength to be used as artificial bone and artificial teeth.
It is difficult to use it for these purposes.

[発明の目的] 本発明の一つの目的は、生体適合性にすぐれ、かつ異物
反応を伴わずに特に短期間に周囲の骨組織と結合組織の
介在なく一体化する人工骨及び人工歯を提供することに
ある。
[Object of the Invention] One object of the present invention is to provide an artificial bone and an artificial tooth that have excellent biocompatibility, do not cause foreign body reactions, and can be integrated with surrounding bone tissue in a particularly short period of time without intervening connective tissue. It's about doing.

本発明の他の目的は、骨組織欠損個所の構造及び機能を
特に速やかに修復及び回復せしめる人工骨及び人工歯を
提供することにある。
Another object of the present invention is to provide an artificial bone and an artificial tooth that can particularly quickly repair and restore the structure and function of a bone tissue defect site.

本発明の更に別の目的は手術に当ってその場で欠損個所
の形状に合わせて削ることができ、しかも生体の骨及び
歯牙と同程度の強度及び靭性を有する人工骨及び人工歯
を提供することにある。
Still another object of the present invention is to provide an artificial bone and an artificial tooth that can be ground to match the shape of the defective site on the spot during surgery, and that have strength and toughness comparable to that of living bones and teeth. There is a particular thing.

[発明の構成] 本発明によれば、リン酸カルシウム化合物10〜90%
(体積比)及び有機重合体90〜10%(体積比)を含
むことを特徴とする人工骨及び人工歯が提供される。
[Configuration of the invention] According to the invention, the calcium phosphate compound 10-90%
(volume ratio) and an organic polymer in an amount of 90 to 10% (volume ratio).

[発明の説明コ 以下本発明を更に詳述する。[Description of the invention] The present invention will be explained in more detail below.

本発明者らは、リン酸カルシウム化合物を骨欠損部及び
骨空隙部に充てんすると新生骨が当該個所に生成するこ
とから、リン酸カルシウム化合物の骨形成能力を利用す
ることにまず着目した。本発明に使用し得るリン酸カル
シウム化合物としてはリン酸三カルシウム、ヒドロキシ
アパタイト、リン酸四カルシウム、オキシアパタイト、
ピロリン酸カルシウム、フッ素アパタイト、ヒドロキシ
アパタイトの水酸基の1部がフッ素イオンで置換された
化合物及びこれらの混合物を挙げることができるが、こ
れらのうちで新生骨の生成速度が早いもの、すなわちリ
ン酸三カルシウム、ヒドロキシアパタイト、フッ素アパ
タイト若しくはリン酸四カルシウムのうちから選ばれた
1種若しくは2種以上の混合物を用いることが好ましい
。中でも、ヒドロキシアパタイトは新生骨生成速度が最
も早いことから、最も好ましいものと言える。ヒドロキ
シアパタイトの中でも500℃以上、特に好ましくは7
00℃以上で熱処理して得たヒドロキシアパタイトが特
に新生骨の生成が早く好ましい。
The present inventors first focused on utilizing the osteogenic ability of calcium phosphate compounds because when a calcium phosphate compound is filled into bone defects and bone voids, new bone is generated in the areas. Calcium phosphate compounds that can be used in the present invention include tricalcium phosphate, hydroxyapatite, tetracalcium phosphate, oxyapatite,
Calcium pyrophosphate, fluoroapatite, compounds in which a portion of the hydroxyl groups of hydroxyapatite are replaced with fluorine ions, and mixtures thereof can be mentioned, but among these, the one that generates new bone at a faster rate is tricalcium phosphate. It is preferable to use one type or a mixture of two or more types selected from , hydroxyapatite, fluoroapatite, and tetracalcium phosphate. Among them, hydroxyapatite can be said to be the most preferable because it has the fastest rate of new bone formation. Among hydroxyapatites, temperatures of 500°C or higher, particularly preferably 7
Hydroxyapatite obtained by heat treatment at 00° C. or higher is particularly preferable because it generates new bone quickly.

熱処理の上限温度については特に限定されるものではな
いが、ヒドロキシアパタイトが分解を開始するので、分
解温度以下とすべきである。また本発明にて使用し得る
リン酸カルシウム化合物は湿式法、乾式法、水熱法など
の公知の製造方法により、人工的に合成されたものであ
っても又、骨などから得られる天然のものを用いてもよ
い。また、本発明に用いるリン酸カルシウム化合物は有
機重合体のモノマーと混合が可能であれば粉末状、顆粒
状、多孔体状のいづれでもよい。
The upper limit temperature of the heat treatment is not particularly limited, but since hydroxyapatite starts to decompose, it should be lower than the decomposition temperature. In addition, the calcium phosphate compound that can be used in the present invention may be artificially synthesized by a known manufacturing method such as a wet method, a dry method, or a hydrothermal method, or it may be a natural product obtained from bones, etc. May be used. Further, the calcium phosphate compound used in the present invention may be in the form of powder, granules, or porous material as long as it can be mixed with the monomer of the organic polymer.

本発明に用いる有機重合体としては生体に対し毒性がな
く且つリン酸カルシウム化合物との親和性があれば特に
限定されるものではないが、たとえばポリ乳酸ポリグリ
コール酸などのカルボン酸系重合体;ポリメタクリル酸
メチル(以下PMMAと称す)、ポリ(メタクリル酸ト
リフルオロエチル)(以下、PTFEMAと称す)など
のカルボン酸エステル系重合体;及びポリエチレン(以
下PEと称す)、ポリプロピレンなどのオレフィン系重
合体;を用いることができる。これらのうちでは強度及
びリン酸カルシウム化合物との親和性が高いという点か
らPMMA、PTFEMAが好ましく、特にPTFEM
Aはリン酸カルシウム化合物との親和性が最も高い点で
最も好ましいものといえる。
The organic polymer used in the present invention is not particularly limited as long as it is non-toxic to living organisms and has an affinity with calcium phosphate compounds, but examples include carboxylic acid polymers such as polylactic acid and polyglycolic acid; polymethacrylate Carboxylic acid ester polymers such as methyl acid (hereinafter referred to as PMMA) and poly(trifluoroethyl methacrylate) (hereinafter referred to as PTFEMA); and olefin polymers such as polyethylene (hereinafter referred to as PE) and polypropylene; can be used. Among these, PMMA and PTFEMA are preferable in terms of strength and high affinity with calcium phosphate compounds, and PTFEM is particularly preferable.
A can be said to be the most preferable in that it has the highest affinity with calcium phosphate compounds.

リン酸カルシウム化合物と有機重合体との配合割合はリ
ン酸カルシウム化合物10〜90%(体積比)、好まし
くは50〜80%(体積比)、及び有機重合体90〜1
0%(体積比)、好ましくは80〜50%(体積比)で
なければならない。
The blending ratio of the calcium phosphate compound and the organic polymer is 10 to 90% (volume ratio) of the calcium phosphate compound, preferably 50 to 80% (volume ratio), and 90 to 1% of the organic polymer.
It should be 0% (by volume), preferably 80-50% (by volume).

リン酸カルシウム化合物の配合割合が10%未満である
と、人工骨及び人工歯の生体適合性が悪くなり且つ周囲
への新生骨の生成がほとんど認められなくなり、一方、
90%を越えると人工骨及び人工歯の加工が困難となる
ため欠損部の形状にあわせて加工することが不可能とな
る。配合割合が50〜80%の範囲では人工骨及び人工
歯の周囲への新生骨の生成量も多く、かつ物性値も骨に
近くできるため好ましい。
If the blending ratio of the calcium phosphate compound is less than 10%, the biocompatibility of the artificial bone and artificial tooth will deteriorate, and the formation of new bone in the surrounding area will hardly be observed;
If it exceeds 90%, it becomes difficult to process artificial bones and artificial teeth, making it impossible to process them in accordance with the shape of the defective part. When the blending ratio is in the range of 50 to 80%, the amount of new bone produced around the artificial bone and artificial teeth is large, and the physical properties can be made close to those of bone, which is preferable.

本発明の人工骨及び人工歯を製造するにあたってはリン
酸カルシウム化合物が、粉末、顆粒の場合には有機重合
体の七ツマ−と攪拌、混合し、その後重合することによ
り得られる。この場合人工骨及び人工歯の外周部にリン
酸カルシウム化合物を多く含ませるためには、遠心鋳造
法を用いることにより作製できる。一方、リン酸カルシ
ウム化合物が多孔体の場合には多孔体を減圧可能な容器
に入れておき、そこに有機重合体のモノマーを加え、重
合することにより得られる。
In producing the artificial bones and teeth of the present invention, the calcium phosphate compound, in the case of powder or granules, is obtained by stirring and mixing with an organic polymer, and then polymerizing. In this case, in order to contain a large amount of calcium phosphate compound in the outer periphery of the artificial bone and artificial tooth, they can be manufactured by using a centrifugal casting method. On the other hand, when the calcium phosphate compound is a porous body, the porous body is placed in a container that can be depressurized, and an organic polymer monomer is added thereto and polymerized.

人工骨及び人工歯の物性をより骨のそれに近似させたい
場合、若しくは生体にインブラントした場合の安全を考
えより高強度、高靭性のものとしたい場合には中心部に
金属棒又は板等を入れることもできる。この場合、金属
としては上記目的に合う限り特に限定されないが、リン
酸カルシウム化合物と有機重合体との混合物に何らかの
原因でクラック等が入った場合等も考えられるため、生
体に対し毒性が少ないか又は無いといわれているステン
レス(316L)やチタン等を用いることが好ましいと
いえる。中心部に金属を入れる場合、その外側に金属が
露出しないように入れることが好ましい。金属との接着
には接着剤をもちいるがその種類は所期の接着強度が得
られる限り、特に限定されるものではない。本発明のリ
ン酸カルシウム化合物と有機重合体との混合物は金属と
の接着性が他の材料に比し良好であり、且つ靭性が高い
ため曲げねじれに対しクラックが入りにくい。
If you want to make the physical properties of artificial bone and artificial teeth more similar to those of bone, or if you want to make them stronger and tougher for safety when implanted in a living body, you can use a metal rod or plate in the center. You can also put it in. In this case, the metal is not particularly limited as long as it meets the above purpose, but it may be that the mixture of calcium phosphate compound and organic polymer cracks for some reason, so it has little or no toxicity to living organisms. It can be said that it is preferable to use stainless steel (316L), titanium, etc. When metal is placed in the center, it is preferable to do so so that the metal is not exposed on the outside. An adhesive is used for adhesion to metal, but the type of adhesive is not particularly limited as long as the desired adhesive strength can be obtained. The mixture of the calcium phosphate compound and organic polymer of the present invention has better adhesion to metals than other materials, and has high toughness, so it is difficult to crack due to bending and twisting.

以下本発明を実施例により具体的に説明する。The present invention will be specifically explained below using examples.

[実施例1コ リン酸カルシウム化合物としてリン酸三カルシウム及び
ヒドロキシアパタイトの各粉末に有機重合体としてPM
MA、PTFEMA、PEの各モノマーを組合せて混合
し6種類の混合物を各々加圧、加熱2重合させリン酸カ
ルシウム化合物と有機重合体の混合物を作製した。この
場合いずれも配合割合はリン酸カルシウム化合物の割合
を50%(体積比)とした。
[Example 1 Tricalcium phosphate as a calcium phosphate compound and PM as an organic polymer in each powder of hydroxyapatite
MA, PTFEMA, and PE monomers were combined and mixed, and each of the six types of mixtures was subjected to double polymerization under pressure and heating to produce a mixture of a calcium phosphate compound and an organic polymer. In all cases, the proportion of the calcium phosphate compound was 50% (volume ratio).

これら各混合物を5×5X5ffI11の大きさに切断
し、成犬脛骨に作製した欠損(5X5X5mm)に充て
んし、術後1週〜6ケ月まで経時的に観察した。
Each of these mixtures was cut into a size of 5×5×5ffI11, filled into a defect (5×5×5 mm) created in the tibia of an adult dog, and observed over time from 1 week to 6 months after the surgery.

その結果、いづれも混合物周囲に直接接して新生骨の生
成が認められたが、なかでもヒドロキシアパタイトとP
MMAの場合、ヒドロキシアパタイトとPTFEMAの
場合が新生骨の生成量が最も多く、次いでヒドロキシア
パタイトとPEの場合が生成量が多かった。
As a result, new bone formation was observed in direct contact around the mixture, but especially hydroxyapatite and P.
In the case of MMA, hydroxyapatite and PTFEMA produced the largest amount of new bone, followed by hydroxyapatite and PE.

口実施例2] ヒドロキシアパタイト粉末にPTF’EMA、PMMA
を各々組合せ、実施例1と同様の方法、組成にて2種類
の混合物を作製した。一方、PTFEMA、PMMA単
独で重合体を作製し、これらより6I1wIIφの円柱
を作り、成犬脛骨及び大腿骨に作製した欠損6.5画φ
X7nn+Lに充てんし3力月後に取り出し5冊φの丸
棒で、打ちぬき試験を実施した。
Example 2] PTF'EMA and PMMA in hydroxyapatite powder
Two types of mixtures were prepared using the same method and composition as in Example 1. On the other hand, polymers were prepared using PTFEMA and PMMA alone, and cylinders of 6I1wIIφ were made from these, and defects of 6.5 diameter diameter were created in the tibia and femur of adult dogs.
It was filled in X7nn+L, and after 3 months, it was taken out and a punching test was conducted using 5 φ round rods.

その結果、P T F E M A 、 P M M 
A単独の場合には10kg/cJ以下の荷重で打ちぬけ
たが、PTFEMAとヒドロキシアパタイト、PMMA
とヒドロキシアパタイトの混合物の場合には50kg/
−以上の荷重でも打ちぬくことが不可能であった。
As a result, P T F E M A , P M M
In the case of A alone, it was able to pass with a load of 10 kg/cJ or less, but PTFEMA, hydroxyapatite, and PMMA
In the case of a mixture of and hydroxyapatite, 50 kg/
- It was impossible to punch out even with a load of more than -.

[実施例3] ヒドロキシアパタイト粉末(149μ以下)と各々PM
MA及びPTFEMAを用い、その混合割合をヒドロキ
シアパタイトの割合が5%(体積比)から90%(体積
比)まで実施例1と同様にシテ作成しく5%、10%、
50%、70%、90%)、実施例1と同様の方法にて
成犬に充てんし、3ケ月後の状態をa察した。但し95
%については手術時充てん形状に加工ができなかったた
め充てんを行なわなかった。
[Example 3] Hydroxyapatite powder (149μ or less) and each PM
Using MA and PTFEMA, the mixing ratio was changed from 5% (volume ratio) to 90% (volume ratio) of hydroxyapatite in the same manner as in Example 1.
(50%, 70%, 90%) were filled into adult dogs in the same manner as in Example 1, and the condition was observed 3 months later. However, 95
Regarding %, filling was not performed because it could not be processed into the filling shape at the time of surgery.

その結果、ヒドロキシアパタイトが5%の場合には充て
んした試料の周囲に新生骨はほとんど観察されず異物巨
細胞が多数amされたが10%以上の試料ではその周囲
に新生骨が観察され、特に50%以上のものでその量が
多く且つ異物巨細胞は全くみられなかった。これらを乾
燥状態で及び生体中に近似させるため生食水中で9週間
放置後強度試験を行った。その結果を表に示す。
As a result, when the hydroxyapatite content was 5%, almost no new bone was observed around the filled sample and a large number of foreign body giant cells were observed, but when the hydroxyapatite content was 10% or more, new bone was observed around the filled sample. The amount of foreign body giant cells was large in 50% or more, and no foreign body giant cells were observed. A strength test was conducted on these specimens in a dry state and after being left in saline for 9 weeks to approximate that of a living body. The results are shown in the table.

曲げ試験:JIS  R1601 圧縮試験:JIS  K  7208 [実施例4] ヒドロキシアパタイトの割合を70%(体積比)として
ヒドロキシアパタイト粉末とPTFEMAを角い、中心
に316Lステンレス2IIIlφを入れ、混合物を実
施例1と同様にして作製した。
Bending test: JIS R1601 Compression test: JIS K 7208 [Example 4] The proportion of hydroxyapatite was 70% (volume ratio), hydroxyapatite powder and PTFEMA were placed in a square shape, 316L stainless steel 2IIIlφ was placed in the center, and the mixture was prepared in Example 1. It was produced in the same manner as.

上記により作製した混合物の曲げ及び圧縮試験を行った
ところ曲げで1800kg/ad、圧縮で1300 k
g/dであり、生体の緻密骨ときわめて近い物性を有す
る材料を得た。なお1曲げ及び圧縮試験は実施例3と同
様の試験方法によった。
When the mixture prepared above was subjected to bending and compression tests, it was 1800 kg/ad in bending and 1300 k in compression.
g/d, and a material having physical properties extremely similar to those of a living body's compact bone was obtained. Note that the bending and compression tests were conducted using the same test methods as in Example 3.

Claims (1)

【特許請求の範囲】[Claims] リン酸カルシウム化合物10〜90%(体積比)及び有
機重合体90〜10%(体積比)を含むことを特徴とす
る人工骨及び人工歯。
An artificial bone and an artificial tooth comprising 10 to 90% (volume ratio) of a calcium phosphate compound and 90 to 10% (volume ratio) of an organic polymer.
JP59188143A 1984-09-10 1984-09-10 Artificial bone and tooth Granted JPS6168054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59188143A JPS6168054A (en) 1984-09-10 1984-09-10 Artificial bone and tooth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59188143A JPS6168054A (en) 1984-09-10 1984-09-10 Artificial bone and tooth

Publications (2)

Publication Number Publication Date
JPS6168054A true JPS6168054A (en) 1986-04-08
JPS6344379B2 JPS6344379B2 (en) 1988-09-05

Family

ID=16218497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59188143A Granted JPS6168054A (en) 1984-09-10 1984-09-10 Artificial bone and tooth

Country Status (1)

Country Link
JP (1) JPS6168054A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270249A (en) * 1985-05-25 1986-11-29 株式会社はいる Tetracalcium phosphate settable composition
JPS62268553A (en) * 1986-05-15 1987-11-21 増原 英一 Screw for fixing bone and hard tissue substitute material
JPS62275007A (en) * 1986-05-21 1987-11-30 Showa Denko Kk Ca4p2o9 powder for dental material and its production
JPH01230367A (en) * 1988-03-10 1989-09-13 Showa Denko Kk Medical hardening composition
JPH02209148A (en) * 1989-02-08 1990-08-20 Mitsubishi Mining & Cement Co Ltd Artificial bone, artificial tooth, bone fixing screw and its production
WO2005097891A1 (en) * 2004-04-08 2005-10-20 Sumitomo Pharmaceuticals Company Limited Powder composition for use in forming artificial bone molding and platy molded object
US10286102B2 (en) 2010-05-11 2019-05-14 Howmedica Osteonics Corp Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods
US20200038553A1 (en) * 2016-09-30 2020-02-06 Antonio Sambusseti Product for the reconstruction of cartilage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125042A (en) * 1979-12-18 1981-10-01 Osteo Ag Bone substitute material and production thereof
JPS58216050A (en) * 1982-06-10 1983-12-15 ブセソユズニイ・ナウチノ−イスレドバテルスキイ・イイスピイタテルニイ・インステイテユト・メデイツインスコイテハニキ Temporary substitute composition for bone tissue defficiency

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125042A (en) * 1979-12-18 1981-10-01 Osteo Ag Bone substitute material and production thereof
JPS58216050A (en) * 1982-06-10 1983-12-15 ブセソユズニイ・ナウチノ−イスレドバテルスキイ・イイスピイタテルニイ・インステイテユト・メデイツインスコイテハニキ Temporary substitute composition for bone tissue defficiency

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270249A (en) * 1985-05-25 1986-11-29 株式会社はいる Tetracalcium phosphate settable composition
JPS62268553A (en) * 1986-05-15 1987-11-21 増原 英一 Screw for fixing bone and hard tissue substitute material
JPS62275007A (en) * 1986-05-21 1987-11-30 Showa Denko Kk Ca4p2o9 powder for dental material and its production
JPH01230367A (en) * 1988-03-10 1989-09-13 Showa Denko Kk Medical hardening composition
JPH0459911B2 (en) * 1988-03-10 1992-09-24 Showa Denko Kk
JPH02209148A (en) * 1989-02-08 1990-08-20 Mitsubishi Mining & Cement Co Ltd Artificial bone, artificial tooth, bone fixing screw and its production
JPH0533633B2 (en) * 1989-02-08 1993-05-20 Mitsubishi Materials Corp
WO2005097891A1 (en) * 2004-04-08 2005-10-20 Sumitomo Pharmaceuticals Company Limited Powder composition for use in forming artificial bone molding and platy molded object
US10286102B2 (en) 2010-05-11 2019-05-14 Howmedica Osteonics Corp Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods
US20200038553A1 (en) * 2016-09-30 2020-02-06 Antonio Sambusseti Product for the reconstruction of cartilage

Also Published As

Publication number Publication date
JPS6344379B2 (en) 1988-09-05

Similar Documents

Publication Publication Date Title
US8303976B2 (en) Inorganic shaped bodies and methods for their production and use
Chu et al. Hydroxyapatite/PMMA composites as bone cements
WO2001012106A1 (en) Composite shaped bodies and methods for their production and use
JP2004033772A (en) Method for preparing porous calcium phosphate chip and particle by gelatin treatment
JPH0233388B2 (en)
JP5015570B2 (en) Biomaterial and method for producing biomaterial
Sa et al. Physicochemical properties and in vitro mineralization of porous polymethylmethacrylate cement loaded with calcium phosphate particles
JPS6168054A (en) Artificial bone and tooth
RU2494721C1 (en) Biocompatible bone-substituting material and method of obtaining thereof
AU775040B2 (en) Composites
JP2008054908A (en) Bone prosthetic material
JPS6120558A (en) Bone lack part, bone cavity part and filler of bone absorbing part
JPS6171060A (en) Alpha-calcium triphosphate composition for filling bone and tooth and its production
Antoniac et al. Potential of the magnesium powder as filler for biomedical composites
JPS61236644A (en) Calcium phosphate hardenable composition
JPS62268553A (en) Screw for fixing bone and hard tissue substitute material
JPH0533633B2 (en)
JP3101999B2 (en) Artificial bones and artificial teeth and their manufacturing method
Sanginario et al. Injectable composite hydrogels for orthopaedic applications. Mechanical and morphological analysis
JPS60256460A (en) Composition for filling bone defficient part and gap part containing fibrin and calcium phosphate
JPH0558751B2 (en)
JPS60256461A (en) Kit for preparing composition for filling bone lost part andgap part
Hile et al. Dimensional stability of the alveolar ridge after implantation of a bioabsorbable bone graft substitute: a radiographic and histomorphometric study in rats
Alkildani et al. Preparation and Analysis Methods of Bone Ceramic Substitutes
JPS6171059A (en) Composition for filling bone and tooth and its production