JP4111421B2 - Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body - Google Patents

Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body Download PDF

Info

Publication number
JP4111421B2
JP4111421B2 JP2001054274A JP2001054274A JP4111421B2 JP 4111421 B2 JP4111421 B2 JP 4111421B2 JP 2001054274 A JP2001054274 A JP 2001054274A JP 2001054274 A JP2001054274 A JP 2001054274A JP 4111421 B2 JP4111421 B2 JP 4111421B2
Authority
JP
Japan
Prior art keywords
calcium phosphate
cement
living bone
phosphate
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001054274A
Other languages
Japanese (ja)
Other versions
JP2002255606A (en
Inventor
昌弘 平野
啓泰 竹内
伸之 浅岡
Original Assignee
ペンタックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ペンタックス株式会社 filed Critical ペンタックス株式会社
Priority to JP2001054274A priority Critical patent/JP4111421B2/en
Priority to TW090114341A priority patent/TW550245B/en
Priority to PCT/JP2001/004997 priority patent/WO2002068357A1/en
Publication of JP2002255606A publication Critical patent/JP2002255606A/en
Application granted granted Critical
Publication of JP4111421B2 publication Critical patent/JP4111421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、口腔外科を含む医科の分野で生体骨補強治療に用いられ、高強度硬化体の形成が可能なリン酸カルシウムセメントに関するものである。
【0002】
【従来の技術】
一般に、生体骨補強治療用セメントには、
(1)硬化用水溶液を加えてスラリー化したスラリーが凝固する凝結性、
(2)凝固体が水分の存在下で硬化する硬化性、
(3)治療補強骨の運動を可能ならしめるに十分な硬化体強度、
(4)硬化体が生体骨に再生する吸収置換性、
などの特性を具備することが要求されるが、これらの特性を具備するセメントとして、従来各種の生体骨補強治療用セメントが提案されている。
【0003】
【発明が解決しようとする課題】
一方、生体にとって硬化体は異物であることから、できるだけ少ない硬化体使用量で治療補強骨に所定量の強度が得られるのが望ましいが、従来提案されている生体骨補強治療用セメントにおいては、硬化体に十分な高強度が得られないために、治療補強骨としての硬化体の使用量の低減化を満足に図ることができず、このため硬化体の一段の強度向上が可能な生体骨補強治療用セメントの開発が強く求められている。
【0004】
【課題を解決するための手段】
そこで、本発明者らは、上述の観点から、硬化体の強度向上が可能な生体骨補強治療用セメントを開発すべく研究を行った結果、従来提案されている各種の生体骨補強治療用セメントのうちのリン酸カルシウムセメント、すなわち、質量%で(以下、%は質量%を示す)、
第2リン酸カルシウム:3〜10%、
第4リン酸カルシウム:10〜25%、
α型第3リン酸カルシウムおよび不可避不純物:残り、
からなる配合組成を有する混合組成物で構成されたリン酸カルシウムセメントに特定し、このリン酸カルシウムセメントに、硫酸マグネシウムを0.03〜0.5%の割合で配合してなる混合組成物をリン酸カルシウムセメントとして用いると、これの適用に際して、これに硬化性水溶液を加えて形成したペーストの流動性が前記硫酸マグネシウムの作用で一段と向上し、当然の結果として気泡の巻き込みが著しく低減されるようになることから、緻密な硬化体の形成が可能となり、形成された硬化体の強度は著しく向上したものになるという研究結果を得たのである。
【0005】
この発明は、上記の研究結果に基づいてなされたものであって、
硫酸マグネシウム:0.03〜0.5%,
第2リン酸カルシウム:3〜10%、
第4リン酸カルシウム:10〜25%、
α型第3リン酸カルシウムおよび不可避不純物:残り、
からなる配合組成を有する混合組成物で構成してなる、高強度硬化体の形成が可能な生体骨補強治療用リン酸カルシウムセメントに特徴を有するものである。
【0006】
つぎに、この発明の生体骨補強治療用リン酸カルシウムセメント(以下、単に本発明セメントという)において、配合組成を上記の通りに限定した理由を説明する。
(a)硫酸マグネシウム
この成分には、上記の通りセメントの適用に際して、ペーストの流動性を向上させ、もって気泡の巻き込みを著しく抑制して、緻密な硬化体の形成を可能にし、この結果硬化体の強度向上に寄与する作用があり、この作用を十分に発揮させるためには、本発明セメントの製造に際して、構成成分である第2リン酸カルシウムと予め混練した状態で、残りの構成成分である第4リン酸カルシウムおよびα型第3リン酸カルシウムと配合する必要があるが、その割合が0.03%未満では前記作用に所望の効果が得られず、一方その割合が0.5%を越えると硬化体の硬化に要する時間が伸びる傾向が現われるようになることから、その割合を0.03〜0.5%、望ましくは0.1〜0.3%と定めた。
【0007】
(b)第2リン酸カルシウム
この成分には、ペーストの硬化体への凝結を促進する作用があるが、その割合が3%未満では所望の凝結促進作用を確保することができず、一方その割合が10%を越えると、硬化時間が短くなりすぎて作業性の低下が避けられなくなることから、その割合を3〜10%、望ましくは4〜8%と定めた。
【0008】
(c)第4リン酸カルシウム
この成分には、硬化体が生体骨へ再生する吸収置換性を促進する作用があるが、その割合が10%未満では前記作用に所望の向上効果が得られず、一方その割合が25%を越えると硬化体の強度が低下するようになることから、その割合を10〜25%、望ましくは12〜20%と定めた。
なお、本発明セメントの硬化性水溶液としては、通常実用に供されている硬化性水溶液、例えばコハク酸2ナトリウムやコンドロイチン硫酸ナトリウム、さらに乳酸ナトリウム、リン酸ナトリウム、塩化ナトリウム、亜硫酸水素ナトリウム、およびピロ亜硫酸ナトリウムなどのうちの1種または2種以上を所定量配合含有させた水溶液、並びに蒸留水などを適用できる。
【0009】
【発明の実施の態様】
つぎに、本発明セメントを実施例により具体的に説明する。
まず、本発明セメントの構成成分であるα型第3リン酸カルシウムおよび第4リン酸カルシウムを以下の通りに調整し、同じく硫酸マグネシウムおよび第2リン酸カルシウムは市販のものを使用した。
(1)α型第3リン酸カルシウム
水酸化カルシウム:3モルを水:10リットルに懸濁させ、これにリン酸:2モルを水で希釈してなる40%リン酸水溶液を攪拌しながらゆっくり滴下し、滴下終了後、室温に1日間放置し、ついで乾燥機を用い、110℃に24時間保持の条件で乾燥して凝集体とし、引き続いて前記凝集体を1400℃に3時間保持して焼成し、焼成生成物を粉砕し、篩分にて篩目で88μm以下(平均粒径:6.5μm)とすることにより純度:99.9%のα型第3リン酸カルシウムを製造した。
【0010】
(2)第4リン酸カルシウム
水酸化カルシウム:4モルを水:10リットルに懸濁させ、これにリン酸:2モルを水で希釈してなる40%リン酸水溶液を攪拌しながらゆっくり滴下し、滴下終了後、室温に1日間放置し、ついで乾燥機を用い、110℃に24時間保持の条件で乾燥して凝集体とし、この凝集体を、まず900℃に3時間保持の条件で仮焼結し、引き続いて均一に粉砕した状態で、1400℃に3時間保持の条件で焼成し、焼成生成物を粉砕し、篩分にて篩目で88μm以下(平均粒径:6.5μm)とすることにより、第4リン酸カルシウムの含有割合が90・5%で、残りが実質的に不可避不純物としての水酸アパタイトからなる混合生成物を製造した。
なお、この実施例では上記混合生成物を第4リン酸カルシウムとして使用した。
【0011】
つぎに、原料粉末として上記(1)、(2)で得られたα型第3リン酸カルシウム、および第4リン酸カルシウム、さらに市販の硫酸マグネシウムおよび第2リン酸カルシウムを用い、まずこれら原料粉末のうちの硫酸マグネシウムと第2リン酸カルシウムを、予め表1に示される全体割合に相当する割合で混練機で30分間十分に混練しておき、この混練粉末とその他の原料粉末を表1に示される配合割合に配合し、混合して配合割合と実質的に同じ配合組成を有する混合組成物とすることにより本発明セメント1〜15、および硫酸マグネシウムの配合がない従来セメント1〜11をそれぞれ製造した。
【0012】
さらに、上記本発明セメント1〜15および従来セメント1〜11から形成された硬化体の強度を評価する目的で、これらセメントに、それぞれコンドロイチン硫酸ナトリウム:5%、コハク酸2ナトリウム・6水和物:15%、および亜硫酸水素ナトリウム:0.3%を含有し、残りが水からなる硬化用水溶液を、質量比で、セメント:硬化用水溶液=3:1の割合で加え、練和してスラリーとし、このスラリーを凝結させて直径:6mm×高さ:12mmの寸法の円柱状凝固体とし、この凝固体を、Na+:142.0mM、K+:5.0mM、Mg2+:1.5mM、Ca2+:2.5mM、Cl-:148.8mM、HCO3 -:4.2mM、HPO4 2 :1.0mMを含有する水溶液(疑似体液)中に5日間浸漬して硬化させ、この5日間の硬化処理後の硬化体の圧縮強度を測定した。この測定結果を同じく表1に示した。
【0013】
【表1】

Figure 0004111421
【0014】
【発明の効果】
表1に示される結果から、従来セメントを構成する混合組成物に硫酸マグネシウムを配合した本発明セメント1〜15は、これより成形された硬化体が前記硫酸マグネシウムの配合がない従来セメント1〜11より形成された硬化体に比して一段と高い強度をもつことが明らかである。
上述の通り、本発明セメントは、高強度を有する硬化体の成形を可能とするものであり、治療補強骨の強度向上に大いに寄与するほか、硬化体使用量の低減を図ることができるなど工業上有用な特性を有するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a calcium phosphate cement used for living bone reinforcement treatment in the medical field including oral surgery, and capable of forming a high-strength hardened body.
[0002]
[Prior art]
In general, the cement for living bone reinforcement treatment
(1) Coagulation property that a slurry formed by adding an aqueous solution for curing solidifies;
(2) Curability in which the solidified body is cured in the presence of moisture,
(3) Hardened body strength sufficient to allow movement of the treatment-reinforcing bone,
(4) Absorption and replacement properties for the cured body to regenerate into living bone,
However, various types of cement for living bone reinforcing treatment have been proposed as cements having these characteristics.
[0003]
[Problems to be solved by the invention]
On the other hand, since the cured body is a foreign body for a living body, it is desirable that a predetermined amount of strength is obtained in the treatment reinforcing bone with as little cured body usage as possible, but in the conventionally proposed living bone reinforcing treatment cement, Since sufficient strength cannot be obtained in the cured body, it is not possible to satisfactorily reduce the amount of the cured body used as a treatment reinforcing bone, and thus a living bone that can further improve the strength of the cured body There is a strong demand for the development of cement for reinforcement treatment.
[0004]
[Means for Solving the Problems]
In view of the above, the present inventors have conducted research to develop a living bone reinforcing treatment cement capable of improving the strength of a cured body, and as a result, various conventionally proposed living bone reinforcing treatment cements have been proposed. Of which, calcium phosphate cement, that is, by mass% (hereinafter,% represents mass%),
Dicalcium phosphate: 3-10%,
Tetracalcium phosphate: 10-25%
α-type tricalcium phosphate and inevitable impurities: the rest,
Calcium phosphate cement composed of a mixed composition having a blend composition consisting of the above, and a mixed composition comprising 0.03 to 0.5% of magnesium sulfate in this calcium phosphate cement is used as the calcium phosphate cement. And, in applying this, the fluidity of the paste formed by adding a curable aqueous solution to this is further improved by the action of the magnesium sulfate, and as a result, the entrainment of bubbles is significantly reduced, Research results have been obtained that a dense cured body can be formed, and the strength of the formed cured body is significantly improved.
[0005]
This invention was made based on the above research results,
Magnesium sulfate: 0.03-0.5%,
Dicalcium phosphate: 3-10%,
Tetracalcium phosphate: 10-25%
α-type tricalcium phosphate and inevitable impurities: the rest,
It is characterized by a calcium phosphate cement for living bone reinforcement treatment that can be formed into a high-strength hardened body, which is composed of a mixed composition having a blend composition comprising:
[0006]
Next, the reason why the composition of the calcium phosphate cement for living bone reinforcement treatment of the present invention (hereinafter simply referred to as the present invention cement) is limited as described above will be described.
(A) Magnesium sulfate In this component, as described above, when applying cement, the fluidity of the paste is improved, so that entrainment of bubbles is remarkably suppressed, and a dense hardened body can be formed. In order to fully exhibit this effect, the fourth component which is the remaining component in the state of being kneaded in advance with the second calcium phosphate which is the component in the production of the cement of the present invention. It is necessary to blend with calcium phosphate and α-type tricalcium phosphate, but if the ratio is less than 0.03%, the desired effect cannot be obtained, whereas if the ratio exceeds 0.5%, the cured body is cured. Therefore, the ratio is set to 0.03 to 0.5%, preferably 0.1 to 0.3%.
[0007]
(B) Dicalcium phosphate This component has an action of promoting the setting of the paste to the cured body, but if the ratio is less than 3%, the desired setting acceleration action cannot be secured, while the ratio is If it exceeds 10%, the curing time becomes too short, and the workability is inevitably deteriorated. Therefore, the ratio is set to 3 to 10%, preferably 4 to 8%.
[0008]
(C) Calcium quaternary phosphate This component has an action of promoting the absorption and replacement property of the cured body to regenerate into living bone, but if the ratio is less than 10%, the desired improvement effect cannot be obtained for the action. If the proportion exceeds 25%, the strength of the cured product will decrease, so the proportion was determined to be 10 to 25%, preferably 12 to 20%.
Examples of the curable aqueous solution of the cement of the present invention include curable aqueous solutions that are usually used in practice, such as disodium succinate and sodium chondroitin sulfate, sodium lactate, sodium phosphate, sodium chloride, sodium bisulfite, and pyrophosphate. An aqueous solution containing a predetermined amount of one or more of sodium sulfite and the like, and distilled water can be applied.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the cement of the present invention will be specifically described with reference to examples.
First, α-type tricalcium phosphate and tetracalcium phosphate, which are constituents of the cement of the present invention, were prepared as follows, and commercially available magnesium sulfate and dicalcium phosphate were used.
(1) α-type tricalcium phosphate calcium hydroxide: 3 mol of water is suspended in 10 liters of water, and phosphoric acid: 2 mol of phosphoric acid: 2 mol diluted with water is slowly added dropwise with stirring. After completion of the dripping, the mixture is allowed to stand at room temperature for 1 day, and then dried to form an agglomerate under a condition of holding at 110 ° C. for 24 hours. Then, the fired product was pulverized, and α-type tribasic calcium phosphate having a purity of 99.9% was produced by sieving to a particle size of 88 μm or less (average particle size: 6.5 μm).
[0010]
(2) Quaternary calcium phosphate: 4 mol of calcium hydroxide suspended in 10 liters of water, and 40% phosphoric acid aqueous solution prepared by diluting 2 mol of phosphoric acid with water was slowly added dropwise with stirring. After the completion, it is allowed to stand at room temperature for 1 day, and then dried to form an aggregate by holding it at 110 ° C. for 24 hours, and this aggregate is first pre-sintered at 900 ° C. for 3 hours. Subsequently, in a state of uniform pulverization, calcination is performed at 1400 ° C. for 3 hours, the baked product is pulverized, and sieved to a particle size of 88 μm or less (average particle size: 6.5 μm). As a result, a mixed product was produced in which the content ratio of the quaternary calcium phosphate was 90.5% and the remainder was substantially composed of hydroxyapatite as an inevitable impurity.
In this example, the above mixed product was used as tetracalcium phosphate.
[0011]
Next, α-type tribasic calcium phosphate and quaternary calcium phosphate obtained in (1) and (2) above as the raw material powder, and commercially available magnesium sulfate and dicalcium phosphate are used. And the second calcium phosphate are sufficiently kneaded in advance in a kneader for 30 minutes in a proportion corresponding to the total proportion shown in Table 1, and this kneaded powder and other raw material powders are blended in the blending proportions shown in Table 1. The cements 1 to 15 of the present invention and conventional cements 1 to 11 containing no magnesium sulfate were produced by mixing to obtain a mixed composition having substantially the same composition as the blending ratio.
[0012]
Furthermore, for the purpose of evaluating the strength of the cured bodies formed from the above-mentioned cements 1 to 15 of the present invention and the conventional cements 1 to 11, these cements were respectively mixed with sodium chondroitin sulfate: 5% and disodium succinate hexahydrate. : A curing aqueous solution containing 15% and sodium bisulfite: 0.3%, with the balance being water, is added at a mass ratio of cement: curing aqueous solution = 3: 1 and kneaded to a slurry. The slurry was condensed to form a cylindrical solid body having a diameter of 6 mm × height: 12 mm. The solid body was Na + : 142.0 mM, K + : 5.0 mM, Mg 2+ : 1. Immerse in an aqueous solution (pseudo body fluid) containing 5 mM, Ca 2+ : 2.5 mM, Cl : 148.8 mM, HCO 3 : 4.2 mM, HPO 4 2 : 1.0 mM for 5 days to cure. ,this The compressive strength of the cured product after the curing process of the day was measured. The measurement results are also shown in Table 1.
[0013]
[Table 1]
Figure 0004111421
[0014]
【The invention's effect】
From the results shown in Table 1, according to the present invention cements 1 to 15 in which magnesium sulfate is blended with the mixed composition constituting the conventional cement, the cements 1 to 11 in which the hardened body formed from this has no blend of the magnesium sulfate. It is clear that it has a much higher strength than a more formed cured body.
As described above, the cement of the present invention enables molding of a cured body having high strength, greatly contributes to the improvement of the strength of the treatment-reinforced bone, and can reduce the amount of the cured body used. It has the above useful characteristics.

Claims (1)

質量%で、
硫酸マグネシウム:0.03〜0.5%、
第2リン酸カルシウム:3〜10%、
第4リン酸カルシウム:10〜25%、
α型第3リン酸カルシウムおよび不可避不純物:残り、
からなる配合組成を有する混合組成物で構成したことを特徴とする高強度硬化体の形成が可能な生体骨補強治療用リン酸カルシウムセメント。
% By mass
Magnesium sulfate: 0.03-0.5%,
Dicalcium phosphate: 3-10%,
Tetracalcium phosphate: 10-25%
α-type tricalcium phosphate and inevitable impurities: the rest,
A calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body, characterized by comprising a mixed composition having a composition comprising:
JP2001054274A 2001-02-28 2001-02-28 Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body Expired - Fee Related JP4111421B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001054274A JP4111421B2 (en) 2001-02-28 2001-02-28 Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
TW090114341A TW550245B (en) 2001-02-28 2001-06-13 Calcium phosphate cement for bone reinforcing treatment capable of forming high strength hardened body
PCT/JP2001/004997 WO2002068357A1 (en) 2001-02-28 2001-06-13 Calcium phosphate cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001054274A JP4111421B2 (en) 2001-02-28 2001-02-28 Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body

Publications (2)

Publication Number Publication Date
JP2002255606A JP2002255606A (en) 2002-09-11
JP4111421B2 true JP4111421B2 (en) 2008-07-02

Family

ID=18914634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001054274A Expired - Fee Related JP4111421B2 (en) 2001-02-28 2001-02-28 Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body

Country Status (1)

Country Link
JP (1) JP4111421B2 (en)

Also Published As

Publication number Publication date
JP2002255606A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JPH02307845A (en) Hardening material
JP2002000718A (en) Calcium phosphate cement for reinforcing and curing bio-bone capable of forming high strength hardened body
JP4111418B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JP4111421B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JP4111422B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JP4111420B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JP3966539B2 (en) Fast-hardening calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JP4111419B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JP4134299B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JPH0248479A (en) Hardening of hardenable composition
JP4329976B2 (en) Fast-hardening calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
WO2002068358A1 (en) Calcium phosphate cement
JP2000169200A (en) Quick-hardening calcium phosphate cement
JP7509713B2 (en) Freeze-dried cement and its manufacturing method
JP2003010311A (en) Fast-curing calcium phosphate cement for reinforcing and treating organic bone capable of forming high- strength cured body
EP1302453B1 (en) Calcium phosphate cement
JPH0753204A (en) Calcium phosphate-based self-hardenable composition
JP7163476B1 (en) Calcium phosphate curable composition, method for producing cured body, and cured body
JP2002255609A (en) Calcium phosphate cement for bone reinforcing treatment capable of forming high strength hardened body
JPH06172007A (en) High-strength cement of calcium phosphate
JP2002255607A (en) Calcium phosphate cement for bone reinforcing treatment capable of forming high strength hardened body
JP2012087013A (en) Hydraulic powder excellent in fluidity, and hydraulic composition
JP2000169199A (en) Quick-hardening calcium phosphate cement
JP2002253664A (en) Calcium phosphate cement for reinforcing treatment of living body bone capable of forming high strength cured body
JP2002255610A (en) Calcium phosphate cement for bone reinforcing treatment capable of forming high strength hardened body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041028

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080424

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20080826

LAPS Cancellation because of no payment of annual fees