JP4329976B2 - Fast-hardening calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body - Google Patents

Fast-hardening calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body Download PDF

Info

Publication number
JP4329976B2
JP4329976B2 JP2001203307A JP2001203307A JP4329976B2 JP 4329976 B2 JP4329976 B2 JP 4329976B2 JP 2001203307 A JP2001203307 A JP 2001203307A JP 2001203307 A JP2001203307 A JP 2001203307A JP 4329976 B2 JP4329976 B2 JP 4329976B2
Authority
JP
Japan
Prior art keywords
calcium phosphate
bone
cement
phosphate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001203307A
Other languages
Japanese (ja)
Other versions
JP2003010307A (en
Inventor
昌弘 平野
啓泰 竹内
智広 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2001203307A priority Critical patent/JP4329976B2/en
Publication of JP2003010307A publication Critical patent/JP2003010307A/en
Application granted granted Critical
Publication of JP4329976B2 publication Critical patent/JP4329976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • C04B28/344Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders the phosphate binder being present in the starting composition solely as one or more phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications

Description

【0001】
【発明の属する技術分野】
この発明は、口腔外科を含む医科の分野で生体骨補強治療に用いられ、高強度硬化体の形成が可能な速硬性リン酸カルシウムセメントに関するものである。
【0002】
【従来の技術】
一般に、生体骨補強治療用セメントには、
(1)硬化用水溶液を加えてスラリー化したスラリーが凝固する凝結性、
(2)凝固体が水分の存在下で硬化する硬化性、
(3)治療補強骨の運動を可能ならしめるに十分な硬化体強度、
(4)硬化体が生体骨に再生する吸収置換性、
などの特性を具備することが要求されるが、これらの特性を具備するセメントとして、従来各種の生体骨補強治療用セメントが提案されている。
【0003】
【発明が解決しようとする課題】
一方、生体にとって硬化体は異物であることから、できるだけ少ない硬化体使用量で治療補強骨に所定量の強度が得られるのが望ましいが、従来提案されている生体骨補強治療用セメントにおいては、硬化体に十分な高強度が得られないために、治療補強骨としての硬化体の使用量の低減化を満足に図ることができず、このため硬化体の一段の強度向上が可能な生体骨補強治療用セメントの開発が強く求められている。
また、この場合上記硬化体の硬化時間は、生体内での骨形成上短いことが望まれている。
【0004】
【課題を解決するための手段】
そこで、本発明者らは、上述の観点から、硬化体の強度向上が可能で、かつ前記硬化体の硬化時間の短縮も可能な速硬性を有する生体骨補強治療用セメントを開発すべく研究を行った結果、従来生体骨補強治療用セメントとして知られているリン酸カルシウムセメントの構成を、質量%で(以下、%は質量%を示す)、
第2リン酸カルシウム:3〜25%、
α型第3リン酸カルシウムおよび不可避不純物:残り、
からなる配合組成を有する混合組成物に特定した上で、このリン酸カルシウムセメントに、リン酸マグネシウムを0.03〜1.5%の割合で配合すると、これの適用に際して、これに硬化性水溶液を加えて形成したペーストの流動性が前記リン酸マグネシウムの作用で一段と向上し、当然の結果として気泡の巻き込みが著しく低減されるようになることから、緻密な硬化体の形成が可能となり、形成された硬化体の強度は著しく向上したものになり、さらに同じく上記の特定したリン酸カルシウムセメントに、従来より骨生成を促進する蛋白質として知られており、アパタイト等の生体骨治療用補填材の混合成分として知られている骨形成因子、望ましくはインシュリン様成長因子(IGF)、腫瘍増殖因子(TGF)、骨形成蛋白質(BMP)、および繊維芽細胞成長因子(FGF)のうちの1種からなる骨形成因子を5〜500ppmの割合で、かつ上記リン酸カルシウムセメントの構成成分である第2リン酸カルシウムの表面に付着担持させた状態で配合すると、上記硬化体の硬化時間が著しく短縮されるようになる、という研究結果を得たのである。
【0005】
この発明は、上記の研究結果に基づいてなされたものであって、
インシュリン様成長因子(IGF)、腫瘍増殖因子(TGF)、骨形成蛋白質(BMP)、および繊維芽細胞成長因子(FGF)のうちの1種からなる骨形成因子:5〜500ppm、
リン酸マグネシウム:0.03〜1.5%,
第2リン酸カルシウム:3〜25%、
α型第3リン酸カルシウムおよび不可避不純物:残り、
からなる配合組成を有する混合組成物からなり、かつ上記骨形成因子が上記第2リン酸カルシウムの表面に付着担持された状態で存在してなる、高強度硬化体の形成が可能な生体骨補強治療用速硬性リン酸カルシウムセメントに特徴を有するものである。
【0006】
つぎに、この発明の生体骨補強治療用リン酸カルシウムセメント(以下、単に本発明セメントという)において、配合組成を上記の通りに限定した理由を説明する。
(a)骨形成因子
この成分には、5ppm以上の微量の割合で、セメントから成形される硬化体の所定強度に至るまでの硬化時間を著しく短縮する作用があり、この作用を十分に発揮させるためには、その配合割合が微量であることと相俟って、セメントの構成成分である第2リン酸カルシウムの表面に付着担持させた状態で配合することが不可欠であるが、その割合が5ppm未満では前記作用に所望の効果が得られず、一方この硬化時間短縮の速硬性効果は500ppmまでの配合割合で十分であり、500ppmを超えて配合しても前記作用が飽和し、さらに一段の向上効果が得られないことから、経済性も考慮して、その割合を5〜500ppmと定めた。
【0007】
(b)リン酸マグネシウム
この成分には、上記の通りセメントの適用に際して、ペーストの流動性を向上させ、もって気泡の巻き込みを著しく抑制して、緻密な硬化体の形成を可能にし、この結果硬化体の強度向上に寄与する作用があり、この作用を十分に発揮させるためには、本発明セメントの製造に際して、構成成分である第2リン酸カルシウムと予め混練した状態で、残りの構成成分であるα型第3リン酸カルシウムと配合する必要があるが、その割合が0.03%未満では前記作用に所望の効果が得られず、一方その割合が1.5%を越えると硬化体の硬化進行が抑制され、相対的に硬化時間が長時間化するようになることから、その割合を0.03〜1.5%、望ましくは0.1〜1.0%と定めた。
【0008】
(c)第2リン酸カルシウム
この成分には、ペーストの硬化体への凝結を促進する作用があるが、その割合が3%未満では所望の凝結促進作用を確保することができず、一方その割合が25%を越えると、硬化時間が短くなりすぎて作業性の低下が避けられなくなることから、その割合を3〜25%、望ましくは6〜20%と定めた。
【0009】
なお、本発明セメントの硬化性水溶液としては、通常実用に供されている硬化性水溶液、例えばコハク酸2ナトリウムやコンドロイチン硫酸ナトリウム、さらに乳酸ナトリウム、リン酸ナトリウム、塩化ナトリウム、亜硫酸水素ナトリウム、およびピロ亜硫酸ナトリウムなどのうちの1種または2種以上を所定量配合含有させた水溶液、並びに蒸留水などを適用できる。
【0010】
【発明の実施の態様】
つぎに、本発明セメントを実施例により具体的に説明する。
まず、本発明セメントの構成成分であるα型第3リン酸カルシウムとして、以下の工程、すなわち、水酸化カルシウム:3モルを水:10リットルに懸濁させ、これにリン酸:2モルを水で希釈してなる40%リン酸水溶液を攪拌しながらゆっくり滴下し、滴下終了後、室温に1日間放置し、ついで乾燥機を用い、110℃に24時間保持の条件で乾燥して凝集体とし、引き続いて前記凝集体を1400℃に3時間保持して焼成し、焼成生成物を粉砕し、篩分にて篩目で88μm以下(平均粒径:6.5μm)とすることにより調製した純度:99.9%のα型第3リン酸カルシウムを用い、さらに上記の骨形成因子としては上記のIGF、TGF、BMP、およびFGFを使用し、さらにリン酸マグネシウムおよび第2リン酸カルシウムも市販のものを使用し、これら原料粉末を表1に示される配合割合にそれぞれ秤量し、これを以下に示す工程で混合組成物とした。
すなわち、まず、これら原料粉末のうちの骨形成因子を4M塩酸グアニジン溶液に溶解し、さらにこの溶液に第2リン酸カルシウムを加えて、これを透析管に装入し、この透析管を蒸留水に浸漬し、前記蒸留水を撹拌して、前記塩酸グアニジンを透析管を通して蒸留水中に抽出除去する透析を行ない、ついで前記透析管内のスラリーを回収して凍結乾燥することにより前記第2リン酸カルシウムの表面に前記骨形成因子を付着担持させた。
つぎに、上記の表面に骨形成因子を付着担持した第2リン酸カルシウムに、まずリン酸マグネシウムを加えて混練機で30分間十分に混練しておき、これにその他の原料粉末である上記のα型第3リン酸カルシウムを加えて混合することにより、表1に示される配合割合の混合組成物からなる本発明セメント1〜18をそれぞれ製造した。
【0011】
また、比較の目的で、表2に示される通り、原料粉末として、上記のα型第3リン酸カルシウムおよび第2リン酸カルシウムを用い、これら原料粉末を表2に示される配合割合に配合し、混合することにより従来セメント1〜11をそれぞれ製造した。
【0012】
さらに、上記本発明セメント1〜18および従来セメント1〜11から形成された硬化体の硬化時間および強度を評価する目的で、これらセメントに、それぞれコンドロイチン硫酸ナトリウム:5%、コハク酸2ナトリウム・6水和物:15%、および亜硫酸水素ナトリウム:0.3%を含有し、残りが水からなる硬化用水溶液を、質量比で、セメント:硬化用水溶液=3:1の割合で加え、練和してスラリーとし、このスラリーを凝結させて直径:6mm×高さ:12mmの寸法の円柱状凝固体とし、この凝固体を、Na+:142.0mM、K+:5.0mM、Mg2+:1.5mM、Ca2+:2.5mM、Cl-:148.8mM、HCO3 -:4.2mM、HPO4 2 :1.0mMを含有する水溶液(疑似体液)中に浸漬して硬化させ、硬化体の圧縮強度が30MPaに至るまでの硬化時間、および前記疑似体液に7日間浸漬後の硬化体の圧縮強度を測定した。この測定結果を同じく表1,2に示した。
【0013】
【表1】

Figure 0004329976
【0014】
【表2】
Figure 0004329976
【0015】
【発明の効果】
表1,2に示される結果から、混合組成物に骨形成因子およびリン酸マグネシウムを配合した本発明セメント1〜18は、これらの配合がない従来セメント1〜11に比して硬化時間が相対的に速く、かつ形成された硬化体も一段と高い強度をもつことが明らかである。
上述の通り、本発明セメントは、高強度を有する硬化体の成形を可能とするものであり、治療補強骨の強度向上に大いに寄与するほか、硬化体使用量の低減を図ることができ、さらに相対的に短い硬化時間での高強度硬化体の形成を可能とする速硬性をもつなど工業上有用な特性を有するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fast-setting calcium phosphate cement used for living bone reinforcement treatment in the medical field including oral surgery and capable of forming a high strength hardened body.
[0002]
[Prior art]
In general, the cement for living bone reinforcement treatment
(1) Coagulation property that a slurry formed by adding an aqueous solution for curing is solidified;
(2) Curability in which the solidified body is cured in the presence of moisture,
(3) Hardened body strength sufficient to allow movement of the treatment-reinforcing bone,
(4) Absorption and replacement properties for the cured body to regenerate into living bone,
However, various types of cement for living bone reinforcing treatment have been proposed as cements having these characteristics.
[0003]
[Problems to be solved by the invention]
On the other hand, since the cured body is a foreign body for a living body, it is desirable that a predetermined amount of strength is obtained in the treatment reinforcing bone with as little cured body usage as possible, but in the conventionally proposed living bone reinforcing treatment cement, Since a sufficiently high strength cannot be obtained in the cured body, it is not possible to satisfactorily reduce the amount of the cured body used as the treatment reinforcing bone, and thus a living bone that can further improve the strength of the cured body There is a strong demand for the development of cement for reinforcement treatment.
In this case, the curing time of the cured body is desired to be short in terms of bone formation in vivo.
[0004]
[Means for Solving the Problems]
In view of the above, the present inventors have studied from the above-mentioned viewpoint to develop a cement for living bone reinforcement treatment that can improve the strength of the cured body and has a fast curing property that can shorten the curing time of the cured body. As a result, the composition of calcium phosphate cement, which is conventionally known as a bone-reinforcing treatment cement, in mass% (hereinafter,% indicates mass%)
Dicalcium phosphate: 3-25%,
α-type tricalcium phosphate and inevitable impurities: the rest,
In addition, when the calcium phosphate cement is mixed with 0.03 to 1.5% of the magnesium phosphate, a curable aqueous solution is added to the calcium phosphate cement. The fluidity of the paste formed is further improved by the action of the magnesium phosphate, and as a result, the entrainment of bubbles is remarkably reduced, so that a dense hardened body can be formed and formed. The strength of the hardened body is remarkably improved, and it is also known as a protein that promotes bone formation in the above-mentioned specified calcium phosphate cement, and is known as a mixed component of biological bone treatment supplements such as apatite. bone morphogenetic protein, which is, preferably, insulin-like growth factor (IGF), tumor growth factor (TGF), bone morphogenetic protein (B P), and a state where the bone morphogenetic protein consisting of one at a rate of 5 to 500 ppm, and was attached carried on the surface of the dicalcium phosphate which is a component of the calcium phosphate cement of the fibroblast growth factor (FGF) The result of the research that the curing time of the cured product can be remarkably shortened when blended with (3) is obtained.
[0005]
This invention was made based on the above research results,
Bone morphogenetic factor consisting of one of insulin-like growth factor (IGF), tumor growth factor (TGF), bone morphogenetic protein (BMP) , and fibroblast growth factor (FGF): 5-500 ppm,
Magnesium phosphate: 0.03-1.5%,
Dicalcium phosphate: 3-25%,
α-type tricalcium phosphate and inevitable impurities: the rest,
A bone-reinforcing treatment capable of forming a high-strength hardened body, wherein the bone-forming factor is present on the surface of the second calcium phosphate. It is characterized by fast-setting calcium phosphate cement.
[0006]
Next, the reason why the composition of the calcium phosphate cement for living bone reinforcement treatment of the present invention (hereinafter simply referred to as the present invention cement) is limited as described above will be described.
(A) Bone morphogenetic factor This component has the effect of remarkably shortening the curing time until a predetermined strength of a cured product formed from cement is reached at a minute ratio of 5 ppm or more. For this purpose, it is indispensable to mix in a state of adhering to and supported on the surface of dicalcium phosphate, which is a constituent component of cement, in combination with a small amount of the blending proportion, but the proportion is less than 5 ppm. In this case, the desired effect cannot be obtained. On the other hand, the quick hardening effect of shortening the curing time is sufficient at a blending ratio of up to 500 ppm, and even if blended in excess of 500 ppm, the function is saturated and further improved. Since the effect could not be obtained, the ratio was set to 5 to 500 ppm in consideration of economy.
[0007]
(B) Magnesium Phosphate This component improves the paste fluidity when cement is applied as described above, thereby significantly suppressing the entrainment of bubbles and enabling the formation of a dense hardened body, resulting in hardening. There is an action that contributes to improving the strength of the body, and in order to fully exhibit this action, in the production of the cement of the present invention, the remaining constituent component α in the state of being kneaded with the second constituent calcium phosphate in advance. It is necessary to blend with the type 3 calcium phosphate, but if the ratio is less than 0.03%, the desired effect cannot be obtained, while if the ratio exceeds 1.5%, the curing of the cured body is suppressed. Since the curing time becomes relatively long, the ratio is set to 0.03 to 1.5%, preferably 0.1 to 1.0%.
[0008]
(C) Dicalcium phosphate This component has an action of promoting the setting of the paste to the cured body, but if the ratio is less than 3%, the desired setting acceleration action cannot be ensured, while the ratio is If it exceeds 25%, the curing time becomes too short, and deterioration in workability cannot be avoided. Therefore, the ratio is set to 3 to 25%, preferably 6 to 20%.
[0009]
Examples of the curable aqueous solution of the cement of the present invention include curable aqueous solutions that are usually used in practice, such as disodium succinate and sodium chondroitin sulfate, sodium lactate, sodium phosphate, sodium chloride, sodium bisulfite, and pyrophosphate. An aqueous solution containing a predetermined amount of one or more of sodium sulfite and the like, and distilled water can be applied.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the cement of the present invention will be specifically described with reference to examples.
First, as α-type tricalcium phosphate which is a constituent component of the cement of the present invention, the following steps are carried out, that is, calcium hydroxide: 3 mol is suspended in water: 10 liters, and phosphoric acid: 2 mol is diluted with water. The 40% aqueous phosphoric acid solution was slowly added dropwise with stirring. After completion of the addition, the solution was allowed to stand at room temperature for 1 day, and then dried by using a dryer under the condition of maintaining at 110 ° C. for 24 hours to form an aggregate. The agglomerates were kept at 1400 ° C. for 3 hours and fired, and the fired product was pulverized and adjusted to a mesh size of 88 μm or less (average particle size: 6.5 μm). Purity: 99 .9% α-type tricalcium phosphate is used, and the above IGF, TGF, BMP, and FGF are used as the bone morphogenetic factors, and magnesium phosphate and dicalcium phosphate are also marketed. Use things, these raw material powders are weighed in the proportions shown in Table 1, was mixed composition in the step shown below this.
That is, first, the bone-forming factor of these raw material powders is dissolved in a 4M guanidine hydrochloride solution, dicalcium phosphate is added to this solution, this is put into a dialysis tube, and this dialysis tube is immersed in distilled water. Then, the distilled water is stirred, dialysis is performed by extracting and removing the guanidine hydrochloride into distilled water through a dialysis tube, and then the slurry in the dialysis tube is recovered and freeze-dried to the surface of the second calcium phosphate. An osteogenic factor was adhered and supported.
Next, magnesium phosphate is first added to the second calcium phosphate having the bone formation factor attached and supported on the surface, and the mixture is sufficiently kneaded with a kneader for 30 minutes. By adding and mixing the third calcium phosphate, the cements 1 to 18 of the present invention composed of the mixed compositions having the blending ratios shown in Table 1 were produced.
[0011]
For comparison purposes, as shown in Table 2, using the above α-type tricalcium phosphate and dicalcium phosphate as raw material powder, these raw material powders are blended in the blending ratio shown in Table 2 and mixed. Thus, conventional cements 1 to 11 were produced.
[0012]
Furthermore, for the purpose of evaluating the setting time and strength of the hardened bodies formed from the above-described cements 1 to 18 of the present invention and the conventional cements 1 to 11, these cements were respectively mixed with sodium chondroitin sulfate: 5% and disodium succinate-6. Hydrate: 15%, and sodium hydrogen sulfite: 0.3%, the aqueous solution for hardening consisting of water is added at a mass ratio of cement: aqueous solution for hardening = 3: 1 and kneaded. The slurry is condensed to form a cylindrical solid body having a diameter of 6 mm × height: 12 mm. The solid body is Na + : 142.0 mM, K + : 5.0 mM, Mg 2+ : 1.5 mM, Ca 2+ : 2.5 mM, Cl : 148.8 mM, HCO 3 : 4.2 mM, HPO 4 2 : Hardened by immersion in an aqueous solution (pseudo body fluid) containing 1.0 mM The , Compressive strength of the cured body cure time of up to 30 MPa, and was measured compressive strength of the hardened body after the simulated body fluid for 7 days immersion. The measurement results are also shown in Tables 1 and 2.
[0013]
[Table 1]
Figure 0004329976
[0014]
[Table 2]
Figure 0004329976
[0015]
【The invention's effect】
From the results shown in Tables 1 and 2, the cements 1 to 18 of the present invention in which the bone formation factor and magnesium phosphate were blended into the mixed composition were relatively hardened compared to the conventional cements 1 to 11 without these blends. It is clear that the cured body thus formed has a higher strength.
As described above, the cement of the present invention enables the formation of a cured body having high strength, greatly contributes to improving the strength of the treatment-reinforced bone, and can reduce the amount of the cured body used. It has industrially useful characteristics such as having a fast curing property that enables the formation of a high-strength cured body with a relatively short curing time.

Claims (1)

質量%で、
インシュリン様成長因子(IGF)、腫瘍増殖因子(TGF)、骨形成蛋白質(BMP)、および繊維芽細胞成長因子(FGF)のうちの1種からなる骨形成因子:5〜500ppm、
リン酸マグネシウム:0.03〜1.5%、
第2リン酸カルシウム:3〜25%、
α型第3リン酸カルシウムおよび不可避不純物:残り、
からなる配合組成を有する混合組成物からなり、かつ上記骨形成因子が上記第2リン酸カルシウムの表面に付着担持された状態で存在すること、を特徴とする高強度硬化体の形成が可能な生体骨補強治療用速硬性リン酸カルシウムセメント。
% By mass
Bone morphogenetic factor consisting of one of insulin-like growth factor (IGF), tumor growth factor (TGF), bone morphogenetic protein (BMP) , and fibroblast growth factor (FGF): 5-500 ppm,
Magnesium phosphate: 0.03-1.5%,
Dicalcium phosphate: 3-25%,
α-type tricalcium phosphate and inevitable impurities: the rest,
A living bone that is capable of forming a high-strength hardened body, characterized in that the bone-forming factor is present in a state of adhering to and supported on the surface of the second calcium phosphate. Fast-setting calcium phosphate cement for reinforced treatment.
JP2001203307A 2001-07-04 2001-07-04 Fast-hardening calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body Expired - Fee Related JP4329976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001203307A JP4329976B2 (en) 2001-07-04 2001-07-04 Fast-hardening calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001203307A JP4329976B2 (en) 2001-07-04 2001-07-04 Fast-hardening calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body

Publications (2)

Publication Number Publication Date
JP2003010307A JP2003010307A (en) 2003-01-14
JP4329976B2 true JP4329976B2 (en) 2009-09-09

Family

ID=19039970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001203307A Expired - Fee Related JP4329976B2 (en) 2001-07-04 2001-07-04 Fast-hardening calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body

Country Status (1)

Country Link
JP (1) JP4329976B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110563432A (en) * 2019-10-21 2019-12-13 南京兴佑交通科技有限公司 Grouting material based on magnesium phosphate cement

Also Published As

Publication number Publication date
JP2003010307A (en) 2003-01-14

Similar Documents

Publication Publication Date Title
JP5976014B2 (en) Composition containing injectable self-hardening apatite cement
JP4329976B2 (en) Fast-hardening calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JP3966539B2 (en) Fast-hardening calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
EP1298103B1 (en) Calcium phosphate cement
JP3987220B2 (en) Fast-setting calcium phosphate cement
JP4111418B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JP2011512207A (en) Formulation for magnesium ammonium phosphate cement
JP2537121B2 (en) Curable composition
JP4111419B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JP4111421B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JP4134299B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JP2003010311A (en) Fast-curing calcium phosphate cement for reinforcing and treating organic bone capable of forming high- strength cured body
JP4111420B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JP4111422B2 (en) Calcium phosphate cement for living bone reinforcement treatment capable of forming a high-strength hardened body
JPH0753204A (en) Calcium phosphate-based self-hardenable composition
WO2002068358A1 (en) Calcium phosphate cement
JP2000169199A (en) Quick-hardening calcium phosphate cement
JPH06172007A (en) High-strength cement of calcium phosphate
JP7163476B1 (en) Calcium phosphate curable composition, method for producing cured body, and cured body
JPS63294863A (en) Filler for bone depleted part and bone gap part
JP3634945B2 (en) Fast-hardening calcium phosphate cement and method for producing the same
JP2002255609A (en) Calcium phosphate cement for bone reinforcing treatment capable of forming high strength hardened body
TW550245B (en) Calcium phosphate cement for bone reinforcing treatment capable of forming high strength hardened body
JPH04348755A (en) Hydraulic calcium phosphate cement
WO2002006179A1 (en) Calcium phosphate cement

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041028

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090611

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees