JPH0594762A - Field emission type electron source and manufacture thereof - Google Patents

Field emission type electron source and manufacture thereof

Info

Publication number
JPH0594762A
JPH0594762A JP25524291A JP25524291A JPH0594762A JP H0594762 A JPH0594762 A JP H0594762A JP 25524291 A JP25524291 A JP 25524291A JP 25524291 A JP25524291 A JP 25524291A JP H0594762 A JPH0594762 A JP H0594762A
Authority
JP
Japan
Prior art keywords
cold cathode
field emission
insulating layer
electron source
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25524291A
Other languages
Japanese (ja)
Other versions
JP2728813B2 (en
Inventor
Masao Urayama
雅夫 浦山
Tomokazu Ise
智一 伊勢
Yuji Maruo
祐二 丸尾
Yutaka Akagi
裕 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP25524291A priority Critical patent/JP2728813B2/en
Publication of JPH0594762A publication Critical patent/JPH0594762A/en
Application granted granted Critical
Publication of JP2728813B2 publication Critical patent/JP2728813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To provide a field emission type electron source for which a manufacturing process can be simplified and in which a distance between a cold cathode and a gate electrode can be shortened. CONSTITUTION:Thermal oxidation is carried out on the surface of a (n) type silicon substrate 11, and a silicon dioxide layer 14 having thickness of 0.2-0.3mum is formed. Next, for example, a circular pattern is formed on the surface of the silicon dioxide layer 14 by using a resist, and a circular silicon dioxide mask 14a is formed by etching the silicon dioxide layer 14. By etching isotropically the surface of the silicon substrate 11 by a dry etching method, a conical projection part 11a projecting from the substrate being the basis of a cold cathode 10 is formed on the surface of the silicon substrate 11. Thermal oxidation is carried out further on the surface of the silicon substrate 11 on which the projection part 11a is formed, and a silicon dioxide layer 12a having depth of about 0.3-0.5mum is grown up, so that a layer being the basis of an insulating layer 12 can be formed. In this case, thermal oxidation is carried out simultaneously on the surface of the projection part 11a of the silicon substrate 11, so that the conical cold cathode 10 can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電界放出型電子源及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field emission electron source and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、集積回路又は薄膜の分野において
用いられている微細加工技術により、高電界において電
子を放出する電界放出型電子源製造技術の進歩はめざま
しく、特に極めて小型な構造を有する電界放出型冷陰極
が製造されている。この種の電界放出型冷陰極は、3極
管型の超小型電子管又は超小型電子銃を構成する主要部
品の内、最も基本的な電子放出デバイスである。
2. Description of the Related Art In recent years, due to the fine processing technology used in the field of integrated circuits or thin films, the field emission type electron source manufacturing technology for emitting electrons in a high electric field has made remarkable progress, and in particular, an electric field having an extremely small structure Emissive cold cathodes are being manufactured. This type of field emission cold cathode is the most basic electron emission device among the main components constituting a triode type micro electron tube or a micro electron gun.

【0003】多数の電子放出デバイスを含む電界放出型
電子源は、例えば微小3極管や薄型表示素子等の構成要
素として考案されたもので、電界放出型電子源の動作及
び製造方法は、スタンフォード リサーチ インスティ
チュート(Stanford Research Institute )のシー.エ
ー.スピント(C.A.Spindt)らによるジャーナル オブ
アプライド フィジックス( Journal of Applied P
hysics)の第47巻、12号、5248〜5263項(1976年12月)
に発表された研究報告により公知であり、シー.エー.
スピント等による米国特許第3,789,471 号及びエイチ.
エフ.グレイ(H. F. Gray) 等による米国特許第4,307,
507 号及び第4,513,308 号に開示されている。
A field emission electron source including a large number of electron emission devices was devised as a constituent element of, for example, a micro triode or a thin display element. The operation and manufacturing method of the field emission electron source is Stanford. Research Institute (Stanford Research Institute) C. A. Journal of Applied Physics by CASpindt et al.
hysics) Vol. 47, No. 12, 5248-5263 (December 1976)
It is known from the research report published in. A.
U.S. Pat. No. 3,789,471 and H. Spint et al.
F. US Pat. No. 4,307, by HF Gray, et al.
No. 507 and No. 4,513,308.

【0004】このデバイスは、電界放出の原理により電
子を放出する冷陰極と、冷陰極に電界を印加して電子を
放出させるために正電圧を印加する電界印加電極である
ゲート電極とを備えている。
This device is provided with a cold cathode that emits electrons according to the principle of field emission, and a gate electrode that is a field application electrode that applies a positive voltage to apply an electric field to the cold cathode to emit electrons. There is.

【0005】電子放出型冷陰極の動作電圧(電界印加電
極に印加する電圧)を低減する一つの手段として、陰極
とゲート電極間との距離を短くすることを挙げることが
でき、この種の電界放出型電子源は、上記米国特許に開
示されている。しかしながら、従来の構造では、冷陰極
とゲート電極との間の距離を短くすることが容易でない
ので、ソコリッチ(Sokolich)等により新たな構造を有
する電子放出型陰極が提案されている(インターナショ
ナル エレクトロン デバイス ミーティング:IEDM
1990年)。
As one means for reducing the operating voltage (voltage applied to the electric field applying electrode) of the electron emission type cold cathode, it is possible to mention that the distance between the cathode and the gate electrode is shortened. Emissive electron sources are disclosed in the above-referenced US patents. However, since it is not easy to shorten the distance between the cold cathode and the gate electrode in the conventional structure, an electron emission type cathode having a new structure has been proposed by Sokolich and others (International Electron Device). Meeting: IEDM
1990).

【0006】図3に、ソコリッチ(Sokolich)等による
電子放出型冷陰極の製造方法を示す。先ず、シリコン基
板のミラー指数が<100 >である面の上に四角形の面形
状を有する窒化シリコン(Si3 4 )のマスクを形成
し、水酸化カリウム等より成るアルカリ性のエッチャン
トを用い、結晶面によるエッチング速度の差を利用し
て、マスク以外の露出部に四角錘状の窪みを形成し、シ
リコンの鋳型20を製造する。次に、後工程において鋳型
20を剥離するために鋳型20の表面を加熱して熱酸化層
(二酸化シリコン)21を形成し、熱酸化層21の上に多結
晶シリコン22を数百μmの厚さで成長させて図3(A)
に示す構造を形成する。そして、鋳型20が外され、四角
錐状即ちピラミッド状の突起22a を有する多結晶シリコ
ン22が得られる。この多結晶シリコン22が電界放出型電
子源の基板電極であり、突起22a が電界放出型冷陰極に
相当する。
FIG. 3 shows a method of manufacturing an electron emission type cold cathode by Sokolich or the like. First, a mask of silicon nitride (Si 3 N 4 ) having a square surface shape is formed on a surface of a silicon substrate having a Miller index of <100>, and an alkaline etchant made of potassium hydroxide or the like is used to form a crystal. Using the difference in etching rate between the surfaces, a square pyramidal recess is formed in the exposed portion other than the mask, and the silicon mold 20 is manufactured. Next, in the post process mold
The surface of the mold 20 is heated in order to peel off 20 to form a thermal oxide layer (silicon dioxide) 21, and polycrystalline silicon 22 is grown on the thermal oxide layer 21 to a thickness of several hundred μm. (A)
To form the structure shown in. Then, the mold 20 is removed, and the polycrystalline silicon 22 having the quadrangular pyramid-shaped or pyramid-shaped protrusions 22a is obtained. The polycrystalline silicon 22 is the substrate electrode of the field emission type electron source, and the protrusion 22a corresponds to the field emission type cold cathode.

【0007】多結晶シリコン22のピラミッド状の突起22
a を有する面上に、絶縁層23となる二酸化シリコン層23
a と、ゲート電極層24となるモリブデン層24a とを続け
て堆積させて、図3(B)に示す積層構造を有する突起
構造を得る。この上にフォトレジスト25を塗布し、酸素
ガスプラズマによりエッチングを行うことにより、図3
(C)に示すようにモリブデン層24a の突起の先端を露
出させる。次に、モリブデン層24a 及び二酸化シリコン
23a 順次エッチングすると、多結晶シリコン22の突起22
a が露出し、突起22a の周囲に絶縁層23及びゲート電極
層24が多結晶シリコン22の上に積層された図3(D)に
示す冷陰極構造が得られる。
Pyramid-shaped protrusions 22 of polycrystalline silicon 22
A silicon dioxide layer 23 to be an insulating layer 23 is formed on the surface having a.
a and a molybdenum layer 24a to be the gate electrode layer 24 are successively deposited to obtain a protrusion structure having a laminated structure shown in FIG. By applying a photoresist 25 on this and etching by oxygen gas plasma, as shown in FIG.
As shown in (C), the tips of the protrusions of the molybdenum layer 24a are exposed. Next, molybdenum layer 24a and silicon dioxide
23a As a result of sequential etching, the projections 22 of the polycrystalline silicon 22
The cold cathode structure shown in FIG. 3D is obtained in which a is exposed and the insulating layer 23 and the gate electrode layer 24 are laminated on the polycrystalline silicon 22 around the protrusion 22a.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、ソコリ
ッチ(Sokolich)等による製造方法は、上記した通り、
シリコンの鋳型20を製造し、そして鋳型20の表面を加熱
して熱酸化層21を形成し、熱酸化層21の上に多結晶シリ
コン22を数百μmの厚さで成長させて基板電極を製造す
る等、従来の製造方法に比較して製造工程が複雑である
という問題点がある。また、この製造方法によると、冷
陰極(突起22a )とゲート電極層24との間の距離を短く
することができるが、この距離は製造後に冷陰極22a 上
に堆積される絶縁層の電気的絶縁特性によって大きな制
約を受け、冷陰極(突起22a )とゲート電極層24との間
の距離の短縮化が十分実施できないという問題点があ
る。
However, the manufacturing method using Sokolich or the like is as follows.
A silicon mold 20 is manufactured, and the surface of the mold 20 is heated to form a thermal oxide layer 21, and polycrystalline silicon 22 is grown on the thermal oxide layer 21 to a thickness of several hundreds of μm to form a substrate electrode. There is a problem that the manufacturing process is complicated as compared with the conventional manufacturing method such as manufacturing. Further, according to this manufacturing method, the distance between the cold cathode (protrusion 22a) and the gate electrode layer 24 can be shortened, but this distance is an electrical property of the insulating layer deposited on the cold cathode 22a after manufacturing. There is a problem in that the distance between the cold cathode (protrusion 22a) and the gate electrode layer 24 cannot be sufficiently shortened due to a large restriction due to the insulating property.

【0009】従って、本発明は、製造工程が簡略化さ
れ、冷陰極とゲート電極との間の距離が短縮された電界
放出型電子源の製造方法を提供するものである。
Therefore, the present invention provides a method for manufacturing a field emission electron source in which the manufacturing process is simplified and the distance between the cold cathode and the gate electrode is shortened.

【0010】[0010]

【課題を解決するための手段】本発明によれば、半導体
又は金属から成る基板表面に形成された電界放出の原理
に基づき電子放出する冷陰極の基本となる凸部と、この
凸部を含む前記基板の表面を酸化することにより形成さ
れた電気的に絶縁な絶縁層と、この絶縁層の上に形成さ
れた電界印加電極とを備えた電界放出型電子源及びその
製造方法が提供される。
According to the present invention, a convex portion which is a base of a cold cathode which emits electrons based on the principle of field emission formed on the surface of a substrate made of a semiconductor or a metal, and this convex portion are included. A field emission electron source including an electrically insulating insulating layer formed by oxidizing the surface of the substrate and a field applying electrode formed on the insulating layer, and a method for manufacturing the same. ..

【0011】[0011]

【作用】本発明は上記構成により、半導体又は金属から
成る基板上に冷陰極の基本となる凸部を形成し、この凸
部を含む基板の表面を酸化することにより絶縁層を形成
するので、従来例のように多結晶シリコンの上に蒸着等
によって絶縁層を形成する場合に比較して製造工程を簡
略化することができる。また、具体的には、冷陰極と電
界印加電極であるゲート電極との間の距離を短縮するこ
とができる。
According to the present invention, with the above structure, a convex portion which is a base of a cold cathode is formed on a substrate made of a semiconductor or a metal, and an insulating layer is formed by oxidizing the surface of the substrate including the convex portion. The manufacturing process can be simplified as compared with the case where the insulating layer is formed on the polycrystalline silicon by vapor deposition or the like as in the conventional example. Further, specifically, the distance between the cold cathode and the gate electrode which is the electric field applying electrode can be shortened.

【0012】[0012]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1は、本発明に係る電界放出型電子源の製造方
法の一実施例を示す要部側面断面図、図2は、図1に示
した電界放出型電子源の製造方法によって製造された電
界放出型電子源の要部側面断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side sectional view of an essential part showing an embodiment of a method of manufacturing a field emission electron source according to the present invention, and FIG. 2 is an electric field manufactured by the method of manufacturing a field emission electron source shown in FIG. It is a principal part side sectional view of an emission type electron source.

【0013】図2において、冷陰極10の部分は、基板電
極となるシリコン基板11上に円錐状に突出するように形
成されている。図中では1つの冷陰極しか示されていな
いが、通常、複数の冷陰極がシリコン基板11上に形成さ
れる。シリコン基板11上の冷陰極10の周辺には絶縁層12
が、シリコン基板11の表面を酸化することにより形成さ
れ、絶縁層12上には、更に冷陰極10から電子を放出させ
るために正電圧が印加される電界印加電極であるゲート
電極層13が積層されている。この場合、絶縁層12とゲー
ト電極層13とは、図2に示すように冷陰極10の周囲を取
り囲んで冷陰極10の先端部分が露出するように形成され
る。ゲート電極層13の冷陰極10の近傍の上部表面は、冷
陰極10の先端部の高さと同程度の高さを有するように形
成される。
In FIG. 2, the portion of the cold cathode 10 is formed so as to project in a conical shape on the silicon substrate 11 which serves as a substrate electrode. Although only one cold cathode is shown in the drawing, a plurality of cold cathodes are usually formed on the silicon substrate 11. An insulating layer 12 is formed around the cold cathode 10 on the silicon substrate 11.
Is formed by oxidizing the surface of the silicon substrate 11, and a gate electrode layer 13 which is an electric field application electrode to which a positive voltage is applied to further emit electrons from the cold cathode 10 is laminated on the insulating layer 12. Has been done. In this case, the insulating layer 12 and the gate electrode layer 13 are formed so as to surround the periphery of the cold cathode 10 and expose the tip portion of the cold cathode 10 as shown in FIG. The upper surface of the gate electrode layer 13 in the vicinity of the cold cathode 10 is formed so as to have the same height as the height of the tip portion of the cold cathode 10.

【0014】次に、図1を参照して電界放出型電子源の
製造方法の一実施例について説明する。
Next, an embodiment of a method for manufacturing a field emission type electron source will be described with reference to FIG.

【0015】先ず、図1(A)に示すように、比抵抗ρ
=0.01〜0.02Ω・cmのn型シリコン基板11の
表面を熱酸化し、厚さが0.2〜0.3μmの二酸化シ
リコン層14を形成する。次に、二酸化シリコン層14の表
面にレジストを用いて例えば円形(又は四角形)のパタ
ーンを形成し、二酸化シリコン層14をエッチングするこ
とにより、図1(B)に示すような円形の二酸化シリコ
ンマスク14a を形成する。
First, as shown in FIG. 1A, the specific resistance ρ
= 0.01 to 0.02 Ω · cm, the surface of the n-type silicon substrate 11 is thermally oxidized to form a silicon dioxide layer 14 having a thickness of 0.2 to 0.3 μm. Next, a circular (or square) pattern is formed on the surface of the silicon dioxide layer 14 using a resist, and the silicon dioxide layer 14 is etched to form a circular silicon dioxide mask as shown in FIG. 1 (B). Forming 14a.

【0016】この二酸化シリコンマスク14a を用いてシ
リコン基板11の表面をドライエッチング法により等方的
にエッチングし、図1(C)に示すように冷陰極10の基
本となる基板から突出した円錐形状を有する凸部11a を
シリコン基板11の表面に形成する。本実施例では凸部11
a は円錐形状であるが、冷陰極の形状はこれに限られる
ものではない。
Using this silicon dioxide mask 14a, the surface of the silicon substrate 11 is isotropically etched by the dry etching method, and as shown in FIG. 1C, a conical shape protruding from the base substrate of the cold cathode 10 is formed. The convex portion 11a having the is formed on the surface of the silicon substrate 11. In this embodiment, the convex portion 11
Although a has a conical shape, the shape of the cold cathode is not limited to this.

【0017】更に、凸部11a が形成されたシリコン基板
11の表面を熱酸化し、図1(D)に示すように、0.3
〜0.5μm程度の深さを有する二酸化シリコン層12a
を成長させる。この際、シリコン基板11の凸部11a の表
面も同時に熱酸化し円錐状の冷陰極10が形成される。
Further, a silicon substrate on which the convex portion 11a is formed
The surface of 11 was thermally oxidized and, as shown in FIG.
A silicon dioxide layer 12a having a depth of about 0.5 μm
Grow. At this time, the surface of the convex portion 11a of the silicon substrate 11 is also thermally oxidized at the same time to form the conical cold cathode 10.

【0018】この様な構造を有するシリコン基板11を真
空蒸着装置内に配置し、図1(E)に示すように冷陰極
10の垂線15を軸に基板11を回転させながら、ゲート電極
層13となるモリブデン金属を、シリコン基板11に対して
図中矢印Aで示す斜め上方から蒸着し、厚さ0.2μm
程度のゲート電極層13を二酸化シリコン層12a 上に堆積
する。
A silicon substrate 11 having such a structure is placed in a vacuum vapor deposition apparatus, and a cold cathode is formed as shown in FIG.
While rotating the substrate 11 around the perpendicular 15 of the axis 10, molybdenum metal to be the gate electrode layer 13 is vapor-deposited obliquely from above the silicon substrate 11 as indicated by an arrow A in FIG.
A degree of gate electrode layer 13 is deposited on the silicon dioxide layer 12a.

【0019】最後に、電子放出源として不要な二酸化シ
リコンマスク14a と二酸化シリコン層12a の一部とをフ
ッ酸とフッ化アンモニウムとの混合水溶液により除去
し、図1(E)に示すようにシリコン基板11の冷陰極10
に相当する部分を露出させる。これによって、絶縁層12
とゲート電極層13とは、冷陰極10の周囲を取り囲んで冷
陰極10の先端部分が露出するように形成され、ゲート電
極層13の冷陰極10の近傍の上部表面は、冷陰極10の先端
部の高さと同程度の高さを有するように形成される。
Finally, the silicon dioxide mask 14a and a part of the silicon dioxide layer 12a, which are unnecessary as an electron emission source, are removed by a mixed aqueous solution of hydrofluoric acid and ammonium fluoride, and silicon is removed as shown in FIG. Cold cathode 10 on substrate 11
The part corresponding to is exposed. As a result, the insulating layer 12
The gate electrode layer 13 and the gate electrode layer 13 are formed so as to surround the periphery of the cold cathode 10 so that the tip portion of the cold cathode 10 is exposed, and the upper surface of the gate electrode layer 13 near the cold cathode 10 has the tip of the cold cathode 10. It is formed to have the same height as the height of the portion.

【0020】従って、上記実施例によれば、冷陰極10の
基本となる凸部11a をシリコン基板11上に形成し、その
後シリコン基板11の表面を熱酸化することにより絶縁層
12を形成するので、従来例のように多結晶シリコン11の
上に蒸着等によって絶縁層12を形成する場合と比較して
製造工程を簡略化することができる。また、絶縁層12で
ある二酸化シリコンは、単結晶シリコンを酸化すること
により形成されているので絶縁性に優れているので、冷
陰極10とゲート電極層13との間の距離をより短縮して電
子放出効率を向上することが可能となる。
Therefore, according to the above-mentioned embodiment, the insulating layer is formed by forming the convex portion 11a, which is the basis of the cold cathode 10, on the silicon substrate 11 and then thermally oxidizing the surface of the silicon substrate 11.
Since 12 is formed, the manufacturing process can be simplified as compared with the case where the insulating layer 12 is formed on the polycrystalline silicon 11 by vapor deposition or the like as in the conventional example. In addition, since the silicon dioxide that is the insulating layer 12 is formed by oxidizing single crystal silicon and has excellent insulating properties, the distance between the cold cathode 10 and the gate electrode layer 13 can be further shortened. It becomes possible to improve the electron emission efficiency.

【0021】本実施例において基板としてシリコン基板
を使用したが、これに限定されるものではなく、例え
ば、支持体を介した導体薄膜を使用してもよい。また、
ゲート電極としてはモリブデン金属を使用したが、同等
の性能を有するものであればよく、これに限定されるも
のではない。
Although the silicon substrate is used as the substrate in this embodiment, the present invention is not limited to this. For example, a conductive thin film via a support may be used. Also,
Although molybdenum metal was used as the gate electrode, it is not limited to this as long as it has equivalent performance.

【0022】[0022]

【発明の効果】以上説明したように、本発明は、半導体
又は金属から成る基板上に冷陰極の基本となる凸部を形
成し、この凸部を含む基板の表面を酸化することにより
絶縁層を形成するので、従来例のように多結晶シリコン
の上に蒸着等によって絶縁層を形成する場合に比較して
製造工程を簡略化することができる。また、具体的に
は、単結晶シリコンを酸化することにより形成された絶
縁層は絶縁性に優れているので冷陰極と電界印加電極で
あるゲート電極との間の距離を短縮することが可能であ
る。その結果、電界放出型電子源の動作電圧を低減する
ことができる。
As described above, according to the present invention, the insulating layer is formed by forming a convex portion which is a base of a cold cathode on a substrate made of a semiconductor or a metal and oxidizing the surface of the substrate including the convex portion. Therefore, the manufacturing process can be simplified as compared with the case of forming the insulating layer on the polycrystalline silicon by vapor deposition or the like as in the conventional example. Further, specifically, since the insulating layer formed by oxidizing single crystal silicon has excellent insulating properties, it is possible to shorten the distance between the cold cathode and the gate electrode that is the electric field applying electrode. is there. As a result, the operating voltage of the field emission electron source can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電界放出型電子源の製造方法の一
実施例を示す要部側面断面図である。
FIG. 1 is a side sectional view of an essential part showing an embodiment of a method of manufacturing a field emission electron source according to the present invention.

【図2】図1に示した電界放出型電子源の製造方法によ
って製造された電界放出型電子源の要部側面断面図であ
る。
FIG. 2 is a side sectional view of a main part of a field emission electron source manufactured by the method for manufacturing the field emission electron source shown in FIG.

【図3】従来の電界放出型電子源の製造方法を示す要部
側面断面図である。
FIG. 3 is a side sectional view of an essential part showing a method for manufacturing a conventional field emission electron source.

【符号の説明】[Explanation of symbols]

10 冷陰極 11 シリコン基板 12 絶縁層 13 ゲート電極層 10 Cold cathode 11 Silicon substrate 12 Insulating layer 13 Gate electrode layer

フロントページの続き (72)発明者 赤木 裕 大阪府大阪市阿倍野区長池町22番22号 シ ヤープ株式会社内Front page continuation (72) Inventor Yutaka Akagi 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Within Sharp Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体又は金属から成る基板表面に形成
された電界放出の原理に基づき電子放出する冷陰極の基
本となる凸部と、該凸部を含む前記基板の表面を酸化す
ることにより形成された電気的に絶縁な絶縁層と、該絶
縁層の上に形成された電界印加電極とを備えたことを特
徴とする電界放出型電子源。 【請求項1】 半導体又は金属から成る基板表面に電界
放出の原理に基づき電子放出する冷陰極の基本となる凸
部を形成し、該凸部を含む前記基板の表面を酸化するこ
とにより電気的に絶縁な絶縁層を形成し、該絶縁層の上
に電界印加電極を形成することを特徴とする電界放出型
電子源の製造方法。
1. A convex portion which is a base of a cold cathode that emits electrons based on the principle of field emission formed on the surface of a substrate made of a semiconductor or a metal, and is formed by oxidizing the surface of the substrate including the convex portion. A field-emission electron source, comprising: an electrically insulating insulating layer formed on the insulating layer; and an electric field applying electrode formed on the insulating layer. 1. A surface of a substrate made of a semiconductor or a metal is formed with a convex portion that serves as a basis of a cold cathode that emits electrons on the basis of the principle of field emission, and the surface of the substrate including the convex portion is oxidized to electrically conduct. A method of manufacturing a field emission electron source, comprising: forming an insulating layer that is insulative, and forming an electric field applying electrode on the insulating layer.
JP25524291A 1991-10-02 1991-10-02 Field emission type electron source and method of manufacturing the same Expired - Fee Related JP2728813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25524291A JP2728813B2 (en) 1991-10-02 1991-10-02 Field emission type electron source and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25524291A JP2728813B2 (en) 1991-10-02 1991-10-02 Field emission type electron source and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0594762A true JPH0594762A (en) 1993-04-16
JP2728813B2 JP2728813B2 (en) 1998-03-18

Family

ID=17276015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25524291A Expired - Fee Related JP2728813B2 (en) 1991-10-02 1991-10-02 Field emission type electron source and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2728813B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831308A (en) * 1994-07-12 1996-02-02 Nec Corp Manufacture of electric field emission cold cathode
US5509843A (en) * 1993-05-19 1996-04-23 Kabushiki Kaisha Toshiba Method and apparatus for manufacturing needle shaped materials and method for manufacturing a microemitter
JPH08148084A (en) * 1994-11-24 1996-06-07 Nec Corp Manufacture of field emission cold cathode
FR2744565A1 (en) * 1996-02-07 1997-08-08 Nec Corp Manufacture of cold cathode with sharp edges on emitter
US5679960A (en) * 1994-01-28 1997-10-21 Kabushiki Kaisha Toshiba Compact display device
US5800233A (en) * 1995-04-03 1998-09-01 Sharp Kabushiki Kaisha Process of fabricating field-emission type electron source, electron source fabricated thereby and element structure of electron source
US5811819A (en) * 1994-12-22 1998-09-22 Hitachi, Ltd. Electron beam source and its manufacturing method and electron beam source apparatus and electron beam apparatus using the same
US5903092A (en) * 1994-05-18 1999-05-11 Kabushiki Kaisha Toshiba Device for emitting electrons
CN1044839C (en) * 1994-11-29 1999-08-25 西安交通大学 Plate-free photoetching process for manufacturing vacuum microelectronic devices
US6043103A (en) * 1997-06-25 2000-03-28 Nec Corporation Field-emission cold cathode and method of manufacturing same
US6570305B1 (en) 1998-06-30 2003-05-27 Sharp Kabushiki Kaisha Field emission electron source and fabrication process thereof
CN115513017A (en) * 2022-08-19 2022-12-23 中国电子科技集团公司第十二研究所 Spindt cathode electron source and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152274A (en) * 1974-09-03 1976-05-08 Rca Corp Denkaihoshasochito sonoseizoho
JPS52132771A (en) * 1976-04-29 1977-11-07 Philips Nv Field emission device and method of fabricating same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152274A (en) * 1974-09-03 1976-05-08 Rca Corp Denkaihoshasochito sonoseizoho
JPS52132771A (en) * 1976-04-29 1977-11-07 Philips Nv Field emission device and method of fabricating same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509843A (en) * 1993-05-19 1996-04-23 Kabushiki Kaisha Toshiba Method and apparatus for manufacturing needle shaped materials and method for manufacturing a microemitter
US5679960A (en) * 1994-01-28 1997-10-21 Kabushiki Kaisha Toshiba Compact display device
US5903092A (en) * 1994-05-18 1999-05-11 Kabushiki Kaisha Toshiba Device for emitting electrons
JPH0831308A (en) * 1994-07-12 1996-02-02 Nec Corp Manufacture of electric field emission cold cathode
JPH08148084A (en) * 1994-11-24 1996-06-07 Nec Corp Manufacture of field emission cold cathode
CN1044839C (en) * 1994-11-29 1999-08-25 西安交通大学 Plate-free photoetching process for manufacturing vacuum microelectronic devices
US5811819A (en) * 1994-12-22 1998-09-22 Hitachi, Ltd. Electron beam source and its manufacturing method and electron beam source apparatus and electron beam apparatus using the same
US5800233A (en) * 1995-04-03 1998-09-01 Sharp Kabushiki Kaisha Process of fabricating field-emission type electron source, electron source fabricated thereby and element structure of electron source
US5924903A (en) * 1996-02-07 1999-07-20 Nec Corporation Method of fabricating a cold cathode for field emission
FR2744565A1 (en) * 1996-02-07 1997-08-08 Nec Corp Manufacture of cold cathode with sharp edges on emitter
US6043103A (en) * 1997-06-25 2000-03-28 Nec Corporation Field-emission cold cathode and method of manufacturing same
US6570305B1 (en) 1998-06-30 2003-05-27 Sharp Kabushiki Kaisha Field emission electron source and fabrication process thereof
CN115513017A (en) * 2022-08-19 2022-12-23 中国电子科技集团公司第十二研究所 Spindt cathode electron source and preparation method and application thereof

Also Published As

Publication number Publication date
JP2728813B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
US5412285A (en) Linear amplifier incorporating a field emission device having specific gap distances between gate and cathode
US20060226765A1 (en) Electronic emitters with dopant gradient
JP2728813B2 (en) Field emission type electron source and method of manufacturing the same
US5965898A (en) High aspect ratio gated emitter structure, and method of making
KR19990038696A (en) Method of manufacturing cathode tips of field emission devices
JP3195547B2 (en) Vacuum sealed field emission type electron source device and manufacturing method thereof
JP3033179B2 (en) Field emission type emitter and method of manufacturing the same
JP2950689B2 (en) Field emission type electron source
US5607335A (en) Fabrication of electron-emitting structures using charged-particle tracks and removal of emitter material
JP2946706B2 (en) Field emission device
JPH1012166A (en) Electric field emission image display device and manufacture thereof
JP3184890B2 (en) Electron emitting device and method of manufacturing the same
KR100257568B1 (en) Method for a field emitter array of a field emission display
JPH09270228A (en) Manufacture of field emission electron source
JPH06176685A (en) Field emission electron source and manufacture thereof
KR100246254B1 (en) Manufacturing method of field emission device having silicide as emitter and gate
JP3207700B2 (en) Method of manufacturing field emission type electron source device
JPH08329832A (en) Electron emitting element and its manufacture
JPH05182583A (en) Field emission type element and manufacture thereof
JPH08190856A (en) Manufacture of field emission cold cathode
JP3143679B2 (en) Electron emitting device and method of manufacturing the same
JPH0817332A (en) Field emission electronic device and its manufacture
KR100186253B1 (en) Method of manufacturing silicon fea by locos
KR0163483B1 (en) Manufacturing method for diamond tip field emitter with molding technology
JPH08255556A (en) Field emission electron source device, manufacture thereof and image display using the device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees