JPH0593284A - Production of metallic-core substrate - Google Patents

Production of metallic-core substrate

Info

Publication number
JPH0593284A
JPH0593284A JP4937692A JP4937692A JPH0593284A JP H0593284 A JPH0593284 A JP H0593284A JP 4937692 A JP4937692 A JP 4937692A JP 4937692 A JP4937692 A JP 4937692A JP H0593284 A JPH0593284 A JP H0593284A
Authority
JP
Japan
Prior art keywords
metal
base material
nickel
thickness
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4937692A
Other languages
Japanese (ja)
Inventor
Kazuharu Kato
和晴 加藤
Tadaki Murakami
忠▲喜▼ 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPH0593284A publication Critical patent/JPH0593284A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a metallic-core substrate capable of preventing deterioration, peeling or cracking, etc., even under severe high-temp. conditions and having an excellent electrical insulating property. CONSTITUTION:One soln. between the soln. contg. 3-10wt.% tantalum alkoxide as the metal oxide and the soln. contg. 3-10wt.% titanium alkoxide as the metal oxide is applied on a metallic substrate of stainless steel or nickel having <=0.1mum surface roughness and heated at 500-600 deg.C to form a ceramic insulating film having 0.1-0.2mum thickness on the metallic substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属基材上に緻密で耐熱
性、電気絶縁性に優れたセラミック絶縁膜を形成した金
属芯基板の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal core substrate in which a ceramic insulating film which is dense and has excellent heat resistance and electric insulation is formed on a metal substrate.

【0002】[0002]

【従来の技術】金属基材にセラミック薄膜を形成する方
法としては、スパッタリング法、蒸着法、CVD法等が
知られている。最近、例えば特開平2−258646号
公報に示されているように、金属アルコキシドを基材に
塗布して熱分解することにより無機化して薄膜とする方
法が装置が安価であり、大面積化が容易なため注目され
ている。
2. Description of the Related Art As a method for forming a ceramic thin film on a metal substrate, a sputtering method, a vapor deposition method, a CVD method and the like are known. Recently, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2-258646, a method of applying a metal alkoxide to a base material and thermally decomposing the metal alkoxide to make it into a thin film is inexpensive in the apparatus and large in area. It is attracting attention because it is easy.

【0003】従来のように形成されたセラミック薄膜
は、その無機化温度(200〜350℃)までは耐熱性
を示し、さらに透明性と鉛筆強度で9H以上の優れた機
械強度を示す。
The ceramic thin film formed in the conventional manner exhibits heat resistance up to its mineralization temperature (200 to 350 ° C.) and further exhibits excellent mechanical strength of 9H or more in transparency and pencil strength.

【0004】[0004]

【発明が解決しようとする課題】従来の金属アルコキシ
ド溶液の熱分解により形成されたセラミック薄膜により
被覆された金属芯基板は、その金属アルコキシド溶液に
含まれる主な金属は酸化物の形で、シリカ(Si
2)、アルミナ(Al23)が用いられている。これ
らのものは、過酷な加熱環境下(例えば400℃)でセ
ラミック薄膜に剥離、亀裂が発生したり、セラミック薄
膜自体が劣化して白色化し透明性が著しく低下するとい
う課題があった。又、均一透明性の外観を示しても、光
学顕微鏡的に認知できる0.2〜0.5μmの孔を有
し、電気絶縁性は劣るという課題もあった。
A conventional metal core substrate coated with a ceramic thin film formed by thermal decomposition of a metal alkoxide solution is a silica containing a main metal alkoxide solution in the form of an oxide. (Si
O 2 ) and alumina (Al 2 O 3 ) are used. These materials have a problem that a ceramic thin film is peeled off or cracked in a severe heating environment (for example, 400 ° C.), or the ceramic thin film itself is deteriorated to become white and its transparency is significantly lowered. Further, even though the appearance of uniform transparency is exhibited, there is a problem in that it has pores of 0.2 to 0.5 μm that can be recognized by an optical microscope and the electrical insulation is poor.

【0005】本発明は、かかる課題を解決するためにな
されたもので、より過酷な加熱環境下でも劣化、剥離お
よび亀裂などが防止され、優れた電気絶縁性を有する金
属芯基板の製造法を得ることを目的とするものである。
The present invention has been made in order to solve the above problems, and provides a method for producing a metal core substrate having excellent electric insulation, which prevents deterioration, peeling, cracking, etc. even under a more severe heating environment. The purpose is to obtain.

【0006】[0006]

【課題を解決するための手段】本発明の金属芯基板の製
造法は、金属酸化物の形で3〜10重量%を含有するタ
ンタルアルコキシドおよびチタンアルコキシドの少なく
とも一方の溶液を表面粗度が0.1μm以下のステンレ
スまたはニッケル金属基材に塗布後、500〜600℃
で加熱して上記金属基材に0.1〜0.2μm厚のセラ
ミック絶縁膜を形成する方法である。
According to the method for producing a metal core substrate of the present invention, a solution of at least one of tantalum alkoxide and titanium alkoxide containing 3 to 10% by weight in the form of a metal oxide has a surface roughness of 0. After applying to stainless steel or nickel metal substrate of 1 μm or less, 500 to 600 ° C.
Is used to form a ceramic insulating film having a thickness of 0.1 to 0.2 μm on the metal base material.

【0007】本発明の別の発明の金属芯基板の製造法
は、金属酸化物の形で3〜10重量%を含有するタンタ
ルアルコキシドおよびチタンアルコキシドの少なくとも
一方の溶液を、2〜20μm厚のニッケルメッキを施し
て表面粗度を0.1μm以下にした、銅、ステンレスま
たはニッケル金属基材に塗布し、500〜600℃で加
熱して上記金属基材に0.1〜0.2μm厚のセラミッ
ク絶縁膜を形成する方法である。
Another method of producing a metal core substrate according to the present invention is to use a solution of at least one of tantalum alkoxide and titanium alkoxide in the form of a metal oxide in an amount of 3 to 10% by weight to obtain a nickel having a thickness of 2 to 20 μm. Ceramic having a thickness of 0.1 μm or less by plating, applied to a copper, stainless steel or nickel metal base material and heated at 500 to 600 ° C. to have a thickness of 0.1 to 0.2 μm on the metal base material. This is a method of forming an insulating film.

【0008】[0008]

【作用】金属アルコキシドおよびその変性物を用いて形
成するセラミック絶縁膜と金属基材を検討し、その膜質
を評価した。基材である金属と金属アルコキシドを本発
明におけるように選択し組み合わせると、他には見られ
ない優れた電気絶縁性を有する緻密なセラミック薄膜が
金属基材に形成される。
[Function] A ceramic insulating film and a metal substrate formed by using a metal alkoxide and its modified product were investigated and the film quality was evaluated. By selecting and combining the substrate metal and the metal alkoxide as in the present invention, a dense ceramic thin film having excellent electric insulation which cannot be found anywhere else is formed on the metal substrate.

【0009】[0009]

【実施例】本発明に係わる金属アルコキシドとしては、
基材との接着性に優れていることが必要不可欠である。
また、金属アルコキシドに含有される金属の濃度は、金
属酸化物の形で3〜10重量%特に5〜8重量%が好ま
しい。3重量%未満では基材に付着する金属アルコキシ
ドが粘性が低いため希薄となり、加熱処理後の膜厚も
0.1μm以下と薄くなり、基材の表面粗さを平坦化で
きず基材が露出する場合があり好ましくない。10重量
%を越えると金属アルコキシドの粘性が高くなるため付
着表面がおうとつになったり、膜厚も0.2μm越える
ため加熱処理中に熱分解によって発生するガスが膜内部
にこもったり、膜の収縮が大きく基材から剥離すること
もあり好ましくない。以上のことから、本発明に係わる
セラミック絶縁膜の膜厚は緻密な膜質を得るためには、
通常0.12〜0.20μm、好ましくは0.12〜
0.14μmにする。
Examples As the metal alkoxide according to the present invention,
It is essential that the adhesiveness with the base material is excellent.
The concentration of the metal contained in the metal alkoxide is preferably 3 to 10% by weight, particularly 5 to 8% by weight in the form of the metal oxide. If the amount is less than 3% by weight, the metal alkoxide attached to the base material has a low viscosity and becomes thin, and the film thickness after heat treatment becomes as thin as 0.1 μm or less, and the surface roughness of the base material cannot be flattened and the base material is exposed. It is not preferable because it may occur. If it exceeds 10% by weight, the viscosity of the metal alkoxide becomes high and the adhered surface becomes dull. Also, since the film thickness exceeds 0.2 μm, the gas generated by thermal decomposition during the heat treatment is trapped inside the film, It is not preferable because it shrinks greatly and may peel off from the substrate. From the above, in order to obtain a dense film quality, the thickness of the ceramic insulating film according to the present invention is
Usually 0.12 to 0.20 μm, preferably 0.12 to
0.14 μm.

【0010】本発明に係わる金属基材は、その上に形成
されるセラミック絶縁膜の出発物質である金属アルコキ
シド溶液の無機化のための焼成温度に耐え、酸化しない
ものが用いられる。また、基材表面は1回の工程で形成
されるセラミック絶縁膜の厚さが0.12〜0.14μ
mであることから、0.1μm以下の面粗度を有する金
属基材を用いることが必要である。0.1μmを越える
面粗度をもつ基材に膜形成した場合には基材表面の傷、
荒れを埋められず、セラミック絶縁膜にそのまま反映し
て絶縁特性の低下をもたらす危険性があるため好ましく
ない。通常の金属基材は、引っかき傷やくぼみが存在し
たり、焼成時の酸化による面荒れが発生するため、鏡面
処理およびメッキ等、何らかの表面処理を施して上記条
件を満たす必要がある。本発明の別の発明においては、
表面処理として金属基材表面の平滑化と酸化防止を狙っ
て、ニッケルメッキを施した。メッキ厚は2〜20μ
m、特に3〜10μmが好ましい。2μm未満では金属
基材の酸化防止に効果がなく、表面荒れを招く。20μ
mを越えると、メッキに時間を要するだけでなく、加熱
後に金属基材からメッキ総の剥離が起こり、成膜不可能
となり好ましくない。メッキに用いる金属は焼成時に酸
化劣化が起こり難く、金属アルコキシド溶液の濡れ性が
良いものであれば、ニッケルに限定されない。
The metal base material according to the present invention is a metal base material that withstands the firing temperature for mineralizing the metal alkoxide solution which is the starting material of the ceramic insulating film formed thereon and does not oxidize. The surface of the base material has a ceramic insulating film thickness of 0.12 to 0.14 μm formed in one step.
Since it is m, it is necessary to use a metal base material having a surface roughness of 0.1 μm or less. When a film is formed on a base material having a surface roughness of more than 0.1 μm, scratches on the base material surface,
It is not preferable because there is a risk that the roughness cannot be filled and that it is reflected as it is in the ceramic insulating film, resulting in deterioration of insulating properties. Since an ordinary metal base material has scratches and dents and surface roughness due to oxidation during firing, it is necessary to perform some surface treatment such as mirror surface treatment and plating to satisfy the above condition. In another invention of the present invention,
As a surface treatment, nickel plating was applied for the purpose of smoothing the surface of the metal substrate and preventing oxidation. Plating thickness is 2-20μ
m, particularly 3 to 10 μm is preferable. If it is less than 2 μm, it is not effective in preventing the oxidation of the metal base material, and the surface is roughened. 20μ
If it exceeds m, not only is it time-consuming for plating, but also the total amount of plating is peeled off from the metal substrate after heating, which makes film formation impossible, which is not preferable. The metal used for plating is not limited to nickel as long as it does not easily undergo oxidative deterioration during firing and has good wettability with a metal alkoxide solution.

【0011】上記基材と金属アルコキシドを選択組合せ
を種々検討した結果、ステンレスまたはニッケル金属基
材とタンタルアルコキシドおよびチタンアルコキシドの
少なくとも一方との組合せとした時、また銅、ステンレ
スまたはニッケル金属基材にニッケルメッキを施した金
属基材とタンタルアルコキシドおよびチタンアルコキシ
ドの少なくとも一方との組合せとした時に、他には見ら
れない優れた特性を示した。
As a result of various studies on the selective combination of the above-mentioned base material and metal alkoxide, when a combination of a stainless steel or nickel metal base material and at least one of tantalum alkoxide and titanium alkoxide, and a copper, stainless steel or nickel metal base material, When a nickel-plated metal substrate was used in combination with at least one of tantalum alkoxide and titanium alkoxide, excellent properties not seen elsewhere were exhibited.

【0012】金属基材への金属アルコキシドの塗布法と
しては、従来と同じ方法が採用できる。即ち、スプレー
法、ディッピング法、スピンコート法等があげられ、本
発明においては、基材両面への膜形成を考えているので
ディッピング法が望ましい。また、セラミック絶縁膜の
膜厚は、上記金属アルコキシドの塗布と加熱を繰り返す
ことにより調整することができる。次に実施例により本
発明を具体的に説明するが、本発明はこれに限定される
ものではない。
As a method of applying the metal alkoxide to the metal substrate, the same method as the conventional method can be adopted. That is, a spray method, a dipping method, a spin coating method and the like can be mentioned. In the present invention, the film formation on both surfaces of the substrate is considered, so the dipping method is preferable. Further, the thickness of the ceramic insulating film can be adjusted by repeating the application and heating of the metal alkoxide. Next, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

【0013】実施例1.鏡面処理した大きさ50mm×
50mm、厚さ0.3mmのステンレス薄板をトルエン
で超音波洗浄し、脱脂処理をする。これをTa25に換
算して5%含有する変性エチルタンタレートに5分間浸
漬後10cm/分の速度で引き上げ溶液をコーティング
する。次に、100℃で15分間乾燥した後、電気炉に
移し、10℃/分の割合で550℃に昇温、30分保持
してから電気炉の電源を切り炉内で放冷する。この操作
を5回繰り返してステンレス基材上にセラミック薄膜を
形成し本発明の一実施例による金属芯基板を得た。上記
セラミック薄膜は外観色、透明性、ピンホールおよびク
ラックの有無を光学顕微鏡で、膜厚を触針式表面粗さ計
(Sloan製DEKTAK3030)で絶縁抵抗及び
絶縁破壊電圧をピコアンペアメータ(YHP4140
B)で測定し、結果を表1に示す。
Embodiment 1. 50mm x mirror-finished size
A stainless steel plate having a thickness of 50 mm and a thickness of 0.3 mm is ultrasonically cleaned with toluene and degreased. This is dipped in a modified ethyl tantalate containing 5% of Ta 2 O 5 for 5 minutes and then pulled up at a rate of 10 cm / min to coat the solution. Next, after drying at 100 ° C. for 15 minutes, it is transferred to an electric furnace, heated to 550 ° C. at a rate of 10 ° C./minute and held for 30 minutes, then the electric furnace is turned off and allowed to cool in the furnace. This operation was repeated 5 times to form a ceramic thin film on the stainless steel substrate to obtain a metal core substrate according to one example of the present invention. The ceramic thin film is an optical microscope for appearance color, transparency, pinholes and presence of cracks, and a film thickness is measured by a stylus type surface roughness meter (DEKTAK3030 manufactured by Sloan) for insulation resistance and breakdown voltage by a picoampere meter (YHP4140).
Measurement was carried out in B), and the results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】実施例2.実施例1において、ステンレス
薄板の代わりに鏡面処理したニッケル薄板を用いる他
は、実施例1と同様にして本発明の他の実施例による金
属芯基板を得、その特性を表1に示す。
Example 2. A metal core substrate according to another example of the present invention was obtained in the same manner as in Example 1 except that a mirror-finished nickel thin plate was used in place of the stainless thin plate in Example 1, and the characteristics are shown in Table 1.

【0016】実施例3.実施例1において、ステンレス
薄板の代わりに鏡面処理したニッケル薄板を、変性エチ
ルタンタレートの代わりに、変性ブチルチタネートを用
いる他は、実施例1と同様にして本発明の他の実施例に
よる金属芯基板を得、その特性を表1に示す。
Embodiment 3. A metal core according to another embodiment of the present invention is the same as that of the first embodiment except that a mirror-finished nickel thin plate is used instead of the stainless thin plate and a modified butyl titanate is used instead of the modified ethyl tantalate. A substrate was obtained and its characteristics are shown in Table 1.

【0017】実施例4.実施例1において、変性エチル
タンタレートの代わりに、変性エチルタンタレートと変
性エチルチタネートを等量混合したものを用いる他は、
実施例1と同様にして本発明のさらに他の実施例による
金属芯基板を得、その特性を表1に示す。
Example 4. In Example 1, except that instead of the modified ethyl tantalate, a mixture of modified ethyl tantalate and modified ethyl titanate in equal amounts was used.
A metal core substrate according to still another example of the present invention was obtained in the same manner as in Example 1, and the characteristics thereof are shown in Table 1.

【0018】比較例1.実施例1において、変性エチル
タンタレートの代わりに、SiO2に換算して5重量%
含有する変性エチルシリケートを用いる他は、実施例1
と同様にしてステンレス基材上にセラミック薄膜を形成
したが、膜に多数のピンホールが見られた。その特性を
表1に示す。
Comparative Example 1. In Example 1, instead of the modified ethyl tantalate, 5% by weight calculated as SiO 2.
Example 1 except using the modified ethyl silicate containing
A ceramic thin film was formed on the stainless steel substrate in the same manner as in, but many pinholes were found in the film. The characteristics are shown in Table 1.

【0019】比較例2.実施例1において、変性エチル
タンタレートの代わりに、Al23に換算して5重量%
含有する変性ブチルアルミネートを用いる他は、実施例
1と同様にしてステンレス基材上にセラミック薄膜を形
成したが、膜に貝殻状のクラックが入り、特性評価はで
きなかった。
Comparative Example 2. In Example 1, 5% by weight calculated as Al 2 O 3 instead of modified ethyl tantalate
A ceramic thin film was formed on a stainless steel substrate in the same manner as in Example 1 except that the modified butyl aluminate contained was used, but shell-like cracks were formed in the film, and the characteristics could not be evaluated.

【0020】実施例5.表面粗度0.1μm以上1μm
以下で、大きさ50mm×50mm、厚さ0.3mmの
ステンレス薄板をトルエンで超音波洗浄し、脱脂処理を
する。この表面にニッケルの無電解メッキを施し、厚さ
3μmのニッケル総を形成した。この時の面粗度は0.
08μmであった。これをTa25に換算して5%含有
する変性エチルタンタレートに5分間浸漬後10mm/
分の速度で引き上げ溶液をコーティングする。次に、1
00℃で15分間乾燥した後、電気炉に移し、10℃/
分の割合で550℃に昇温、30分保持してから電気炉
の電源を切り炉内で放冷する。この操作を5回繰り返し
てニッケルメッキ処理ステンレス基材上にセラミック薄
膜を形成し本発明の別の発明の一実施例による金属芯基
板を得た。上記セラミック薄膜は外観色、透明性、ピン
ホールおよびクラックの有無を光学顕微鏡で、膜厚を触
針式表面粗さ計(Sloan製DEKTAK3030)
で絶縁抵抗及び絶縁破壊電圧をピコアンペアメータ(Y
HP4140B)で測定し、結果を表2に示す。
Example 5. Surface roughness 0.1 μm or more 1 μm
Hereinafter, a stainless steel thin plate having a size of 50 mm × 50 mm and a thickness of 0.3 mm is ultrasonically cleaned with toluene and degreased. Electroless plating of nickel was applied to this surface to form a total nickel film having a thickness of 3 μm. The surface roughness at this time is 0.
It was 08 μm. This was dipped in modified ethyl tantalate containing 5% in terms of Ta 2 O 5 for 5 minutes and then 10 mm /
Coat withdrawal solution at a rate of minutes. Then 1
After drying at 00 ℃ for 15 minutes, transfer to an electric furnace and
The temperature is raised to 550 ° C. at a rate of 30 minutes and kept for 30 minutes, then the electric furnace is turned off and allowed to cool in the furnace. This operation was repeated 5 times to form a ceramic thin film on a nickel-plated stainless steel substrate to obtain a metal core substrate according to another embodiment of the present invention. The above-mentioned ceramic thin film is an optical microscope for appearance color, transparency, presence or absence of pinholes and cracks, and a film thickness for a stylus surface roughness meter (DEKTAK3030 manufactured by Sloan).
The insulation resistance and breakdown voltage with pico ampere meter (Y
HP4140B) and the results are shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】実施例6.実施例5において、ステンレス
薄板の代わりに面粗度0.43μmの銅薄板を用いる他
は、実施例5と同様にして本発明の別の発明の他の実施
例による金属芯基板を得、その特性を表2に示す。
Embodiment 6. In Example 5, a metal core substrate according to another embodiment of another invention of the present invention was obtained in the same manner as in Example 5 except that a copper thin plate having a surface roughness of 0.43 μm was used instead of the stainless thin plate. The characteristics are shown in Table 2.

【0023】実施例7.実施例5において、ステンレス
薄板の代わりに面粗度0.43μmの銅薄板を、変性エ
チルタンタレートの代わりに、変性ブチルチタネートを
用いる他は、実施例5と同様にして本発明の別の発明の
他の実施例による金属芯基板を得、その特性を表2に示
す。
Example 7. Another embodiment of the present invention is performed in the same manner as in Example 5 except that a copper thin plate having a surface roughness of 0.43 μm is used instead of the stainless thin plate and a modified butyl titanate is used instead of the modified ethyl tantalate. A metal core substrate according to another example of Example 1 was obtained, and its characteristics are shown in Table 2.

【0024】実施例8.実施例5において、変性エチル
タンタレートの代わりに、変性エチルタンタレートと変
性エチルチタネートを等量混合したものを用いる他は、
実施例5と同様にして本発明の別の発明のさらに他の実
施例による金属芯基板を得、その特性を表2に示す。
Example 8. In Example 5, except that modified ethyl tantalate and modified ethyl titanate were mixed in equal amounts instead of modified ethyl tantalate,
A metal core substrate according to still another embodiment of the present invention was obtained in the same manner as in Example 5, and the characteristics thereof are shown in Table 2.

【0025】比較例3.実施例5において、変性エチル
タンタレートの代わりに、SiO2に換算して5重量%
含有する変性エチルシリケートを用いる他は、実施例5
と同様にしてニッケルメッキ処理ステンレス基材上にセ
ラミック薄膜を形成したが、膜に多数のピンホールが見
られた。その特性を表2に示す。
Comparative Example 3. In Example 5, 5% by weight calculated as SiO 2 instead of modified ethyl tantalate
Example 5 except using the modified ethyl silicate containing
A ceramic thin film was formed on a nickel-plated stainless steel substrate in the same manner as in, but many pinholes were found in the film. The characteristics are shown in Table 2.

【0026】比較例4.実施例5において、変性エチル
タンタレートの代わりに、Al23に換算して5重量%
含有する変性ブチルアルミネートを用いる他は、実施例
5と同様にしてニッケルメッキ処理ステンレス基材上に
セラミック薄膜を形成したが、膜に貝殻状のクラックが
入り、特性評価はできなかった。
Comparative Example 4. In Example 5, 5% by weight calculated as Al 2 O 3 instead of modified ethyl tantalate
A ceramic thin film was formed on a nickel-plated stainless steel substrate in the same manner as in Example 5 except that the modified butyl aluminate contained was used, but shell-like cracks were formed in the film, and the characteristics could not be evaluated.

【0027】比較例5.実施例6において、ニッケルメ
ッキ処理銅薄板の代わりに、表面粗度0.06μmの鏡
面研磨銅薄板を用いる他は、実施例6と同様にしてセラ
ミック薄膜を形成したが、焼成後の銅の表面酸化、膜の
剥離が著しく特性評価はできなかった。
Comparative Example 5. A ceramic thin film was formed in the same manner as in Example 6 except that a mirror-polished copper thin plate having a surface roughness of 0.06 μm was used instead of the nickel-plated copper thin plate in Example 6, but the surface of the copper after firing was changed. Oxidation and peeling of the film were remarkable, and the characteristics could not be evaluated.

【0028】表1および2から明らかなように、本発明
の実施例により形成されたセラミック絶縁膜を有する金
属芯基板は、耐熱性および電気絶縁性に優れているた
め、陰極線管中の部品として使用する場合、ガラス封着
温度即ち400〜500℃付近に暴露されても、セラミ
ック絶縁膜は劣化剥離せず初期特性を維持することがで
きる。又、1回の操作で形成されるセラミック絶縁膜の
厚さは0.1〜0.2μmと薄いため、基材が複雑な形
状を有していても、均一で緻密なセラミック絶縁膜を形
成することができ、要求特性上セラミック絶縁膜の厚さ
が必要な場合は浸漬と焼成工程を繰り返すことにより上
記実施例で示した様に、膜厚を調整することができる。
また、本発明の別の発明によれば、金属芯基板の金属に
銅を用いることができ、有用性が向上する。
As is clear from Tables 1 and 2, the metal core substrate having the ceramic insulating film formed according to the embodiment of the present invention is excellent in heat resistance and electric insulation, so that it is used as a component in a cathode ray tube. When used, the ceramic insulating film does not deteriorate and peel off even when exposed to the glass sealing temperature, that is, around 400 to 500 ° C., and the initial characteristics can be maintained. Moreover, since the thickness of the ceramic insulating film formed by one operation is as thin as 0.1 to 0.2 μm, a uniform and dense ceramic insulating film can be formed even if the base material has a complicated shape. When the thickness of the ceramic insulating film is required due to the required characteristics, the film thickness can be adjusted by repeating the dipping and firing steps, as shown in the above embodiment.
Further, according to another invention of the present invention, copper can be used as the metal of the metal core substrate, and the usefulness is improved.

【0029】[0029]

【発明の効果】本発明は、以上説明した通り、金属酸化
物の形で5〜8重量%を含有するタンタルアルコキシド
およびチタンアルコキシドの少なくとも一方の溶液を、
表面粗度が0.1μm以下のステンレスまたはニッケル
金属基材に塗布後、500〜600℃で加熱して上記金
属基材に0.1〜0.2μm厚のセラミック絶縁膜を形
成することにより、また、本発明の別の発明は、金属酸
化物の形で3〜10重量%を含有するタンタルアルコキ
シドおよびチタンアルコキシドの少なくとも一方の溶液
を、2〜20μm厚のニッケルメッキを施して表面粗度
を0.1μm以下にした、銅、ステンレスまたはニッケ
ル金属基材に塗布し、500〜600℃で加熱して上記
金属基材に0.1〜0.2μm厚のセラミック絶縁膜を
形成するより過酷な加熱環境下でも劣化、剥離および亀
裂などが防止され、優れた電気絶縁性を有する金属芯基
板の製造法を得ることができる。
As described above, the present invention provides a solution of at least one of tantalum alkoxide and titanium alkoxide containing 5 to 8% by weight in the form of a metal oxide.
By coating a stainless or nickel metal substrate having a surface roughness of 0.1 μm or less and then heating at 500 to 600 ° C. to form a ceramic insulating film having a thickness of 0.1 to 0.2 μm on the metal substrate, Another invention of the present invention is to provide a surface roughness by subjecting a solution of at least one of tantalum alkoxide and titanium alkoxide containing 3 to 10% by weight in the form of a metal oxide to nickel plating having a thickness of 2 to 20 μm. More severe than applying to a copper, stainless steel or nickel metal substrate having a thickness of 0.1 μm or less and heating at 500 to 600 ° C. to form a ceramic insulating film having a thickness of 0.1 to 0.2 μm on the metal substrate. Degradation, peeling and cracking are prevented even in a heating environment, and a method for producing a metal core substrate having excellent electrical insulation can be obtained.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年4月28日[Submission date] April 28, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】本発明に係わる金属基材は、その上に形成
されるセラミック絶縁膜の出発物質である金属アルコキ
シド溶液の無機化のための焼成温度に耐え、酸化しない
ものが用いられる。また、基材表面は1回の工程で形成
されるセラミック絶縁膜の厚さが0.12〜0.14μ
mであることから、0.1μm以下の面粗度を有する金
属基材を用いることが必要である。0.1μmを越える
面粗度をもつ基材に膜形成した場合には基材表面の傷、
荒れを埋められず、セラミック絶縁膜にそのまま反映し
て絶縁特性の低下をもたらす危険性があるため好ましく
ない。通常の金属基材は、引っかき傷やくぼみが存在し
たり、焼成時の酸化による面荒れが発生するため、鏡面
処理およびメッキ等、何らかの表面処理を施して上記条
件を満たす必要がある。本発明の別の発明においては、
表面処理として金属基材表面の平滑化と酸化防止を狙っ
て、ニッケルメッキを施した。メッキ厚は2〜20μ
m、特に3〜10μmが好ましい。2μm未満では金属
基材の酸化防止に効果がなく、表面荒れを招く。20μ
mを越えると、メッキに時間を要するだけでなく、加熱
後に金属基材からメッキの剥離が起こり、成膜不可能
となり好ましくない。メッキに用いる金属は焼成時に酸
化劣化が起こり難く、金属アルコキシド溶液の濡れ性が
良いものであれば、ニッケルに限定されない。
As the metal base material according to the present invention, a metal base material that withstands the firing temperature for mineralizing the metal alkoxide solution which is the starting material of the ceramic insulating film formed thereon and does not oxidize is used. The surface of the base material has a ceramic insulating film thickness of 0.12 to 0.14 μm formed in one step.
Since it is m, it is necessary to use a metal base material having a surface roughness of 0.1 μm or less. When a film is formed on a base material having a surface roughness exceeding 0.1 μm, scratches on the base material surface,
It is not preferable because there is a risk that the roughness cannot be filled and that it is reflected in the ceramic insulating film as it is, resulting in deterioration of insulating properties. Since an ordinary metal base material has scratches and dents and surface roughness due to oxidation during firing, it is necessary to perform some surface treatment such as mirror surface treatment and plating to satisfy the above conditions. In another invention of the present invention,
As a surface treatment, nickel plating was applied for the purpose of smoothing the surface of the metal substrate and preventing oxidation. Plating thickness is 2-20μ
m, particularly 3 to 10 μm is preferable. If it is less than 2 μm, it is not effective in preventing the oxidation of the metal base material, resulting in surface roughness. 20μ
If it exceeds m, not only the plating will take time, but also the plating layer will peel off from the metal base material after heating, which makes film formation impossible, which is not preferable. The metal used for plating is not limited to nickel as long as it does not easily undergo oxidative deterioration during firing and has good wettability with a metal alkoxide solution.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】実施例5.表面粗度0.1μm以上1μm
以下で、大きさ50mm×50mm、厚さ0.3mmの
ステンレス薄板をトルエンで超音波洗浄し、脱脂処理を
する。この表面にニッケルの無電解メッキを施し、厚さ
3μmのニッケルを形成した。この時の面粗度は0.
08μmであった。これをTa25に換算して5%含有
する変性エチルタンタレートに5分間浸漬後10mm/
分の速度で引き上げ溶液をコーティングする。次に、1
00℃で15分間乾燥した後、電気炉に移し、10℃/
分の割合で550℃に昇温、30分保持してから電気炉
の電源を切り炉内で放冷する。この操作を5回繰り返し
てニッケルメッキ処理ステンレス基材上にセラミック薄
膜を形成し本発明の別の発明の一実施例による金属芯基
板を得た。上記セラミック薄膜は外観色、透明性、ピン
ホールおよびクラックの有無を光学顕微鏡で、膜厚を触
針式表面粗さ計(Sloan製DEKTAK3030)
で絶縁抵抗及び絶縁破壊電圧をピコアンペアメータ(Y
HP4140B)で測定し、結果を表2に示す。
Example 5. Surface roughness 0.1 μm or more 1 μm
Hereinafter, a stainless steel thin plate having a size of 50 mm × 50 mm and a thickness of 0.3 mm is ultrasonically cleaned with toluene and degreased. Electroless plating of nickel was performed on this surface to form a nickel layer having a thickness of 3 μm. The surface roughness at this time is 0.
It was 08 μm. This was dipped in modified ethyl tantalate containing 5% in terms of Ta 2 O 5 for 5 minutes and then 10 mm /
Coat withdrawal solution at a rate of minutes. Then 1
After drying at 00 ℃ for 15 minutes, transfer to an electric furnace and
The temperature is raised to 550 ° C. at a rate of 30 minutes and kept for 30 minutes, then the electric furnace is turned off and allowed to cool in the furnace. This operation was repeated 5 times to form a ceramic thin film on a nickel-plated stainless steel substrate to obtain a metal core substrate according to another embodiment of the present invention. The above-mentioned ceramic thin film is an optical microscope for appearance color, transparency, presence or absence of pinholes and cracks, and a film thickness for a stylus surface roughness meter (DEKTAK3030 manufactured by Sloan).
The insulation resistance and breakdown voltage with pico ampere meter (Y
HP4140B) and the results are shown in Table 2.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】[0021]

【表2】 [Table 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属酸化物の形で3〜10重量%を含有
するタンタルアルコキシドおよびチタンアルコキシドの
少なくとも一方の溶液を、表面粗度が0.1μm以下の
ステンレスまたはニッケル金属基材に塗布後、500〜
600℃で加熱して上記金属基材に0.1〜0.2μm
厚のセラミック絶縁膜を形成する金属芯基板の製造法。
1. A solution of at least one of tantalum alkoxide and titanium alkoxide containing 3 to 10% by weight in the form of a metal oxide is applied to a stainless steel or nickel metal substrate having a surface roughness of 0.1 μm or less, 500 ~
0.1 to 0.2 μm on the metal base material by heating at 600 ° C.
A method of manufacturing a metal core substrate for forming a thick ceramic insulating film.
【請求項2】 金属酸化物の形で3〜10重量%を含有
するタンタルアルコキシドおよびチタンアルコキシドの
少なくとも一方の溶液を、2〜20μm厚のニッケルメ
ッキを施して表面粗度を0.1μm以下にした、銅、ス
テンレスまたはニッケル金属基材に塗布し、500〜6
00℃で加熱して上記金属基材に0.1〜0.2μm厚
のセラミック絶縁膜を形成する金属芯基板の製造法。
2. A solution of at least one of tantalum alkoxide and titanium alkoxide containing 3 to 10% by weight in the form of a metal oxide is plated with nickel having a thickness of 2 to 20 μm to reduce the surface roughness to 0.1 μm or less. Applied to a copper, stainless steel or nickel metal base material,
A method of manufacturing a metal core substrate, comprising heating at 00 ° C. to form a ceramic insulating film having a thickness of 0.1 to 0.2 μm on the metal base material.
JP4937692A 1991-05-24 1992-03-06 Production of metallic-core substrate Pending JPH0593284A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11980591 1991-05-24
JP3-119805 1991-05-24

Publications (1)

Publication Number Publication Date
JPH0593284A true JPH0593284A (en) 1993-04-16

Family

ID=14770666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4937692A Pending JPH0593284A (en) 1991-05-24 1992-03-06 Production of metallic-core substrate

Country Status (1)

Country Link
JP (1) JPH0593284A (en)

Similar Documents

Publication Publication Date Title
EP0299300B1 (en) Article strengthened by a compressive layer and method
US4277522A (en) Coating glass-ceramic surfaces
JP3723753B2 (en) Method for producing a coating on a fire-resistant component and use of such a coating
US5296260A (en) Method of manufacturing inorganic insulation
US3922386A (en) Process for the manufacture of small heat-generating printed circuits
US2667431A (en) Method of metallizing ceramics
US4299887A (en) Temperature sensitive electrical element, and method and material for making the same
JPH0593284A (en) Production of metallic-core substrate
US5157706A (en) X-ray tube anode with oxide coating
JP3371083B2 (en) Ceramic roll for corona discharge treatment and method for producing the same
JP2000086361A (en) Heat resistant material and its production
JPH0995772A (en) Window material for vacuum device
JPS62134980A (en) Mother plate for solar battery substrate and manufacture thereof
JPH06104493A (en) Coated thermocouple
JP2955319B2 (en) Manufacturing method of thermal head
JPH0693453A (en) Susceptor
JPH0786379A (en) Semiconductor manufacturing suscepter
JPH07235742A (en) Surface-treated aluminum nitride board for thin-film circuit
JPH05194092A (en) Thin diamond film, its preparation and thermal head provided with the same thin diamond film
EP1160215A1 (en) Simplified gold vacuum vapor deposition
JPH04232248A (en) Multilayer insulating structural body and its manufacture
JPH0422007A (en) Wire for winding process and coil using same
Dorfeld Bonding thermosprayed silicon to glass-ceramic
JP2000195649A (en) Inorganic insulated heater and its manufacture
JPS58181868A (en) Crystallized enamel base plate