JP2000086361A - Heat resistant material and its production - Google Patents

Heat resistant material and its production

Info

Publication number
JP2000086361A
JP2000086361A JP10252451A JP25245198A JP2000086361A JP 2000086361 A JP2000086361 A JP 2000086361A JP 10252451 A JP10252451 A JP 10252451A JP 25245198 A JP25245198 A JP 25245198A JP 2000086361 A JP2000086361 A JP 2000086361A
Authority
JP
Japan
Prior art keywords
glass
glass layer
heat
substrate
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10252451A
Other languages
Japanese (ja)
Other versions
JP3606744B2 (en
Inventor
Koichi Kimura
康一 木村
Yoshihiko Goto
嘉彦 後藤
Nobuhiro Torii
信宏 鳥居
Hirota Watabe
裕太 渡部
Tetsuya Mihara
徹也 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP25245198A priority Critical patent/JP3606744B2/en
Publication of JP2000086361A publication Critical patent/JP2000086361A/en
Application granted granted Critical
Publication of JP3606744B2 publication Critical patent/JP3606744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/002Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of fibres, filaments, yarns, felts or woven material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a heat-resistant material having not only dust-preventing properties but also thermal shock resistance and durability, and further to provide a production method thereof. SOLUTION: This heat-resistant material is obtained by forming a glass layer 3 consisting essentially of a glass material 5 so as to be kept in contact with a substrate 2 consisting essentially of an inorganic fiber-based material 4. The substrate 2 includes a glass material 5 as a binder, and the glass layer 3 includes an inorganic fiber-based material 4 as a reinforcing material. The glass material 5 in the substrate 2 is fused with the glass material 5 in the glass layer 3 in the process for carrying out the heating treatment to form the glass layer 3. Continuity and integrity in physical properties are imparted during the heat treatment. The heat-resistant material can have dusting from the surface of the substrate suppressed by the glass layer 3, relieved situation of the stress concentrated on a heterogeneous part of physical properties of the glass layer 3, suppressed crack formed in the glass layer 3, suppressed generation of the peeling phenomenon from the substrate 2, thermal shock resistance and durability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱材料及びその
作製方法に関し、より詳しくは、無機繊維質材料を主成
分とする基材にバインダーとしてガラス材料を含ませる
と共に、ガラス材料を主成分とするガラス層に補強材と
して無機繊維質材料を含ませて、基材とガラス層との間
に一体性を付与させた耐熱材料及びその作製方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant material and a method for producing the same, and more particularly, to a method in which a glass material is contained as a binder in a base material mainly composed of an inorganic fibrous material, and the glass material is used as a main component. The present invention relates to a heat-resistant material in which an inorganic fibrous material is included as a reinforcing material in a glass layer to be provided so that integrity is provided between a substrate and a glass layer, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の耐熱材料は、シリカ繊維やアルミ
ナ繊維等の耐熱性のある無機繊維質材料で専ら構成さ
れ、例えば、無機繊維質材料が有機バインダーや無機バ
インダーにより、ブロック、板、タイル等の所定形状に
成形されている。これら所定形状の耐熱材料は、耐熱性
のレンガやキャスタブルと比較して、次の点で優位性が
ある。低熱容量である、低熱伝導率である、熱衝
撃に強い、軽量である、熱膨張率が低い。
2. Description of the Related Art A conventional heat-resistant material is mainly composed of a heat-resistant inorganic fibrous material such as silica fiber or alumina fiber. And the like. These heat-resistant materials having a predetermined shape are superior to heat-resistant bricks and castables in the following points. It has low heat capacity, low thermal conductivity, resistance to thermal shock, light weight, and low coefficient of thermal expansion.

【0003】一方、近年、ガラス基板を用いた液晶ディ
スプレイやプラズマディスプレイが多用され、これらは
ガラス基板上に半導体素子や配線等を直接作製すること
から、ガラス基板表面は極めて厳しいクリーン度が要求
される。ガラス基板は焼成する必要があり、また、縮み
や歪み除去のため予め各種熱処理が施される。このガラ
ス基板に対する焼成、各種熱処理は加熱炉が利用され、
当然のことながら加熱炉の内壁や棚板を構成する耐熱材
料からの発塵に対し極めて厳しい条件が課せられる。こ
れは、上記の極めて厳しいクリーン度が課せられるガラ
ス基板表面に、焼成や各種熱処理中に加熱炉の内壁や棚
板を構成する耐熱材料から飛散した塵が付着したので
は、その後の液晶ディスプレイやプラズマディスプレイ
の作製段階で不良発生の大きな要因となるからである。
On the other hand, in recent years, liquid crystal displays and plasma displays using a glass substrate have been frequently used, and since semiconductor elements and wirings are directly formed on the glass substrate, the surface of the glass substrate is required to have an extremely strict cleanness. You. The glass substrate needs to be fired, and is subjected to various heat treatments in advance to remove shrinkage and distortion. Heating furnace is used for firing and various heat treatments for this glass substrate,
As a matter of course, extremely severe conditions are imposed on dust generation from the heat-resistant material constituting the inner wall and the shelf of the heating furnace. This is because if the dust scattered from the heat-resistant material constituting the inner wall of the heating furnace or the shelf during the baking or various heat treatments adheres to the glass substrate surface where the extremely strict cleanness is imposed, the liquid crystal display and the This is because this is a major factor in the generation of defects at the stage of manufacturing a plasma display.

【0004】上記従来の無機繊維質材料で専ら構成され
た耐熱材料は、上記の優位性からガラス基板に対する焼
成、各種熱処理をする加熱炉に適しているが、無機繊維
質材料に起因する発塵に難がある。そこで、無機繊維質
材料で専ら構成された耐熱材料の表面をガラス層で被覆
して発塵を防ぐものとして、特公昭57−13514
号公報や、特開平1−219038号公報がある。
[0004] The above-mentioned heat-resistant material exclusively composed of the inorganic fibrous material is suitable for a heating furnace for baking a glass substrate and performing various heat treatments because of the above-mentioned advantages. Have difficulty. In order to prevent dust generation by covering the surface of a heat-resistant material exclusively composed of an inorganic fibrous material with a glass layer, Japanese Patent Publication No. 57-13514
And Japanese Patent Application Laid-Open No. 1-219038.

【0005】の耐熱材料は、高融点と低融点とを有す
る2種以上の耐火性無機繊維質材料0.5〜4重量%、
有機繊維質材料0.5〜5重量%、結合剤4〜20重量
%、耐火性物質50〜90重量%及び0.5重量%以上
の耐火耐食性物質を有する成形物の表面に、更にロウ石
微粉末と水ガラス及びガラス繊維とを含む酸化防止被覆
層、すなわち、ガラス層を形成してなるものである。従
って、ガラス層に相当する上記酸化防止被覆層により、
2種以上の耐火性の無機繊維質材料に起因する発塵を防
ぐことができるものである。の耐熱材料は、耐熱性無
機繊維質材料と耐火性粉末と無機結合剤とからなる多孔
質焼結体の表面の少なくとも一部に釉薬を塗布し、熱処
理させることにより、ガラス層を形成してなるものであ
る。従って、上記ガラス層により、耐熱性の無機繊維質
材料や耐火性粉末に起因する発塵を防ぐことができるも
のである。
The heat-resistant material comprises two or more types of refractory inorganic fibrous materials having a high melting point and a low melting point.
0.5 to 5% by weight of an organic fibrous material, 4 to 20% by weight of a binder, 50 to 90% by weight of a refractory substance and 0.5% by weight or more of a molded article having a refractory and corrosion resistant substance, An antioxidant coating layer containing fine powder, water glass and glass fiber, that is, a glass layer is formed. Therefore, by the antioxidant coating layer corresponding to the glass layer,
It is possible to prevent dust generation due to two or more kinds of fire-resistant inorganic fibrous materials. The heat-resistant material is formed by applying a glaze to at least a part of the surface of a porous sintered body composed of a heat-resistant inorganic fibrous material, a refractory powder, and an inorganic binder, and performing a heat treatment to form a glass layer. It becomes. Therefore, the glass layer can prevent dust generation due to the heat-resistant inorganic fibrous material and the refractory powder.

【0006】[0006]

【発明が解決しようとする課題】上記特公昭57−1
3514号公報や、特開平1−219038号公報に
よる公知例は、いずれもガラス層により無機繊維質材料
で専ら構成された耐熱材料の表面からの発塵を防ぐた
め、その点では都合がよい。しかしながら、これらの耐
熱材料は耐熱衝撃性や耐久性が弱く、急激な加熱や長期
間の使用ができない。急激な加熱をすれば、ガラス層に
クラックが生じ、基材からの剥がれ現象が生じてしま
う。また、長期間の使用により、やはりガラス層にクラ
ックが生じ、剥がれ現象が生じてしまう。すなわち、ガ
ラス基板に対する焼成、各種熱処理が加熱炉で絶えず行
われるから、加熱炉の内壁や棚板に使用される耐熱材料
は、不発塵性と共に耐熱衝撃性や耐久性を併せ持つこと
が要求されるのである。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Publication No. Sho 57-1
The known examples disclosed in Japanese Patent No. 3514 and Japanese Patent Application Laid-Open No. 1-219038 are convenient in that point because dust is prevented from being generated from the surface of a heat-resistant material exclusively formed of an inorganic fibrous material by a glass layer. However, these heat-resistant materials have low thermal shock resistance and durability, so that rapid heating and long-term use cannot be performed. If rapid heating is performed, cracks occur in the glass layer, and a phenomenon of peeling from the base material occurs. In addition, if the glass layer is used for a long period of time, the glass layer is also cracked, and a peeling phenomenon occurs. In other words, since the firing and various heat treatments for the glass substrate are constantly performed in the heating furnace, the heat-resistant material used for the inner wall and the shelf of the heating furnace is required to have not only the dustproof property but also the thermal shock resistance and the durability. It is.

【0007】従って、本発明の目的は、不発塵性と共に
耐熱衝撃性や耐久性を併せ持つ耐熱材料及びその作製方
法を提供することにある。
Accordingly, an object of the present invention is to provide a heat-resistant material having both thermal shock resistance and durability as well as dust-free properties, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】かかる実情において、本
発明者らは鋭意検討を行った結果、無機繊維質材料を主
成分とする基材とガラス材料を主成分とするガラス層と
は、熱膨張率が異なり、これに起因して基材とガラス層
との間に応力が発生し、一方、ガラス層の物性は、層厚
の不均一、密度の不均一、固さの不均一、組成の不均一
等の不均一性があり、上記応力はガラス層の物性の不均
一な部分に集中して、そのためガラス層にクラックが生
じたり、基材からの剥がれ現象が生じてしまうことを知
見した。そして、基材の主成分である無機繊維質材料を
ガラス層の補強材とし、ガラス層の主成分であるガラス
材料を基材のバインダーとして使用すれば、ガラス層を
形成するための加熱処理をする過程で、基材中のバイン
ダーであるガラス材料とガラス層のガラス材料とが融着
して、これら基材とガラス層との間に物性的な連続性や
一体性を付与することになり、応力がガラス層の物性の
不均一な部分に集中するような状況が緩和され、ガラス
層にクラックが生じたり、基材からの剥がれ現象が生じ
ることが抑制されることを見い出し、本発明を完成する
に至った。
Under these circumstances, the present inventors have conducted intensive studies, and as a result, have found that a base material mainly composed of an inorganic fibrous material and a glass layer mainly composed of a glass material have a high thermal conductivity. Different expansion coefficients cause stress between the substrate and the glass layer, while the physical properties of the glass layer are uneven in thickness, uneven in density, uneven in hardness, and composition. There is a non-uniformity such as non-uniformity, and the above stress concentrates on the non-uniform part of the physical properties of the glass layer, which leads to cracks in the glass layer and a phenomenon of peeling from the base material. did. If the inorganic fibrous material, which is the main component of the base material, is used as a reinforcing material for the glass layer, and the glass material, which is the main component of the glass layer, is used as a binder for the base material, the heat treatment for forming the glass layer can be performed. In the process, the glass material serving as a binder in the base material and the glass material of the glass layer are fused to provide physical continuity and integrity between the base material and the glass layer. It has been found that the situation in which stress is concentrated on a portion of the glass layer having non-uniform physical properties is alleviated, cracks are generated in the glass layer, and peeling off from the base material is suppressed, and the present invention has been found. It was completed.

【0009】すなわち、本発明は、無機繊維質材料を主
成分とする基材に、ガラス材料を主成分とするガラス層
を接して設けてなり、前記基材はバインダーとして前記
ガラス材料を含むと共に、前記ガラス層は補強材として
前記無機繊維質材料を含むことを特徴とする耐熱材料を
提供するものである。
That is, according to the present invention, a glass layer mainly composed of a glass material is provided in contact with a substrate mainly composed of an inorganic fibrous material, and the substrate contains the glass material as a binder. The glass layer provides a heat-resistant material comprising the inorganic fibrous material as a reinforcing material.

【0010】本発明において、耐熱材料1は、図1に示
すように、多孔質材料である基材2にそれを被覆する緻
密質材料であるガラス層3からなり、基材2の主成分で
ある無機繊維質材料4をガラス層3に含ませて補強材と
して機能させ、ガラス層3の主成分であるガラス材料5
を基材2に含ませてバインダーとして機能させるべく、
加熱処理してガラス層3を形成して、なるものである。
すなわち、基材2とガラス層3との界面6で、図では省
略するが基材2中のガラス材料5とガラス層3中のガラ
ス材料5とが融着し、これら基材2とガラス層3との間
に物性的な連続性や一体性が付与され、上記のとおり応
力がガラス層3の物性の不均一な部分に集中するような
状況が緩和される。
In the present invention, as shown in FIG. 1, the heat-resistant material 1 is composed of a glass layer 3 which is a dense material covering a base material 2 which is a porous material. A certain inorganic fibrous material 4 is included in the glass layer 3 to function as a reinforcing material.
To function as a binder by including
The glass layer 3 is formed by heat treatment.
That is, at the interface 6 between the base material 2 and the glass layer 3, the glass material 5 in the base material 2 and the glass material 5 in the glass layer 3 are fused, although not shown in the figure, and the base material 2 and the glass layer 3 are fused. Physical continuity and integrity are imparted to the glass layer 3, and the situation where stress is concentrated on a portion of the glass layer 3 where the physical properties are not uniform as described above is alleviated.

【0011】無機繊維質材料4としては、特に制限され
ないが、シリカアルミナ系セラミックスファイバーを挙
げることができる。具体的には、Al2 3 が40〜6
0重量%、SiO2 が40〜60重量%からなる非晶質
シリカアルミナ系セラミックス、Al2 3 が70〜9
9重量%、SiO2 が1〜30重量%からなる結晶性シ
リカアルミナ系セラミックスが使用される。平均繊維長
は50〜150μm 、平均繊維径は1〜5μm のものが
好ましい。これらの無機繊維質材料は単独又は混合して
使用してもよい。なお、Al2 3 とSiO2 との組成
比は用途により適宜選択することができる。
The inorganic fibrous material 4 is not particularly limited, and examples thereof include silica-alumina-based ceramic fibers. Specifically, Al 2 O 3 is 40 to 6
0 wt%, amorphous silica-alumina based ceramics SiO 2 consists of 40 to 60 wt%, Al 2 O 3 is from 70 to 9
A crystalline silica-alumina-based ceramic comprising 9% by weight and 1 to 30% by weight of SiO 2 is used. Preferably, the average fiber length is 50 to 150 μm and the average fiber diameter is 1 to 5 μm. These inorganic fibrous materials may be used alone or as a mixture. The composition ratio between Al 2 O 3 and SiO 2 can be appropriately selected depending on the application.

【0012】ガラス材料5としては、特に制限されない
が、ホウ珪酸ガラス、カリソーダガラス、鉛カリガラ
ス、石英ガラス、アルミノ珪酸ガラス等が挙げられる。
これらのガラス材料は単独又は混合して使用してもよ
い。また、ガラス材料のうち、ホウ珪酸ガラスが特に好
ましい。従って、本発明の耐熱材料としては、無機繊維
質材料4はシリカアルミナ系セラミックスファイバーを
用い、ガラス材料5はホウ珪酸ガラスを用いることが好
ましく、これらの組み合わせによれば、シリカアルミナ
系セラミックスファイバーのシリカ成分とホウ珪酸ガラ
スのガラス成分との馴染みが良く、ガラス層3のクラッ
ク発生及びガラス層3の基材2からの剥離を極めてよく
抑制することができる。
The glass material 5 is not particularly limited, and examples thereof include borosilicate glass, potash glass, lead potash glass, quartz glass, and aluminosilicate glass.
These glass materials may be used alone or in combination. Further, among glass materials, borosilicate glass is particularly preferable. Therefore, as the heat-resistant material of the present invention, it is preferable that the inorganic fibrous material 4 uses silica-alumina-based ceramic fiber, and the glass material 5 uses borosilicate glass. The compatibility between the silica component and the glass component of the borosilicate glass is good, and the occurrence of cracks in the glass layer 3 and the peeling of the glass layer 3 from the substrate 2 can be suppressed extremely well.

【0013】また、ガラス層3中の無機繊維質材料4の
含有量は、5〜15重量%の範囲のものがよく、8〜1
5重量%の範囲のものがより好ましい。無機繊維質材料
4が5重量%に満たないと、ガラス層3におけるクラッ
クの発生を抑制する効果が期待できない。逆に無機繊維
質材料4が15重量%を越えると、無機繊維質材料4同
士が絡み合いガラス層3中に物性の不均一な部分が形成
され、所謂繊維のダマが発生し、逆にガラス層3におけ
るクラックの発生や剥離の要因となってしまい好ましく
ない。
The content of the inorganic fibrous material 4 in the glass layer 3 is preferably in the range of 5 to 15% by weight,
More preferably, it is in the range of 5% by weight. If the amount of the inorganic fibrous material 4 is less than 5% by weight, the effect of suppressing the generation of cracks in the glass layer 3 cannot be expected. On the other hand, when the amount of the inorganic fibrous material 4 exceeds 15% by weight, the inorganic fibrous materials 4 are entangled with each other to form a portion having non-uniform physical properties in the glass layer 3, so-called fiber lump is generated. This is not preferable because it causes cracks and peeling in No. 3.

【0014】また、基材2中のガラス材料5の含有量
は、10〜30重量%の範囲のものがよい。ガラス材料
が10重量%に満たないと、ガラス層3のガラス材料と
融着する部分が少なくなり、物性的な連続性や一体性を
保持できない。逆にガラス材料5が30重量%を越える
と、耐熱材料としての優位な特性が発揮されない。
The content of the glass material 5 in the substrate 2 is preferably in the range of 10 to 30% by weight. If the glass material is less than 10% by weight, the portion of the glass layer 3 that is fused to the glass material is reduced, and physical continuity and integrity cannot be maintained. Conversely, if the glass material 5 exceeds 30% by weight, superior properties as a heat-resistant material cannot be exhibited.

【0015】本発明において、基材の主成分である無機
繊維質材料と、ガラス層の補強材である無機繊維質材料
とは、同一材料であっても、異なる材料であってもよい
が、同一材料とすることが好ましい。また、ガラス層の
ガラス材料と、基材のバインダーであるガラス材料と
は、同一材料であっても、異なる材料であってもよい
が、同一材料とすることが融着強度の点からも好まし
い。
In the present invention, the inorganic fibrous material which is the main component of the substrate and the inorganic fibrous material which is the reinforcing material of the glass layer may be the same or different. It is preferable to use the same material. Further, the glass material of the glass layer and the glass material as the binder of the base material may be the same material or different materials, but it is preferable to use the same material from the viewpoint of fusion strength. .

【0016】次に、本発明の耐熱材料の作製方法につい
て説明する。すなわち、本発明の耐熱材料の作製方法
は、ガラス材料、有機バインダー、無機繊維質材料及び
水を混合し、糊状又はペースト状の出発材料を作製する
工程と、前記無機繊維質材料を主成分とし、前記ガラス
材料をバインダーとする基材の表面の少なくとも一部に
前記出発材料を塗布する工程と、前記ガラス材料を加熱
処理によりガラス層に変成させる工程と、を有すること
を特徴とする。
Next, a method for manufacturing the heat-resistant material of the present invention will be described. That is, the method for producing a heat-resistant material of the present invention comprises a step of mixing a glass material, an organic binder, an inorganic fibrous material, and water to produce a paste-like or paste-like starting material; And a step of applying the starting material to at least a part of the surface of the substrate using the glass material as a binder, and a step of transforming the glass material into a glass layer by a heat treatment.

【0017】まず、基材2は、塗布工程前にガラス材料
5を無機バインダーとして無機繊維質材料4を結合さ
せ、かつ所定形状に成形加工し、乾燥させ、更に焼成す
ることにより、予め作製される。例えば、シリカアルミ
ナ系無機繊維質材料100重量部、硼酸10〜30重量
部、コロイダルシリカ10〜30重量部、アルミナゾル
0.3〜1重量部、有機バインダー0.5〜1.5重量
部を混合し、濃度3〜4重量%のスラリーを得る。次
に、このスラリーを脱水成形し、100〜150℃、3
〜8時間の乾燥を行い、更に1000〜1200℃、数
時間〜数十時間焼成する。これにより、シリカアルミナ
系無機繊維質材料を主成分とする基材を得ることができ
る。
First, the base material 2 is prepared in advance by binding the inorganic fibrous material 4 using the glass material 5 as an inorganic binder, forming and processing into a predetermined shape, drying, and further firing before the coating step. You. For example, 100 parts by weight of a silica-alumina-based inorganic fiber material, 10 to 30 parts by weight of boric acid, 10 to 30 parts by weight of colloidal silica, 0.3 to 1 part by weight of alumina sol, and 0.5 to 1.5 parts by weight of an organic binder are mixed. Then, a slurry having a concentration of 3 to 4% by weight is obtained. Next, this slurry is subjected to dehydration molding,
Drying is performed for 時間 8 hours, and then firing is performed at 1000 to 1200 ° C. for several hours to tens of hours. Thereby, a base material mainly composed of a silica-alumina-based inorganic fibrous material can be obtained.

【0018】出発材料の作製工程では、有機バインダー
が使用される。有機バインダーとしては、例えば、ポリ
エチレンオキサイド、ポリビニルアルコール、メチルセ
ルロース等が挙げられ、これらは単独又は混合して使用
される。また、有機バインダーの混合量はガラス材料1
00重量部に対して、1〜5重量部とすることが好まし
い。上記の各原料を混合する際、出発材料が無機繊維質
材料4を5〜15重量%の範囲で含むように調整するこ
とが重要となるが、有機バインダーを使用することによ
り、無機繊維質材料4の分散性を付与しそれを可能にし
ている。すなわち、有機バインダーを使用しない場合
は、出発材料がスラリー状となり、無機繊維質材料4の
分散性が悪く、3重量%程度までしか出発材料に含ませ
ることができない。例え、3重量%を超えて添加しても
無機繊維質材料4が偏在してしまい、ガラス層3におけ
るクラックの発生を抑制する効果は期待できない。な
お、これら有機バインダーのうち、ガラス材料5にホウ
珪酸ガラスを使用した場合は、ポリエチレンオキサイド
を用いることが、良好な結果が再現性よく得られる点で
好ましい。
In the step of preparing the starting material, an organic binder is used. Examples of the organic binder include polyethylene oxide, polyvinyl alcohol, methyl cellulose, and the like, and these may be used alone or in combination. In addition, the mixing amount of the organic binder is as follows.
Preferably, the amount is 1 to 5 parts by weight based on 00 parts by weight. When mixing each of the above-mentioned raw materials, it is important to adjust the starting material to include the inorganic fibrous material 4 in the range of 5 to 15% by weight. 4 to make it possible. That is, when the organic binder is not used, the starting material becomes a slurry, the dispersibility of the inorganic fibrous material 4 is poor, and the starting material can be contained only up to about 3% by weight. For example, even if it exceeds 3% by weight, the inorganic fibrous material 4 is unevenly distributed, and the effect of suppressing the generation of cracks in the glass layer 3 cannot be expected. When borosilicate glass is used for the glass material 5 among these organic binders, it is preferable to use polyethylene oxide in that good results can be obtained with good reproducibility.

【0019】出発材料の作製工程における混合例として
は、ほう珪酸ガラス粉末20〜30重量部、有機バイン
ダー0.2〜0.4重量部、シリカアルミナ系無機繊維
質材料1〜4.5重量部、水20〜40重量部を混合す
ることにより得られるペースト状又は糊状物が挙げられ
る。
Examples of mixing in the process of preparing the starting materials include 20 to 30 parts by weight of borosilicate glass powder, 0.2 to 0.4 parts by weight of an organic binder, and 1 to 4.5 parts by weight of a silica-alumina-based inorganic fibrous material. And 20 to 40 parts by weight of water.

【0020】次に、塗布工程で基材2の表面に上記出発
材料を塗布する。出発材料は、上述のように、有機バイ
ンダーが使用されているから、伸びが良く基材2の表面
に刷毛等で均一に塗布でき、更に多孔質材料である無機
繊維質材料4を主成分とする基材2内への浸透も適度に
抑えることができ、平滑な表面を有する塗布皮膜を形成
することができる。基材への塗布は、基材の全ての面に
対して行ってもよく、また、一部に対して行ってもよ
い。塗布皮膜が形成された基材は、乾燥後、熱処理が行
われる変成工程でガラス層が形成される。
Next, the starting material is applied to the surface of the substrate 2 in an application step. As described above, since the starting material uses an organic binder, it has good elongation and can be uniformly applied to the surface of the base material 2 with a brush or the like, and further contains an inorganic fibrous material 4 which is a porous material as a main component. To the inside of the base material 2 can be appropriately suppressed, and a coating film having a smooth surface can be formed. The application to the substrate may be performed on all surfaces of the substrate, or may be performed on a part thereof. After the substrate on which the coating film has been formed, a glass layer is formed in a denaturation step in which heat treatment is performed after drying.

【0021】変成工程で出発材料の塗布皮膜を形成した
基材2に加熱処理を施すと、塗布皮膜がガラス層3にな
る。この際、ガラス層3は、出発材料中のガラス材料5
が溶融し、出発材料中に含まれている無機繊維質材料4
を補強材としたものになる。同時に、基材2にはこれを
予め作製する過程で無機バインダーとしてガラス材料5
を含んでいるから、ガラス層3を形成する出発材料中の
ガラス材料5と基材2中のガラス材料5とが溶融して融
着する。加熱処理は、加熱温度1000〜1200℃、
加熱時間20〜60分間の条件で行えばよい。また、ガ
ラス層の厚さは、特に制限されないが、例えば、100
〜200μm 程度の厚さである。なお、出発材料中の有
機バインダー及び水は、加熱処理により気散する。
When the substrate 2 on which the coating film of the starting material is formed in the metamorphosis step is subjected to a heat treatment, the coating film becomes the glass layer 3. At this time, the glass layer 3 is made of the glass material 5 in the starting material.
Is melted and the inorganic fibrous material 4 contained in the starting material 4
Is used as a reinforcing material. At the same time, the glass material 5 is used as an inorganic binder in the process of preparing the base material 2 in advance.
Therefore, the glass material 5 in the starting material forming the glass layer 3 and the glass material 5 in the base material 2 are melted and fused. The heat treatment is performed at a heating temperature of 1000 to 1200 ° C.
What is necessary is just to perform on the conditions of 20 to 60 minutes of heating time. The thickness of the glass layer is not particularly limited.
The thickness is about 200 μm. Note that the organic binder and water in the starting materials are diffused by the heat treatment.

【0022】このようにして作製された耐熱材料1は、
基材2とガラス層3との界面6で、両者のガラス材料5
同士が融着した状態のものとなり、これら基材2とガラ
ス層3との間に物性的な連続性や一体性を付与すること
になり、しかもガラス層3中にも補強材としての無機繊
維質材料4を含んでいる。従って、応力がガラス層3の
物性の不均一な部分に集中するような状況が緩和され、
ガラス層3にクラックが生じたり、基材2からガラス層
3が剥離するようなことが無くなる。
The heat-resistant material 1 thus produced is
At the interface 6 between the base material 2 and the glass layer 3, both glass materials 5
In a state where they are fused to each other, physical continuity and integrity are provided between the substrate 2 and the glass layer 3, and the inorganic fiber as a reinforcing material is also provided in the glass layer 3. Quality material 4. Therefore, the situation in which the stress is concentrated on the portion of the glass layer 3 where the physical properties are uneven is alleviated.
Cracks do not occur in the glass layer 3 and the glass layer 3 does not peel off from the substrate 2.

【0023】[0023]

【実施例】次に、実施例を挙げて本発明を更に具体的に
説明するが、これは単に例示であって、本発明を制限す
るものではない。 参考例1(基材の作製) 先ず、基材を次に示す原料及び配合割合で調製した。 シリカアルミナ系セラミックスファイバー(シリカ成分51重量%、アル ミナ成分49重量%で、繊維長平均50μm、繊維径平均2.5μm) 100重量部 硼酸 4重量部 コロイダルシリカ 25重量部 アルミナゾル 0.6重量部 ポリアクリルアミド系バインダー 0.8重量部 上記配合の原料を混合し、濃度3.5重量%のスラリー
とし、脱水成形法により正方形のタイル形状とした。こ
れを125℃で5時間乾燥し、更に1100℃で10時
間焼成して、200mm角×25mm厚みの基材を得た。上
記焼成により、硼酸、コロイダルシリカ、アルミナゾル
が反応し、ほう珪酸ガラスが生成され、該ほう珪酸ガラ
スが無機バインダーとなって、シリカアルミナ系セラミ
ックスファイバーが互いに結合して基材を形成する。
Next, the present invention will be described in more detail with reference to examples, but this is merely an example and does not limit the present invention. Reference Example 1 (Preparation of Base Material) First, a base material was prepared with the following raw materials and mixing ratios. Silica-alumina ceramic fiber (51% by weight of silica component, 49% by weight of alumina component, average fiber length 50μm, average fiber diameter 2.5μm) 100 parts by weight Boric acid 4 parts by weight Colloidal silica 25 parts by weight Alumina sol 0.6 parts by weight 0.8 parts by weight of a polyacrylamide-based binder The raw materials having the above composition were mixed to form a slurry having a concentration of 3.5% by weight, and a square tile shape was formed by a dehydration molding method. This was dried at 125 ° C. for 5 hours, and further baked at 1100 ° C. for 10 hours to obtain a substrate having a size of 200 mm × 25 mm. By the above calcination, boric acid, colloidal silica, and alumina sol react to generate borosilicate glass, and the borosilicate glass becomes an inorganic binder, and the silica-alumina-based ceramic fibers bond with each other to form a base material.

【0024】実施例1 参考例1により得られた基材に、以下により作製した出
発材料を塗布し、焼成してガラス層を作製して耐熱材料
を得た。先ず、ほう珪酸ガラス粉末20g、ポリエチレ
ンオキサイド0.25gを混合し、更に、水18gを加
えて攪拌し、それにシリカアルミナ系セラミックスファ
イバー2.0g及び水10gを加え攪拌して、出発材
料、すなわち、シリカアルミナ系セラミックスファイバ
ー9重量%含んだ出発材料を得た。次に、この出発材料
を参考例1の基材の表面のみに、塗布量が9.3g(ほ
う珪酸ガラス粉末)/100cm2 となるように刷毛塗り
により塗布した。乾燥後、塗布後の基材を1150℃で
60分間焼成して、耐熱材料を得た。焼成後のガラス層
の厚みは100〜200μmの範囲であった。得られた
耐熱材料についてスポーリング試験を行った。結果を表
1に示す。
Example 1 A starting material prepared as described below was applied to the substrate obtained in Reference Example 1 and fired to form a glass layer to obtain a heat-resistant material. First, 20 g of borosilicate glass powder and 0.25 g of polyethylene oxide were mixed, and 18 g of water was further added and stirred. 2.0 g of silica-alumina-based ceramic fiber and 10 g of water were added and stirred, and the starting material, that is, A starting material containing 9% by weight of silica-alumina-based ceramic fibers was obtained. Next, this starting material was applied only to the surface of the base material of Reference Example 1 by brush coating so that the application amount was 9.3 g (borosilicate glass powder) / 100 cm 2 . After drying, the coated substrate was baked at 1150 ° C. for 60 minutes to obtain a heat-resistant material. The thickness of the glass layer after firing was in the range of 100 to 200 μm. A spalling test was performed on the obtained heat-resistant material. Table 1 shows the results.

【0025】(スポーリング試験)急熱急冷試験であ
る。先ず、試験材料を常温(20℃)の状態からいきな
り500℃に保たれた試験炉内に投入する。そして、こ
の試験材料を500℃の雰囲気に30分間保持した後、
試験炉内から取り出し、30分間自然空冷する。これを
1サイクルとして5サイクル行い、その結果を目視観察
する。この急熱急冷試験の温度を600℃、700℃、
800℃、900℃と100℃単位で上げて、クラック
の発生や剥離等の障害が生ずるまで行う。
(Spalling test) This is a rapid heat quenching test. First, a test material is immediately put into a test furnace kept at 500 ° C. from a state of normal temperature (20 ° C.). Then, after holding this test material in an atmosphere of 500 ° C. for 30 minutes,
Remove from the test furnace and cool naturally for 30 minutes. This is performed as one cycle for 5 cycles, and the result is visually observed. The temperature of the rapid heat quenching test was set to 600 ° C, 700 ° C,
The temperature is raised in units of 800 ° C., 900 ° C. and 100 ° C. until the occurrence of cracks, peeling, and other obstacles occurs.

【0026】実施例2 出発材料がシリカアルミナ系セラミックスファイバーを
5重量%含んでいること以外、実施例1と同様にして耐
熱材料を得た。この耐熱材料につき実施例1と同様の急
熱急冷試験を行った。
Example 2 A heat-resistant material was obtained in the same manner as in Example 1, except that the starting material contained 5% by weight of silica-alumina-based ceramic fibers. The same rapid heat quenching test as in Example 1 was performed on this heat resistant material.

【0027】実施例3 出発材料がシリカアルミナ系セラミックスファイバーを
7重量%含んでいること以外、実施例1と同様にして耐
熱材料を得た。この耐熱材料につき実施例1と同様の急
熱急冷試験を行った。
Example 3 A heat-resistant material was obtained in the same manner as in Example 1, except that the starting material contained 7% by weight of a silica-alumina-based ceramic fiber. The same rapid heat quenching test as in Example 1 was performed on this heat resistant material.

【0028】実施例4 出発材料がシリカアルミナ系セラミックスファイバーを
14重量%含んでいること以外、実施例1と同様にして
耐熱材料を得た。この耐熱材料につき実施例1と同様の
急熱急冷試験を行った。
Example 4 A heat-resistant material was obtained in the same manner as in Example 1 except that the starting material contained 14% by weight of silica-alumina-based ceramic fibers. The same rapid heat quenching test as in Example 1 was performed on this heat resistant material.

【0029】比較例1 シリカアルミナ系セラミックスファイバーを全く含んで
いない出発材料とした以外は実施例1と同様の出発材料
とした。この出発材料を実施例1の基材の表面のみに、
塗布量が9.3g(ほう珪酸ガラス粉末)/100cm2
となるように、刷毛塗りにより塗布した。そして、塗布
後の基材を乾燥後、1150℃で60分間焼成して、耐
熱材料を得た。得られた耐熱材料についてスポーリング
試験を行った。実施例2〜4、比較例1のスポーリング
試験結果を表1に示す。
Comparative Example 1 The same starting material as in Example 1 was used except that the starting material did not contain any silica-alumina-based ceramic fibers. This starting material was applied only to the surface of the substrate of Example 1,
9.3 g (borosilicate glass powder) / 100 cm 2
Was applied by brush coating so that Then, the coated base material was dried and baked at 1150 ° C. for 60 minutes to obtain a heat-resistant material. A spalling test was performed on the obtained heat-resistant material. Table 1 shows the spalling test results of Examples 2 to 4 and Comparative Example 1.

【0030】[0030]

【表1】 [Table 1]

【0031】表1によれば、実施例1は800℃まで全
く変化がなく、900℃になって基材の層間が割れた
が、ガラス層には変化がなった。実施例2及び実施例3
は600℃の1サイクル目でガラス層にクラックが生じ
た。実施例4は、800℃まで全く変化がなく、900
℃になって基材の層間が割れたが、ガラス層には変化が
なった。これに対して、比較例1では、500℃の1サ
イクル目でガラス層にクラックが生じ、実施例1〜4と
の間に明確な差が認められた。
According to Table 1, in Example 1, there was no change up to 800 ° C., and at 900 ° C., the interlayer of the base material was broken, but the glass layer did not change. Example 2 and Example 3
In the first cycle at 600 ° C., cracks occurred in the glass layer. Example 4 shows no change up to 800 ° C.
At ℃, the interlayer of the base material was broken, but the glass layer did not change. On the other hand, in Comparative Example 1, cracks occurred in the glass layer at the first cycle of 500 ° C., and a clear difference was observed between Examples 1 to 4.

【0032】[0032]

【発明の効果】本発明によれば、基材表面にガラス層を
形成することで、基材表面からの発塵性を抑えることが
できる。そして、このガラス層は、基材の主成分である
無機繊維質材料を補強材とし、ガラス層の主成分である
ガラス材料を基材のバインダーとしているから、ガラス
層を形成するための加熱処理をする過程で、基材中のガ
ラス材料とガラス層のガラス材料とが融着して、これら
の間に物性的な連続性や一体性を付与して、応力がガラ
ス層の物性の不均一な部分に集中するような状況が緩和
され、ガラス層にクラックが生じたり、基材からの剥が
れ現象が生じることが抑制されて、耐熱衝撃性や耐久性
を併せ持つことができる。
According to the present invention, by forming a glass layer on the surface of a substrate, dust generation from the surface of the substrate can be suppressed. The glass layer uses an inorganic fibrous material, which is the main component of the substrate, as a reinforcing material, and the glass material, which is a main component of the glass layer, as a binder of the substrate. In the process, the glass material in the base material and the glass material in the glass layer are fused, giving physical continuity and integrity between them, and the stress is uneven in the physical properties of the glass layer. Such a situation can be alleviated, and the occurrence of cracks in the glass layer and the phenomenon of peeling from the base material can be suppressed, and both heat shock resistance and durability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における耐熱材料を示す断
面図である。
FIG. 1 is a cross-sectional view showing a heat-resistant material according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 耐熱材料 2 基材 3 ガラス層 4 無機繊維質材料 5 ガラス材料 6 界面 DESCRIPTION OF SYMBOLS 1 Heat resistant material 2 Base material 3 Glass layer 4 Inorganic fiber material 5 Glass material 6 Interface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鳥居 信宏 静岡県浜松市新都田1−8−1 ニチアス 株式会社浜松研究所内 (72)発明者 渡部 裕太 静岡県浜松市新都田1−8−1 ニチアス 株式会社浜松研究所内 (72)発明者 三原 徹也 東京都港区芝大門1−1−26 ニチアス株 式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nobuhiro Torii 1-8-1 Shintoda, Hamamatsu-shi, Shizuoka Nichias Inside Hamamatsu Laboratory Co., Ltd. (72) Inventor Yuta Watanabe 1-8-1, Shintoda, Hamamatsu-shi, Shizuoka Nichias Hamamatsu Research Laboratory Co., Ltd. (72) Inventor Tetsuya Mihara 1-1-26 Shiba Daimon, Minato-ku, Tokyo Nichias Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 無機繊維質材料を主成分とする基材に、
ガラス材料を主成分とするガラス層を接して設けてな
り、前記基材はバインダーとして前記ガラス材料を含む
と共に、前記ガラス層は補強材として前記無機繊維質材
料を含むことを特徴とする耐熱材料。
1. A base material containing an inorganic fibrous material as a main component,
A heat-resistant material comprising a glass layer containing a glass material as a main component, wherein the base material contains the glass material as a binder, and the glass layer contains the inorganic fibrous material as a reinforcing material. .
【請求項2】 前記ガラス層に含んだ前記無機繊維質材
料の含有量が、5〜15重量%であることを特徴とする
請求項1記載の耐熱材料。
2. The heat-resistant material according to claim 1, wherein the content of the inorganic fibrous material contained in the glass layer is 5 to 15% by weight.
【請求項3】 前記無機繊維質材料がシリカアルミナ系
セラミックスファイバーであり、前記ガラス材料がホウ
珪酸ガラスであることを特徴とする請求項1記載の耐熱
材料。
3. The heat-resistant material according to claim 1, wherein the inorganic fibrous material is a silica-alumina-based ceramic fiber, and the glass material is borosilicate glass.
【請求項4】 前記基材と前記ガラス層との界面で、前
記基材中のガラス材料と前記ガラス層中のガラス材料と
が融着していることを特徴とする請求項1又は2記載の
耐熱材料。
4. The glass material in the base material and the glass material in the glass layer are fused at an interface between the base material and the glass layer. Heat resistant material.
【請求項5】 ガラス材料、有機バインダー、無機繊維
質材料及び水を混合し、糊状又はペースト状の出発材料
を作製する工程と、前記無機繊維質材料を主成分とし、
前記ガラス材料をバインダーとする基材の表面の少なく
とも一部に前記出発材料を塗布する工程と、前記ガラス
材料を加熱処理によりガラス層に変成させる工程と、を
有することを特徴とする耐熱材料の作製方法。
5. A step of mixing a glass material, an organic binder, an inorganic fibrous material, and water to produce a paste-like or paste-like starting material;
A step of applying the starting material to at least a part of the surface of the base material using the glass material as a binder, and a step of transforming the glass material into a glass layer by a heat treatment; Production method.
【請求項6】 前記有機バインダーが、ポリエチレンオ
キサイドであることを特徴とする請求項5記載の耐熱材
料の作製方法。
6. The method according to claim 5, wherein the organic binder is polyethylene oxide.
JP25245198A 1998-09-07 1998-09-07 Heat resistant material and method for producing the same Expired - Fee Related JP3606744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25245198A JP3606744B2 (en) 1998-09-07 1998-09-07 Heat resistant material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25245198A JP3606744B2 (en) 1998-09-07 1998-09-07 Heat resistant material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000086361A true JP2000086361A (en) 2000-03-28
JP3606744B2 JP3606744B2 (en) 2005-01-05

Family

ID=17237572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25245198A Expired - Fee Related JP3606744B2 (en) 1998-09-07 1998-09-07 Heat resistant material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3606744B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070544A (en) * 2000-08-25 2002-03-08 Ibiden Co Ltd Holding seal material used in catalyst converter for exhaust emission control
JP2002307413A (en) * 2001-04-16 2002-10-23 Ibiden Co Ltd Heat insulator for baking furnace and its manufacturing method
JP2007091585A (en) * 2005-09-28 2007-04-12 Snecma Method for protecting cmc thermostructural part made from ceramic matrix composite material against wear, and coating and part obtained thereby
EP1818321A2 (en) * 2006-02-13 2007-08-15 Ibiden Co., Ltd. Inorganic fiber article
JP4937414B1 (en) * 2011-03-30 2012-05-23 ニチアス株式会社 Cured shaped product
CZ303964B6 (en) * 2012-03-19 2013-07-17 Vysoká skola chemicko - technologická v Praze Certified inorganic binding agent for inorganic heat-insulating fibers and inorganic heat-insulating fibers with such an inorganic binding agent
JP2019157192A (en) * 2018-03-12 2019-09-19 日本特殊陶業株式会社 Heat insulation film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070544A (en) * 2000-08-25 2002-03-08 Ibiden Co Ltd Holding seal material used in catalyst converter for exhaust emission control
JP2002307413A (en) * 2001-04-16 2002-10-23 Ibiden Co Ltd Heat insulator for baking furnace and its manufacturing method
JP2007091585A (en) * 2005-09-28 2007-04-12 Snecma Method for protecting cmc thermostructural part made from ceramic matrix composite material against wear, and coating and part obtained thereby
EP1818321A2 (en) * 2006-02-13 2007-08-15 Ibiden Co., Ltd. Inorganic fiber article
EP1818321A3 (en) * 2006-02-13 2010-03-10 Ibiden Co., Ltd. Inorganic fiber article
US7718252B2 (en) 2006-02-13 2010-05-18 Ibiden Co., Ltd. Inorganic fiber article
JP4937414B1 (en) * 2011-03-30 2012-05-23 ニチアス株式会社 Cured shaped product
WO2012132469A1 (en) * 2011-03-30 2012-10-04 ニチアス株式会社 Cured molded article
CZ303964B6 (en) * 2012-03-19 2013-07-17 Vysoká skola chemicko - technologická v Praze Certified inorganic binding agent for inorganic heat-insulating fibers and inorganic heat-insulating fibers with such an inorganic binding agent
JP2019157192A (en) * 2018-03-12 2019-09-19 日本特殊陶業株式会社 Heat insulation film

Also Published As

Publication number Publication date
JP3606744B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
US4567103A (en) Carbonaceous articles having oxidation prohibitive coatings thereon
EP0550305B1 (en) Method of protecting a composite material against oxidation, and products protected in this way
JPH05270859A (en) Glaze composition and glazing method
CN109336643B (en) Preparation method of silicon carbide ceramic surface laser cladding glass film layer and composite material
CN111170638B (en) Super stain-resistant ceramic tile color-preserving glaze, stain-resistant ceramic tile and preparation process thereof
JP2000086361A (en) Heat resistant material and its production
CN112424132A (en) Setter plate and method of ceramifying glass article using the same
JP2003095757A (en) Thermal insulation coating material for carbon- containing refractory
KR102153315B1 (en) Manufacturing method of bone china earthenware using the glaze composition for chemical strengthening of bone china earthenware
JP5374350B2 (en) White porcelain manufacturing method and glaze suitable therefor
Barbieri et al. Technological and Product Requirements for Fast Firing Glass‐Ceramic Glazes
JP2000246821A (en) Heat resistant material and its manufacture
JPS60118648A (en) Glaze composition for ceramic base
JPH0640783A (en) Insulating substrate and its production
JP2001206783A (en) Inorganic fibrous formed body, heat insulating material and their manufacturing method
JP2004532179A (en) Combustion assisting member used for heat-treating an article made of different materials at a firing temperature and a method of manufacturing the same
JP3130972B2 (en) Ceramic substrate and method of manufacturing the same
KR20010092981A (en) tile glaze and its manufacturing method
JPH0753281A (en) Aluminum titanate sintered compact stable at high temperature
JP3936007B2 (en) Firing jig
JPH0790619A (en) High temperature heat resistant member
JP2002348174A (en) HEATER MATERIAL CONTAINING MoSi2 AS ITS MAIN COMPONENT WITH LOW-OXYGEN DIFFUSE VITREOUS COATING FILM
CN105601109B (en) A kind of frit and preparation method thereof of high beginning fusing point high expansion coefficient
JPS6342705B2 (en)
JPH07294154A (en) Setter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees