JPH0753281A - Aluminum titanate sintered compact stable at high temperature - Google Patents

Aluminum titanate sintered compact stable at high temperature

Info

Publication number
JPH0753281A
JPH0753281A JP5197300A JP19730093A JPH0753281A JP H0753281 A JPH0753281 A JP H0753281A JP 5197300 A JP5197300 A JP 5197300A JP 19730093 A JP19730093 A JP 19730093A JP H0753281 A JPH0753281 A JP H0753281A
Authority
JP
Japan
Prior art keywords
aluminum titanate
sintered body
coating layer
sintered compact
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5197300A
Other languages
Japanese (ja)
Inventor
Saburo Matsuo
松尾三郎
Taijiro Matsui
泰次郎 松井
Toshiyuki Suzuki
鈴木利幸
Yasuyuki Hayashida
林田易行
Ryuichi Suzuki
鈴木龍一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Nippon Steel Corp
Original Assignee
Harima Ceramic Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd, Nippon Steel Corp filed Critical Harima Ceramic Co Ltd
Priority to JP5197300A priority Critical patent/JPH0753281A/en
Publication of JPH0753281A publication Critical patent/JPH0753281A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5064Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • C04B2111/00887Ferrous metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain an aluminum titanate-based sintered compact excellent in stability at a high temp. CONSTITUTION:A glassy coating layer is formed on the surface of an aluminum titanate-based sintered compact. The material of the glassy coating layer is preferably a low expansion glass and a sintered compact produced by heat treatment in a nonoxidizing atmosphere at 800 to <1,500 deg.C after firing in an oxidizing atmosphere at >=1,500 deg.C is used as the aluminum titanate-based sintered compact as a substrate. The objective aluminum titanate-based sintered compact having a low thermal expansion and a high strength is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温安定性に優れたチ
タン酸アルミニウム質焼結体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum titanate-based sintered body excellent in high temperature stability.

【0002】[0002]

【従来の技術】チタン酸アルミニウム(Al2TiO5
質焼結体は、高融点、低熱膨張性などの特性のために、
例えば鉄鋼産業における耐熱材として期待されている。
2. Description of the Related Art Aluminum titanate (Al 2 TiO 5 )
The quality sintered body has characteristics such as high melting point and low thermal expansion,
For example, it is expected as a heat resistant material in the steel industry.

【0003】[0003]

【発明が解決しょうとする課題】しかし、十分な使用実
績が得られていない。その要因として、チタン酸アルミ
ニウムが800〜1300℃の温度域で長時間使用する
と、ルチルとコランダムに熱分解し、熱膨張係数が大き
くなると共に、熱膨張の異方性によるマイクロクラック
の発生がある。
[Problems to be Solved by the Invention] However, a sufficient usage record has not been obtained. As a factor, when aluminum titanate is used for a long time in the temperature range of 800 to 1300 ° C., it is thermally decomposed into rutile and corundum, the coefficient of thermal expansion is increased, and microcracks are generated due to anisotropy of thermal expansion. .

【0004】そこで、これらの問題を解決するために、
チタン酸アルミニウムに種々の添加物を添加することが
提案されている。例えば、La,Y,Dy,Erなどの
元素の酸化物を添加した特開平4−317463号公
報、ジルコン、酸化鉄、希土類酸化物などを添加する特
開平5−58722号公報などである。
Therefore, in order to solve these problems,
It has been proposed to add various additives to aluminum titanate. For example, there are JP-A-4-317463 in which oxides of elements such as La, Y, Dy and Er are added, and JP-A-5-58722 in which zircon, iron oxide, rare earth oxides and the like are added.

【0005】これらの添加物はチタン酸アルミニウムと
固溶体を作り、高温下でのチタン酸アルミニウムの熱分
解を抑制すると共に、マイクロクラックのサイズを小さ
くして焼結体の強度低下を防止する目的をもつ。しか
し、マイクロクラックによる強度低下の問題は依然、十
分なものではない。また、固溶体の生成やマイクロクラ
ックのサイズが小さくなることは、反面、熱膨張率が増
大してチタン酸アルミニウム質焼結体の特徴である低熱
膨張性が損なわれる。
These additives form a solid solution with aluminum titanate to suppress the thermal decomposition of aluminum titanate at high temperature and to reduce the size of microcracks to prevent the strength of the sintered body from decreasing. Hold. However, the problem of strength reduction due to microcracks is still not sufficient. On the other hand, the formation of the solid solution and the reduction of the size of the microcracks, on the other hand, increase the coefficient of thermal expansion, impairing the low thermal expansion characteristic of the aluminum titanate-based sintered body.

【0006】[0006]

【課題を解決するための手段】本発明は、上記従来の問
題点を解決したチタン酸アルミニウム質焼結体を得るこ
とを目的とする。その特徴とするところは、特許請求の
範囲に記載したとおりである。
SUMMARY OF THE INVENTION It is an object of the present invention to obtain an aluminum titanate-based sintered body which solves the above-mentioned conventional problems. The features thereof are as described in the claims.

【0007】本発明のチタン酸アルミニウム質焼結体
は、表面にガラス質被覆層を設けたことにより、マイク
ロクラックが発生しても、低温域ではそのクラック内に
ガラス質成分が貫入して焼結体の強度低下を防止する。
一方、高温域では一旦貫入したガラス質成分が粘性の低
下によって溶出し、クラックが膨張吸収代として作用
し、低熱膨張性を発揮する。
The aluminum titanate-based sintered body of the present invention is provided with a glassy coating layer on the surface thereof, so that even if microcracks are generated, glassy components penetrate into the cracks in the low temperature range and are burned. Prevents the strength of the body from decreasing.
On the other hand, in the high temperature range, the glassy component once penetrated is eluted due to the decrease in viscosity, and the crack acts as an expansion and absorption allowance and exhibits low thermal expansion.

【0008】チタン酸アルミニウムの熱分解は酸化より
も還元の雰囲気、特にH2ガス雰囲気下で激しく起こ
る。本発明の焼結体は、このガラス質被覆層の存在で、
チタン酸アルミニウムへの遮断作用によって熱分解が抑
制されることも、低熱膨張性、強度低下防止に効果があ
る。
Pyrolysis of aluminum titanate occurs violently in a reducing atmosphere rather than an oxidizing atmosphere, particularly in an H 2 gas atmosphere. The sintered body of the present invention, in the presence of this glassy coating layer,
Suppression of thermal decomposition due to the blocking effect on aluminum titanate is also effective for low thermal expansion and strength reduction prevention.

【0009】ガラス質被覆層の被覆方法は、例えばガラ
ス質物質の粉末を分散したスラリーを塗布後、加熱し、
ガラス質物質を溶着させる。被覆厚みは例えば0.3〜
5mmとし、好ましくは0.5〜2mmである。厚みが
大きくなり過ぎるとハクリししやすい。
The method for coating the vitreous coating layer is, for example, after applying a slurry in which powder of a vitreous substance is dispersed, followed by heating,
Weld glassy material. The coating thickness is 0.3 to
It is 5 mm, preferably 0.5 to 2 mm. If the thickness is too large, it will easily peel off.

【0010】ガラス質被覆層の具体的な材質例は、ソー
ダ石灰ガラス、鉛ガラス、ホウケイ酸ガラス、石英ガラ
ス、β−スポジュメント(Li2O・Al23・4Si
2)、ユークリプタイト(Li2O・Al23・2Si
2)、コージェライト(2MgO・2Al23・5S
iO2)などである。中でも、石英ガラス、β−スポジ
ュメント、ユークリプタイト、コージェライトなどの低
熱膨張性のものが好ましい。低熱膨張性ガラス質被覆層
は、基体となるチタン酸アルミニウム焼結体との膨張差
が少ないために、ハクリ、ヒビ割れが少なく、本発明の
効果がより一層発揮される。
Specific examples of the material of the glassy coating layer include soda lime glass, lead glass, borosilicate glass, quartz glass and β-spodumene (Li 2 O.Al 2 O 3 .4Si).
O 2 ), Eucryptite (Li 2 O ・ Al 2 O 3・ 2Si
O 2 ), cordierite (2MgO ・ 2Al 2 O 3・ 5S
iO 2 ) and the like. Of these, those having a low thermal expansion coefficient such as quartz glass, β-sporement, eucryptite and cordierite are preferable. Since the low thermal expansion glassy coating layer has a small difference in expansion from the aluminum titanate sintered body which is the base, there is little cracking or cracking, and the effect of the present invention is further exerted.

【0011】このガラス質被覆層は、例えばBNを添加
混合してもよい。BNは濡れ性が悪いことからこれを添
加したガラス質被覆層は、溶融金属、溶融スラグなどの
付着防止に効果がある。BNの添加量は、ガラス質被覆
層のもつ効果が損なわれないように、内掛け70wt%
以下が好ましい。
BN may be added to and mixed with the glassy coating layer. Since BN has poor wettability, the vitreous coating layer to which it is added is effective in preventing adhesion of molten metal, molten slag and the like. The amount of BN added is 70 wt% for the inner layer so that the effect of the vitreous coating layer is not impaired.
The following are preferred.

【0012】本発明において、基体となるチタン酸アル
ミニウム焼結体は従来材質と特に変わりはない。例え
ば、強度付与のために、ケイ素、鉄、クロム、ジルコニ
ウム、イットリウム、セリウム、ランタン、ジルコン、
ジルコニア、ファイバー類、セラミックウィスカーなど
を添加した材質でもよい。
In the present invention, the aluminum titanate sintered body as the base material is not different from the conventional material. For example, to impart strength, silicon, iron, chromium, zirconium, yttrium, cerium, lanthanum, zircon,
A material to which zirconia, fibers, ceramic whiskers, etc. are added may be used.

【0013】チタン酸アルミニウム焼結体の焼成は、一
般に酸化雰囲気(大気中)で約1600℃の温度で行わ
れる。これに対し、この焼成を1500℃以上の酸化雰
囲気で行った後、1500℃未満800℃以上の非酸化
雰囲気で加熱処理するとチタン酸アルミニウム焼結体の
機械的強度は向上する。また、この際に、チタン酸アル
ミニウム焼結体が本来有している高融点、低熱膨張性お
よび低熱伝導性を損なうこともない。したがって、本発
明においは、この条件で焼成されたチタン酸アルミニウ
ム焼結体を基体として使用することが好ましい。
Firing of the aluminum titanate sintered body is generally carried out at a temperature of about 1600 ° C. in an oxidizing atmosphere (in the air). On the other hand, the mechanical strength of the aluminum titanate sintered body is improved by performing the firing in an oxidizing atmosphere of 1500 ° C. or higher and then performing a heat treatment in a non-oxidizing atmosphere of less than 1500 ° C. and 800 ° C. or higher. In this case, the high melting point, low thermal expansion property and low thermal conductivity which the aluminum titanate sintered body originally has are not impaired. Therefore, in the present invention, it is preferable to use the aluminum titanate sintered body fired under these conditions as the substrate.

【0014】チタン酸アルミニウムは、焼成過程の約8
00℃前後の中間温度域からAl23とTiO2に熱分
解するが、さらに昇温させると1500℃以上の高温下
で再び合成し、チタン酸アルミニウムになる。そこで、
1500℃以上の酸化雰囲気で一旦焼成したものを、1
500℃未満800℃以上の非酸化雰囲気で加熱処理す
ることにより、焼結組織内の一部分がこの中間温度域で
の加熱処理によってAl23とTiO2に熱分解する。
そして、Al23とTiO2が本来の強度を発揮して、
チタン酸アルミニウム焼結体の強度低下を防止するもの
と思われる。
Aluminum titanate has about 8
Although it is thermally decomposed into Al 2 O 3 and TiO 2 from an intermediate temperature range of around 00 ° C., when it is further heated, it is synthesized again at a high temperature of 1500 ° C. or higher to become aluminum titanate. Therefore,
What was once baked in an oxidizing atmosphere at 1500 ° C or higher
By performing the heat treatment in a non-oxidizing atmosphere of less than 500 ° C. and 800 ° C. or more, a part of the sintered structure is thermally decomposed into Al 2 O 3 and TiO 2 by the heat treatment in this intermediate temperature range.
And Al 2 O 3 and TiO 2 exert their original strength,
It is believed to prevent the strength of the aluminum titanate sintered body from decreasing.

【0015】酸化雰囲気での焼成温度は1500℃以
上、好ましくは1500〜1800℃である。1500
℃未満では合成が不十分である。焼成後の非酸化雰囲気
での加熱処理温度は、1500℃未満、800℃以上、
好ましくは、800〜1200℃である。800℃未満
ではチタン酸アルミニウムが分解せず、1500℃以上
では分解したものが再び合成され、Al23、TiO2
のそれぞれが持つ強度が発揮されないためである。
The firing temperature in the oxidizing atmosphere is 1500 ° C. or higher, preferably 1500 to 1800 ° C. 1500
If the temperature is lower than ℃, the synthesis is insufficient. The heat treatment temperature in the non-oxidizing atmosphere after firing is less than 1500 ° C, 800 ° C or more,
It is preferably 800 to 1200 ° C. Aluminum titanate does not decompose below 800 ° C., but decomposed above 1500 ° C. is synthesized again, and Al 2 O 3 and TiO 2
This is because the strength of each of them is not exhibited.

【0016】加熱処理を非酸化雰囲気で行うのは、酸化
雰囲気ではチタン酸アルミニウムの分解が生じ難いため
である。非酸化雰囲気下で加熱するためには、例えば真
空(減圧)、不活性ガスの導入、あるいはサヤ内にコー
クスブリーズと共に納めての還元雰囲気条件などがあ
る。
The heat treatment is performed in a non-oxidizing atmosphere because it is difficult for aluminum titanate to decompose in the oxidizing atmosphere. In order to heat in a non-oxidizing atmosphere, there are, for example, vacuum (reduced pressure), introduction of an inert gas, or reducing atmosphere conditions in which a coke breeze is housed in a sheath.

【0017】本発明によるチタン酸アルミニウム焼結体
の用途は、高温雰囲気下で使用される耐熱部材である。
例えば炉内張り材、温度・レベルセンサーなどの防熱
板、保護板などである。
The application of the aluminum titanate sintered body according to the present invention is a heat resistant member used in a high temperature atmosphere.
For example, a furnace lining material, a heat insulating plate such as a temperature / level sensor, and a protective plate.

【0018】[0018]

【実施例】市販品より求めた平均粒径100μm、モル
比がAl23:TiO2=1:1の顆粒チタン酸アルミ
ニウムを1200kg/cm2の圧力で一辺100×厚
さ10mmの角板状に加圧成形した。これを、乾燥後、
1600℃×3hrで焼成し、基体となるチタン酸アル
ミニウム焼結体を得た。
EXAMPLE Granular aluminum titanate having an average particle size of 100 μm and a molar ratio of Al 2 O 3 : TiO 2 = 1: 1 obtained from a commercial product was applied to a square plate having a side of 100 × thickness of 10 mm at a pressure of 1200 kg / cm 2. It was pressed into a shape. After drying this,
It was fired at 1600 ° C. for 3 hours to obtain an aluminum titanate sintered body as a base.

【0019】このチタン酸アルミニウム焼結体にガラス
質被覆層を設け、本発明の実施例品とした。
A glassy coating layer was provided on this aluminum titanate sintered body to obtain an article of the present invention.

【0020】本発明実施例1〜4は、表1に示す被覆材
成分の微粉末のスラリー(固形分20wt%の水溶液)
を基体に塗布し、乾燥後、加熱して約0.7〜1mmの
厚さのガラス質被覆層を形成した。その際の加熱温度
は、表中に示すとおりである。実施例5は、BNを内掛
けで70wt%添加したユークリプタイトを被覆した例
である。比較例は、ガラス質被覆層を設けない材質であ
る。
In Examples 1 to 4 of the present invention, a slurry of fine powder of the coating material component shown in Table 1 (aqueous solution having a solid content of 20 wt%)
Was coated on a substrate, dried and then heated to form a glassy coating layer having a thickness of about 0.7 to 1 mm. The heating temperature at that time is as shown in the table. Example 5 is an example in which eucryptite with 70% by weight of BN added internally is coated. The comparative example is a material having no glassy coating layer.

【0021】表1の結果から、本発明実施例はガラス質
被覆層を設けたことにより、機械的強度に優れることが
確認される。X線回析の結果からは、基体表面部にチタ
ン酸アルミニウムの存在が確認された。また、BN添加
の被覆層を設けた実施例5は、さらに濡れ性が悪く、溶
融金属が付着し難い効果がある。
From the results shown in Table 1, it is confirmed that the examples of the present invention are excellent in mechanical strength by providing the glassy coating layer. From the result of X-ray diffraction, the presence of aluminum titanate was confirmed on the surface of the substrate. In addition, Example 5 provided with the coating layer containing BN has the effect of being further inferior in wettability and making it difficult for molten metal to adhere.

【0022】これに対し、ガラス質被覆層を設けない比
較例は、基体表面部がルチルとコランダムに分解してお
り、機械的強度も劣る。
On the other hand, in the comparative example in which the glassy coating layer is not provided, the surface portion of the substrate is decomposed into rutile and corundum, and the mechanical strength is poor.

【0023】[0023]

【表1】 [Table 1]

【0024】表2の中でA〜Fは、β−スポジュメント
を被覆材に設けた実施例2において、基体として使用し
たチタン酸アルミニウム焼結体の焼成条件を変化させた
ものである。また、G〜Lは、BN添加のユークリプタ
イトを被覆材に設けた実施例5において、基体として使
用したチタン酸アルミニウム焼結体の焼成条件を変化さ
せたものである。非酸化雰囲気での加熱処理は、真空焼
成炉を使用して行った。
In Table 2, A to F are obtained by changing the firing conditions of the aluminum titanate sintered body used as the substrate in Example 2 in which the coating material was provided with β-spores. Further, G to L are obtained by changing the firing conditions of the aluminum titanate sintered body used as the substrate in Example 5 in which the coating material was provided with BN-added eucryptite. The heat treatment in a non-oxidizing atmosphere was performed using a vacuum firing furnace.

【0025】[0025]

【表2】 [Table 2]

【0026】表2の試験結果から、同じガラス質被覆層
を設けたチタン酸アルミニウム焼結体であっても、15
00℃以上の酸化雰囲気で焼成後、1500℃未満80
0℃以上の非酸化雰囲気で加熱処理して得られたもの
が、機械的強度に優れていることがわかる。
From the test results of Table 2, even if the aluminum titanate sintered body provided with the same glassy coating layer,
After firing in an oxidizing atmosphere at 00 ° C or higher, less than 1500 ° C 80
It can be seen that the material obtained by heat treatment in a non-oxidizing atmosphere at 0 ° C. or higher has excellent mechanical strength.

【0027】なお、表1,2において示す試験は、以下
の方法で行った。
The tests shown in Tables 1 and 2 were carried out by the following method.

【0028】機械的強度;厚さ9×幅40×長さ80m
mのサイズに切りだした試験片ついて、長さ60mmの
スパン上で曲げ強さを測定した。ガラス質被覆層を有す
る試験片については、ガラス質被覆層が下部に位置した
状態で測定した。
Mechanical strength; thickness 9 × width 40 × length 80 m
For a test piece cut into a size of m, the bending strength was measured on a span of 60 mm in length. For the test piece having the glassy coating layer, the measurement was carried out with the glassy coating layer positioned at the bottom.

【0029】熱膨張係数;耐火れんがの熱間線膨張率の
試験方法(JIS−R2207)に準じて測定した。
Thermal expansion coefficient: Measured according to the test method (JIS-R2207) of the hot linear expansion coefficient of refractory bricks.

【0030】濡れ性;溶融金属を付着させて、冷却後の
付着度を観察した。
Wettability: Molten metal was adhered and the degree of adhesion after cooling was observed.

【0031】X線回折;1100℃×1時間で加熱した
後、基体表面部を測定した。
X-ray diffraction: After heating at 1100 ° C. for 1 hour, the surface of the substrate was measured.

【0032】[0032]

【効果】本発明により得られたチタン酸アルミニウム焼
結体は、以上の実施例の試験結果からも明らかなよう
に、低温域、高温域を問わず機械的強度に優れている。
その結果、チタン酸アルミニウム質焼結体が本来持って
いる高融点、低熱膨張性の効果がいかんなく発揮され、
例えば鉄鋼産業における耐熱材として十分な性能を備え
ている。
[Effect] The aluminum titanate sintered body obtained according to the present invention has excellent mechanical strength in both low and high temperature regions, as is clear from the test results of the above examples.
As a result, the high melting point and low thermal expansion properties that the aluminum titanate sintered body originally has are exhibited,
For example, it has sufficient performance as a heat resistant material in the steel industry.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木利幸 兵庫県高砂市荒井町新浜1丁目3番1号 ハリマセラミック株式会社内 (72)発明者 林田易行 兵庫県高砂市荒井町新浜1丁目3番1号 ハリマセラミック株式会社内 (72)発明者 鈴木龍一 兵庫県高砂市荒井町新浜1丁目3番1号 ハリマセラミック株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Suzuki 1-3-1, Niihama, Arai-cho, Takasago-shi, Harima Ceramics Co., Ltd. No. Harima Ceramic Co., Ltd. (72) Inventor Ryuichi Suzuki 1-3-1, Niihama, Arai-cho, Takasago-shi, Hyogo Harima Ceramic Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 チタン酸アルミニウム質焼結体の表面に
ガラス質被覆層を設けてなる、高温で安定なチタン酸ア
ルミニウム質焼結体。
1. An aluminum titanate-based sintered body, which is stable at high temperature, comprising a glassy coating layer on the surface of the aluminum titanate-based sintered body.
【請求項2】 ガラス質被覆層が低膨張性ガラスよりな
る、請求項1記載の高温で安定なチタン酸アルミニウム
質焼結体。
2. The aluminum titanate-based sintered body according to claim 1, wherein the vitreous coating layer is made of low-expansion glass.
【請求項3】 ガラス質被覆層がBNを70wt%以下
含有する、請求項1又は2記載の高温で安定なチタン酸
アルミニウム質焼結体。
3. The high temperature stable aluminum titanate sintered body according to claim 1, wherein the vitreous coating layer contains 70 wt% or less of BN.
【請求項4】 請求項1、2又は3記載のチタン酸アル
ミニウム質焼結体が、チタン酸アルミニウムを主材とし
た成形体を1500℃以上の酸化雰囲気で焼成後、15
00℃未満800℃以上の非酸化雰囲気で加熱処理して
得られたものである、高温で安定なチタン酸アルミニウ
ム質焼結体。
4. The aluminum titanate-based sintered body according to claim 1, 2 or 3, which is obtained by firing a molded body containing aluminum titanate as a main material in an oxidizing atmosphere at 1500 ° C. or higher, and
A high-temperature-stable aluminum titanate-based sintered body obtained by heat treatment in a non-oxidizing atmosphere at a temperature of less than 00 ° C and 800 ° C or more.
JP5197300A 1993-08-09 1993-08-09 Aluminum titanate sintered compact stable at high temperature Withdrawn JPH0753281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5197300A JPH0753281A (en) 1993-08-09 1993-08-09 Aluminum titanate sintered compact stable at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5197300A JPH0753281A (en) 1993-08-09 1993-08-09 Aluminum titanate sintered compact stable at high temperature

Publications (1)

Publication Number Publication Date
JPH0753281A true JPH0753281A (en) 1995-02-28

Family

ID=16372172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5197300A Withdrawn JPH0753281A (en) 1993-08-09 1993-08-09 Aluminum titanate sintered compact stable at high temperature

Country Status (1)

Country Link
JP (1) JPH0753281A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087997A1 (en) * 2008-01-09 2009-07-16 Sumitomo Chemical Company, Limited Process for production of aluminum titanate-based ceramics
WO2009154219A1 (en) * 2008-06-18 2009-12-23 住友化学株式会社 Method for producing aluminum titanate-based ceramic
JP2010138060A (en) * 2008-09-04 2010-06-24 Sumitomo Chemical Co Ltd Method for manufacturing aluminum titanate ceramic
JP2011206635A (en) * 2010-03-29 2011-10-20 Kyocera Corp Honeycomb structure, and exhaust gas treatment device using the same
KR101110368B1 (en) * 2010-04-30 2012-02-15 한국세라믹기술원 Oxide sintered material having heat resistance and impact resistance and manufacturing method of the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087997A1 (en) * 2008-01-09 2009-07-16 Sumitomo Chemical Company, Limited Process for production of aluminum titanate-based ceramics
JP2009184903A (en) * 2008-01-09 2009-08-20 Sumitomo Chemical Co Ltd Process for production of aluminum titanate-based ceramic
JP2012162455A (en) * 2008-01-09 2012-08-30 Sumitomo Chemical Co Ltd Method for producing aluminum titanate-based ceramics
WO2009154219A1 (en) * 2008-06-18 2009-12-23 住友化学株式会社 Method for producing aluminum titanate-based ceramic
JP2010159197A (en) * 2008-06-18 2010-07-22 Sumitomo Chemical Co Ltd Method for producing aluminum titanate-based ceramic
JP2010138060A (en) * 2008-09-04 2010-06-24 Sumitomo Chemical Co Ltd Method for manufacturing aluminum titanate ceramic
JP2011206635A (en) * 2010-03-29 2011-10-20 Kyocera Corp Honeycomb structure, and exhaust gas treatment device using the same
KR101110368B1 (en) * 2010-04-30 2012-02-15 한국세라믹기술원 Oxide sintered material having heat resistance and impact resistance and manufacturing method of the same

Similar Documents

Publication Publication Date Title
EP0134769B1 (en) Oxidation prohibitive coatings for carbonaceous articles
US4567103A (en) Carbonaceous articles having oxidation prohibitive coatings thereon
JPS649266B2 (en)
JPS63206367A (en) Lightweight refractories and manufacture
JPS63156073A (en) Nitirde base sintered ceramic body and manufacture
JP7193544B2 (en) Chemical method for reducing oxide scale formation in hot rolling
JPH0753281A (en) Aluminum titanate sintered compact stable at high temperature
US5609961A (en) Single-layer high temperature coating on a ceramic substrate and its production
JPS6119584B2 (en)
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP3142402B2 (en) SiC refractory
JP4960541B2 (en) Magnesia-alumina-titania brick
JP4319866B2 (en) Method for producing inorganic fibrous refractory insulation
JPH0345553A (en) Carbon-containing refractory
JPS6250440B2 (en)
JP3027215B2 (en) Silicon nitride bonded SiC refractories
JPS63156061A (en) Cordierite base refractories
JP2532012B2 (en) Alkali hexatitanate whisker
JP2687214B2 (en) Carbon containing refractories
JP3026883B2 (en) SiC refractory
JP2948020B2 (en) Carbon containing refractories
JPH0791109B2 (en) Silicon nitride SiC refractory and method for manufacturing the same
JPH07172907A (en) Carbon-containing refractory
JPH01115867A (en) Ceramic sintered form and production thereof
JPH0225877B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031