JPH0592709U - 導電率測定用セル - Google Patents

導電率測定用セル

Info

Publication number
JPH0592709U
JPH0592709U JP4094492U JP4094492U JPH0592709U JP H0592709 U JPH0592709 U JP H0592709U JP 4094492 U JP4094492 U JP 4094492U JP 4094492 U JP4094492 U JP 4094492U JP H0592709 U JPH0592709 U JP H0592709U
Authority
JP
Japan
Prior art keywords
insulating spacer
pressure
sealing ring
resistant container
diameter portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4094492U
Other languages
English (en)
Other versions
JP2578654Y2 (ja
Inventor
忠弘 大見
良夫 石原
良助 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Taiyo Nippon Sanso Corp
Original Assignee
Horiba Ltd
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Taiyo Nippon Sanso Corp filed Critical Horiba Ltd
Priority to JP1992040944U priority Critical patent/JP2578654Y2/ja
Publication of JPH0592709U publication Critical patent/JPH0592709U/ja
Application granted granted Critical
Publication of JP2578654Y2 publication Critical patent/JP2578654Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

(57)【要約】 【目的】 部品の加工性および組立精度を向上させるこ
とにより、被測定液の導電率を精度よく測定でき、より
信頼性の高い導電率測定用セルを安価に得ること。 【構成】 被測定液の導入口2と導出口3とが設けられ
た耐圧容器1と、この耐圧容器1内に設けられた内極11
とからなり、前記耐圧容器1を外極に兼ねさせると共
に、段付きの第1絶縁スペーサ19を、筒状の小径部材20
とこれとは別体でこれよりも大径かつ短い筒状の大径部
材21とによって構成した。

Description

【考案の詳細な説明】
【0001】
【産業上の利用分野】
本考案は、半導体製造に用いられる常温常圧でガス状の化学物質を液化ガスの 状態で導電率を測定したり、また、工業用水、ボイラ給水、各種洗浄用水などの 水質管理に使用される導電率測定計の測定セルに係り、特に、原子力発電プラン トにおける一次冷却水のように高温高圧状態にある液体の導電率測定に好適な導 電率測定用セルに関する。
【0002】
【従来の技術】
半導体の製造においては、ドライエッチング用ガスとして、高純度のハロゲン ガスや、ハロゲン化水素ガスなどの無機水素化物など、また、SiやSiO2 、 Si3 4 などの薄膜形成には、SiH4 、Si2 6 、SiH2 Cl2 やアン モニアなど、多種多様のガスが用いられるが、これらのガス中に極めて微量(例 えばppbレベル)の不純物が含まれていても、この不純物がLSIの製造プロ セスなどに及ぼす悪影響はパターンの微細化に伴って増加すると共に、ガス配管 系自体にも重大な影響を及ぼす。
【0003】 そこで、従来より、前記不純物の濃度を ppbレベルで精度よく測定し、こ れを管理することが望まれていたが、本願出願人は、不純物の濃度をppbレベ ルで精度よく測定する方法として、常温常圧でガス状の化学物質を液化ガスの状 態で測定セル内に導入し、前記液化ガスの導電率を測ることにより、前記化学物 質中に含まれる微量不純物を測定する方法を、平成3年6月6日付けにて特許出 願しているところである(「ガス中の微量不純物の測定方法」特願平3−163661 号)。
【0004】 また、沸騰水型原子の一次冷却系を循環する原子炉冷却水には、原子炉の運転 に伴って電解腐食生成物など種々の不純物が生成する。特に、電解成分の増加に よって導電率が上昇すると、系内の構造物の腐食速度が急激に加速され、また、 腐食生成物が中性子により放射化され、系内の放射線レベルが増加される一方、 電解性不純物が燃料棒の表面に沈着して円滑な熱伝導を阻害し、原子炉の運転効 率が低下するといった弊害があるため、一次冷却水は適宜高純度に浄化され、ま たは新たに補給されて、常に一定の水質を維持するように管理される。特に、電 解成分量の指標となる導電率の管理は、一次冷却水の水質管理を行う上で重要な 管理項目となっている。
【0005】
【考案が解決しようとする課題】
ところで、本願出願人は、被測定液の導電率を精度よく、安価に測定するため の導電率測定用セルを、前記特許出願と同日付けにて実用新案登録出願している (「導電率測定用セル」実願平3− 51481号)が、その後の研究の結果、次のよ うな改良すべき点が見出されるに至った。
【0006】 すなわち、この種の導電率測定用セルは、高絶縁性並びに高気密性が要求され るが、前記先願においては、被測定液の導入口と導出口とが設けられた耐圧容器 と、この耐圧容器内に設けられた内極とからなり、前記耐圧容器を外極に兼ねさ せると共に、内極を段付きの第1絶縁スペーサ内に挿通させるようにして、内極 を耐圧容器と同心円状に配置するようにしていた。しかし、前記第1絶縁スペー サの形状が複雑であるためシール面を鏡面仕上げすることが困難であり、その結 果、導電率測定用セルの組立時において、規定の気密性を得るために過大な力で シール用リングを挟圧するため、第1絶縁スペーサが破損されることがあった。
【0007】 本考案は、上述の事柄に留意してなされたもので、その目的とするところは、 部品の加工性および組立精度を向上させることにより、被測定液の導電率を精度 よく測定でき、より信頼性の高い導電率測定用セルを安価に得ることにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本考案に係る導電率測定用セルは、被測定液の導入 口と導出口とが設けられた耐圧容器と、この耐圧容器内に設けられた内極とから なり、前記耐圧容器を外極に兼ねさせると共に、前記耐圧容器に連なる円筒部の 内部に段部を形成する一方、前記内極の長手方向中間部に大径部を形成し、さら に、筒状の小径部材をこれとは別体でこれよりも大径かつ短い筒状の大径部材に エアタイト状にテーパ嵌入してなる段付きの第1絶縁スペーサと第1シール用リ ングとを、第1シール用リングが前記内極大径部に近くなるように内極の一側に 外套すると共に、前記第1絶縁スペーサの小径部に第2シール用リングを外套す る一方、段付きの第2絶縁スペーサとスラストベアリングとを、前記第2絶縁ス ペーサが内極大径部に近くなるように内極の他側に外套し、前記円筒部に螺合す る袋ナットを締めつけることにより、第1シール用リングを前記第1絶縁スペー サと内極大径部との間に、また、第2シール用リングを前記円筒部の段部と前記 第1絶縁スペーサとの間に、それぞれ挟圧するようにしている。
【0009】 この場合、内極大径部のシール面に凹部を設け、この凹部によって第1シール 用リングを固定的に保持するようにしてもよい。
【0010】 前記耐圧容器の内表面および前記内極の外表面を、それぞれ電解研磨、酸化膜 不動態化処理またはフッ化不動態化処理してあってもよい。
【0011】
【作用】
前記導電率測定用セルにおいては、被測定液は導入口から耐圧容器内に導入さ れ、この被測定液は、外極を兼ねた耐圧容器と内極との間を通過する間にその導 電率が測定される。そして、被測定液は導出口から出て行く。
【0012】 そして、前記導電率測定用セルにおいては、段付きの第1絶縁スペーサが、筒 状の小径部材をこれとは別体でこれよりも大径かつ短い筒状の大径部材にエアタ イト状にテーパ嵌入し、小径部と大径部とよりなるものであるから、小径部およ び大径部のそれぞれを個別に仕上げることができ、特に、第1絶縁スペーサのシ ール面となる大径部の両端面を鏡面状態にすることができる。従って、シール用 リングを過大な力で挟圧する必要がなくなり、第1絶縁スペーサが破損されるこ ともない。
【0013】 なお、内極大径部のシール面に曲面凹部を設け、第1シール用リングを固定的 に保持できるようにした場合は、気密性が向上すると共に、内極と外極である耐 圧容器との位置関係が所望の位置関係に固定的に設定されるので、より精度よく 測定を行うことができる。
【0014】
【実施例】
以下、本考案の実施例を、図面に基づいて説明する。
【0015】 図1は、本考案に係る導電率測定用セル(以下、セルと云う)Aの一例を示し 、1は外極を兼ねた耐圧構造の容器であって、交流2極法における低インピーダ ンス側の極として働き、その下方側には、被測定液としての液化ガスの導入口2 が開設され、その上部側方には、液化ガスの導出口3が開設されている。この耐 圧容器1は、ステンレス鋼などの耐腐食性の金属よりなると共に、その内表面は 、電解研磨、酸化膜不動態化処理またはフッ化不動態化処理され、耐薬品性、耐 腐食性を備えている。そして、耐圧容器1は、後に詳しく説明するように、高気 密構造に構成されている。
【0016】 導入口2は、継手4を介して図外のガス液化装置や液化ガスボンベに接続され ている。また、導出口3は、継手5を介して図外の半導体製造装置などへの配管 に接続されている。そして、6は耐圧容器1と電気的および機械的に連なる円筒 部で、図2にも示すように、内部には、一端が開放された円筒状の孔7と、この 孔7よりも小径でこれに連なる孔8とが形成され、外周には、ねじ部9が形成さ れている。この円筒部6の内表面も電解研磨または酸化膜不動態化処理あるいは フッ化不動態化処理されている。
【0017】 11は耐圧容器1の内部の上方空間に耐圧容器1と同心円状に配置される内極で ある。すなわち、この実施例で用いるセルAにおいては、その測定電極は、外極 を兼ねた耐圧容器1とこれに対して高絶縁を維持して配置された内極11とで構成 される。そして、測定電極は試料に応じたセル定数を決定する必要があるが、こ のセル定数は、耐圧容器1および内極11の対向する部分における耐圧容器1の内 表面の面積,内極11の接続した外表面の面積,耐圧容器1と内極11との距離によ って決定される。
【0018】 内極11は、図2および図3にも示すように、一端側が開口し、他端側が閉塞さ れた中空部12を備えると共に、その長手方向中間部には、円筒部6の内径よりも 小径の大径部13が形成されている。この内極大径部13の外径は、図1に示すよう に、内極11を耐圧容器1内に配置した状態において、円筒部6の内表面との間に 所定の高絶縁耐力を有するクリアランスが形成されるように設定されている。
【0019】 そして、内極11は、ステンレス鋼などの耐腐食性の金属よりなると共に、その 外表面は、電解研磨、酸化膜不動態化処理またはフッ化不動態化処理されている 。また、内極11の開口側の端部には、ねじ部14が形成されており、中空部12内に は、開口側から温度センサ15が閉塞部近傍まで挿入されている。この温度センサ 15は、内極11の中空部12内に挿入され、液化ガスに直接触れないため、耐薬品、 耐腐食処理などは不要である。なお、以下、内極大径部13から閉塞側の端部まで の小径の部分を内極内方部16と云い、内極大径部13から開口側の端部までの小径 の部分を内極外方部17と云うものとする。
【0020】 18は内極大径部13の一側に隣接するように内極内方部16を外套する第1シール 用リングとしてのCリングで、例えばニッケルなどの金属よりなる。19は内極内 方部16を外套する段付きの第1絶縁スペーサで、筒状の小径部材20を、これとは 別体でこれよりも大径かつ短い筒状の大径部材21にエアタイト状にテーパ嵌入し 、小径部 19Aと大径部 19Bとよりなるものである。
【0021】 前記第1絶縁スペーサ19の構成を図3および図4を参照しながら詳細に説明す ると、小径部材20は、その胴部22の大半が耐圧容器1と円筒部6との間に設けら れた孔8よりごく僅かだけ径の小さい外径に形成されているが、一端側からある 長さにわたって端部側ほど太くなるようにテーパ面23が形成されている。そして 、小径部材20の軸中心には、内極内方部16より僅かに径の大きな貫通孔24が設け られている。また、大径部材21は、円筒部6の孔7よりごく僅かだけ径の小さい 外径を有すると共に、小径部材20のテーパ面23に対応したテーパ面25によって囲 まれた貫通孔26を備えている。
【0022】 前記小径部材20および大径部材21は、例えばセラミックなど高電気絶縁性の素 材よりなる。そして、小径部材20および大径部材21は、それらの両端面を含む外 表面が鏡面研磨仕上げされ、特に、大径部材21の両端面27, 28は、Ra(中心線 平均粗さ)が例えば0.08μm以下、面精度が例えば 0.5μm以下程度になるよう に、高度に鏡面研磨仕上げされている。また、小径部材20および大径部材21のテ ーパ面23, 25は、共摺りにより密着性を向上させている。
【0023】 そして、前記小径部材20を、そのより径の小さい側から大径部材21の貫通孔26 に挿入し、図4に示すように、エアタイト状にテーパ嵌合することにより、小径 部 19A(小径部材20のストレートな胴部22よりなる)と大径部 19B(実質的に大 径部材21よりなる)とからなる段付きの第1絶縁スペーサ19が形成されるが、図 4において拡大図示するように、小径部材20の端面29がごく僅かだけ(例えば最 大 0.2mm程度)大径部材21の端面27から突出するように、つまり、両端面27, 29間にわずかな段差30が生ずるように構成されている。
【0024】 前記のように構成された第1絶縁スペーサ19の小径部 19Aは、図1および図2 に示すように、円筒部6の孔8内に挿入され、その先端は、耐圧容器1の導出口 3近傍に達している。セル定数は前述のように、内外極の面積および距離によっ て決定されるが、内極11の長さを調節する他、第1絶縁スペーサ19の小径部 19A の長さを調節することによっても調節ことができる。また、この小径部 19Aは、 耐圧容器1内の導出口3より上部に位置する部分の内外極間の実質距離を長くす ることにより、セル内における液化ガスの溜まり部となる前記部分におけるセル 定数への寄与度を少なくして、導電率計の測定精度を向上させる働きをする。
【0025】 図1〜図3において、31は小径部 19Aを外套する第2シール用リングとしての Cリングで、例えばニッケルなどの金属よりなる。32は内極大径部13の他側に隣 接するように内極外方部17を外套する第2絶縁スペーサで、円筒部6の孔7より もごく僅かだけ径の小さい小径部33と、この小径部33より大径で、円筒部6に螺 着される袋ナット34の内径よりもやや小さい径の大径部35とからなり、内極外方 部17よりごく僅かだけ径の大きい孔36が貫設してある。そして、この第2絶縁ス ペーサ32も例えばセラミックなど高電気絶縁性の素材よりなり、その両端面を含 む外表面は、鏡面研磨仕上げされている。37はスラストベアリング、38は内極11 に電圧を印加するための電圧端子である。
【0026】 次に、内極11を外極を兼用した耐圧容器1内に配置する手順の一例について説 明すると、中空部12内に温度センサ15を挿入した内極11の内極内方部16に、内極 大径部13の一側に隣接するように第1シール用リング18を外套させ、次いで、第 1絶縁スペーサ19を外套させる。そして、第1絶縁スペーサ19の小径部 19Aに第 2シール用リング31を外套させる一方、内極11の内極外方部17に、内極大径部13 の他側に隣接するように第2絶縁スペーサ32を外套させ、次いで、スラストベア リング37を外套させる。
【0027】 上述のように各部材を外套させた内極11を、閉塞部側を先頭にして円筒部6を 介して耐圧容器1内に挿入する。そして、袋ナット34を円筒部6に被着して、袋 ナット34を締め込んでいく。この袋ナット34の締め込みの際、スラストベアリン グ37の働きにより回転方向のトルクが逃がされ、図1における矢印B方向にのみ 力が作用し、これによって、第1シール用リング18は、第1絶縁スペーサ19の大 径部 19Bの一側と内極大径部13との間に、また、第2シール用リング31は、円筒 部6の段部6a(図2参照)と第1絶縁スペーサ19の他側との間で、シール部分に 傷を生じさせることなく強く挟圧される。その結果、内極11が耐圧容器1内にお いてこれと同心円的に保持されると共に、前記シール用リング18, 31がそれぞれ 均等に潰されて、第1シール用リング18で内極11と第1絶縁スペーサ19間をシー ルし、第2シール用リング31により耐圧容器1の円筒部6と第1絶縁スペーサ19 間をシールすることにより、耐圧容器1内の気密性が保持される。
【0028】 そして、この実施例においては、図5に示すように、内極大径部13のシール面 13aの第1シール用リング18に対応する部分に例えば断面が曲面形状の凹部39を 設けているので、第1シール用リング18を、第1絶縁スペーサ19の段差部分30に 当接させながら、前記凹部39に保持させることができ、シール用リング18位置を 固定的に設定することができる。従って、この部分における気密性が向上すると 共に、内極11の耐圧容器1に対する位置が固定的に定まり、確実なセル定数を得 ることができ、それだけ、精度の高い測定が可能になる。なお、この実施例では 、図2に示すように、円筒部6の段部6aにも前記凹部39と同様の凹部40を設けて 、第2シール用リング31の位置を固定的に設定できるようにしてある。
【0029】 図6は、前記セルAを用いて導電率測定を行う場合の電気的構成の一例を示す 回路図で、この図において、41は例えば 900Hz程度の交流信号を発する発振器 で、この信号が内極11に印加される。そして、外極を兼ねた耐圧容器1は接地さ れている。また、42は固定抵抗である。この固定抵抗42の両端の電圧が検出出力 としてプロセッサ43に入力される。
【0030】 図7は、前記検出出力の一例を示している。ところで、前記耐圧容器1をステ ンレス鋼で形成した場合、前述のように、 900Hz程度の交流電圧を内外極間に 印加すると、前記検出出力に誘電率による影響が表れて立ち上がりが悪くなり、 誤差の要因となる。これを防止するため、例えば耐圧容器1の内面に白金をコー ティングすることが考えられるが、高価になることが避けられない。
【0031】 そこで、本考案においては、前記プロセッサ43内において、発振周波数と同期 をとり、波形の乱れた部分を信号として取り扱わず、図中の斜線部分のみを信号 として取り出すようにして、前記立ち上がりが悪くなる問題点を解決している。 なお、このような信号の取り出しは、耐腐食性、耐薬品性を考慮して耐圧容器1 の内面に電解研磨などの処理を施した場合にも有効である。
【0032】 図8は、上記構成のセルAの気密性を測定した結果を示すデータである。この 図に示すように、セルAは、−10℃以下で僅かにリーク速度が上昇するが、これ は測定に実質的な影響を与えない程度であり、極めて優れた気密性を有すること が判る。なお、 1.5×10-11 Torr・l/sにプロットしているのは、Heリーク 検出器の検出限界を示す。
【0033】 なお、前記耐圧容器1内の気密性が不十分な場合、耐圧容器1内に導入される 被測定液が漏出する他、耐圧容器1外の水分が濃度の差によって耐圧容器1内に 拡散し、その結果、測定誤差が生ずると共に、耐圧容器1を組み込んでいる配管 系が腐蝕によりダメージを受ける。
【0034】 前記被測定液が耐圧容器1内に導入され、導出されていく過程において、耐圧 容器1と内極11とによってその導電率が測定されるが、この測定された導電率は 、図9に示すような、横軸に水分濃度を、縦軸に導電率をそれぞれ対数目盛りで 目盛った、例えば液化ハロゲンガスにおける不純物濃度と導電率の関係を示すデ ータによって不純物濃度に容易に変換することができ、従って、被測定液中に含 まれる微量不純物の濃度を測定することができる。
【0035】 これは、例えば液化塩化水素のような液化ガス中に、水分が存在する場合、下 記化1に示すように、解離することにより導電率に大きな変化が生じるためであ る。なお、水のみの解離によって導電率に大きな変化が生じることは言うまでも ない。
【0036】
【化1】
【0037】 また、H2 SO4 やSiO2 といった不純物が液化塩化水素中に存在する場合 は、下記化2,化3に示すように、それぞれ水が生じ、前記と同様に、解離する ことにより導電率に大きな変化が生じ、H2 SO4 やSiO2 といった不純物の 濃度が水分の換算値といった形で測定することができる。
【0038】
【化2】
【0039】
【化3】
【0040】 そして、図10は、2種の液化塩化水素ガスについて温度を変化させて導電率と の関係をプロットしたものである。常温常圧(室温で大気圧状態)でガス状の化 学物質を液化するためには、加圧または温度を下げることにより行うが、導電率 は、図に示す通り、温度により変化するため、温度を一定に保つかまたは例えば 図10に示すような、液化塩化水素ガスにおける温度と導電率の関係を示すデータ を用いて補正することが望ましい。
【0041】 また、前記耐圧容器1が耐腐食性の金属よりなると共に、その内表面および内 極11の外表面が、それぞれ電解研磨、酸化膜不動態化処理またはフッ化不動態化 処理されているので、たとえ液化ガス中に不純物が含まれているとしても、測定 電極である耐圧容器1および内極11において、前記不純物の吸・脱着が生ずるこ とがなく、また、セルA自体が不純物の発生源となることもなく、さらに、腐食 性ガスを測定対象とすることもできる。
【0042】 上述した実施例においては、耐圧容器1に連なる円筒部6において、第1シー ル用リング18と段付きの第1絶縁スペーサ19とを、第1シール用リング18が内極 大径部13に近くなるように内極11の一側に外套すると共に、第1絶縁スペーサ19 の小径部 19Aに第2シール用リング31を外套する一方、段付きの第2絶縁スペー サ32とスラストベアリング37とを、第2絶縁スペーサ32が内極大径部13に近くな るように内極11の他側に外套し、円筒部6に螺合する袋ナット35を締めつけるこ とにより、第1シール用リング18を第1絶縁スペーサ19と内極大径部13との間に 、また、第2シール用リング31を円筒部6の段部6aと第2絶縁スペーサ32との間 に、それぞれ挟圧するようにしているので、耐圧容器1における気密性が高度に 維持でき、例えばリーク量は、Heリーク検出器の最小検出感度以下(約 1.5× 10-11 Torr・l/s以下)となり、耐圧容器1内から液化ガスの漏出がないと共 に、外部からガスが耐圧容器1内に侵入するといったことがない。
【0043】 そして、段付きの第1絶縁スペーサ19が、筒状の小径部材20をこれとは別体で これよりも大径かつ短い筒状の大径部材21にエアタイト状にテーパ嵌入し、小径 部 19Aと大径部 19Bとよりなるものであるから、小径部 19Aおよび大径部 19Bの それぞれを個別に仕上げることができ、特に、第1絶縁スペーサ19のシール面と なる大径部 19Bの両端面27, 28を鏡面状態にすることができる。従って、シール 用リング18, 31を過大な力で挟圧する必要がなくなり、第1絶縁スペーサ19が破 損されることもない。
【0044】 また、内極大径部13のシール面 13aに凹部39を設け、第1シール用リング18を 固定的に保持できるようにしているので、気密性が向上すると共に、内極11と外 極である耐圧容器1との位置関係が所望の位置関係に固定的に設定されるので、 より精度よく測定を行うことができる。さらに、袋ナット35と第2絶縁スペーサ 32との間にスラストベアリング37を設けているので、袋ナット35の回転力が第2 絶縁スペーサ32に直接作用しないといった利点もある。
【0045】 そして、上記セルAは、常温常圧においてガス状である化学物質中に含まれる 微量不純物の測定のみならず、工業用水、ボイラ給水、各種洗浄用水などの水質 管理における導電率測定にも使用することができ、特に、原子力発電プラントに おける一次冷却水のように高温高圧状態にある液体の導電率測定に好適に用いる ことができる。
【0046】
【考案の効果】
以上説明したように、本考案によれば、各部の寸法、特に、セル定数が安定す るので、被測定液の導電率を精度よく測定できる。そして、第1絶縁スペーサの 構造が簡単であるので、これをより精密かつ容易に鏡面仕上げすることができ、 従って、セルの組立がより容易になると共に、セルに対する歩留りが飛躍的に向 上する。
【図面の簡単な説明】
【図1】本考案に係る導電率測定用セルの一例を示す縦
断面図である。
【図2】前記セルの要部の構成を示す縦断面図である。
【図3】内極の構成およびシール構造を示す分解斜視図
である。
【図4】第1絶縁スペーサの一例を示す図である。
【図5】第1絶縁スペーサと内極大径部との間のシール
構造を示す図である。
【図6】前記セルを用いて導電率を測定する場合におけ
る電気的構成の一例を示す回路図である。
【図7】検出出力の一例を示す図である。
【図8】前記セルの気密性を示すデータである。
【図9】液化塩化水素における不純物濃度と導電率の関
係を示す図である。
【図10】液化塩化水素における不純物量の温度と導電率
の関係を示す図である。
【符号の説明】
A…セル、1…耐圧容器、2…導入口、3…導出口、6
…円筒部、6a…円筒部の段部、11…内極、13…内極大径
部、 13a…内極大径部のシール面、18…第1シール用リ
ング、19…第1絶縁スペーサ、 19A…第1絶縁スペーサ
の小径部、20…小径部材、21…大径部材、31…第2シー
ル用リング、32…第2絶縁スペーサ、34…袋ナット、37
…スラストベアリング、39…凹部。
フロントページの続き (72)考案者 大見 忠弘 宮城県仙台市青葉区米ヶ袋2−1−17− 301 (72)考案者 石原 良夫 神奈川県川崎市幸区塚越4−320 日本酸 素株式会社内 (72)考案者 福嶋 良助 京都府京都市南区吉祥院宮の東町2番地 株式会社堀場製作所内

Claims (3)

    【実用新案登録請求の範囲】
  1. 【請求項1】 被測定液の導入口と導出口とが設けられ
    た耐圧容器と、この耐圧容器内に設けられた内極とから
    なり、前記耐圧容器を外極に兼ねさせると共に、前記耐
    圧容器に連なる円筒部の内部に段部を形成する一方、前
    記内極の長手方向中間部に大径部を形成し、さらに、筒
    状の小径部材をこれとは別体でこれよりも大径かつ短い
    筒状の大径部材にエアタイト状にテーパ嵌入してなる第
    1絶縁スペーサと第1シール用リングとを、第1シール
    用リングが前記内極大径部に近くなるように内極の一側
    に外套すると共に、前記第1絶縁スペーサの小径部に第
    2シール用リングを外套する一方、段付きの第2絶縁ス
    ペーサとスラストベアリングとを、前記第2絶縁スペー
    サが内極大径部に近くなるように内極の他側に外套し、
    前記円筒部に螺合する袋ナットを締めつけることによ
    り、第1シール用リングを前記第1絶縁スペーサと内極
    大径部との間に、また、第2シール用リングを前記円筒
    部の段部と前記第1絶縁スペーサとの間に、それぞれ挟
    圧するようにしたことを特徴とする導電率測定用セル。
  2. 【請求項2】 内極大径部のシール面に凹部を設け、こ
    の凹部によって第1シール用リングを固定的に保持する
    ようにした請求項1に記載された導電率測定用セル。
  3. 【請求項3】 耐圧容器の内表面および内極の外表面が
    それぞれ電解研磨、酸化膜不動態化処理またはフッ化不
    動態化処理されている請求項1に記載された導電率測定
    用セル。
JP1992040944U 1992-05-23 1992-05-23 導電率測定用セル Expired - Lifetime JP2578654Y2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992040944U JP2578654Y2 (ja) 1992-05-23 1992-05-23 導電率測定用セル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992040944U JP2578654Y2 (ja) 1992-05-23 1992-05-23 導電率測定用セル

Publications (2)

Publication Number Publication Date
JPH0592709U true JPH0592709U (ja) 1993-12-17
JP2578654Y2 JP2578654Y2 (ja) 1998-08-13

Family

ID=12594624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992040944U Expired - Lifetime JP2578654Y2 (ja) 1992-05-23 1992-05-23 導電率測定用セル

Country Status (1)

Country Link
JP (1) JP2578654Y2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349857A (ja) * 2000-04-03 2001-12-21 Saginomiya Seisakusho Inc 抵抗率計の電極
JP2002189010A (ja) * 2000-12-21 2002-07-05 Saginomiya Seisakusho Inc 抵抗率計の電極
CN105891395A (zh) * 2015-01-14 2016-08-24 山东鲁南瑞虹化工仪器有限公司 一种氢火焰离子化检测器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349857A (ja) * 2000-04-03 2001-12-21 Saginomiya Seisakusho Inc 抵抗率計の電極
JP2002189010A (ja) * 2000-12-21 2002-07-05 Saginomiya Seisakusho Inc 抵抗率計の電極
CN105891395A (zh) * 2015-01-14 2016-08-24 山东鲁南瑞虹化工仪器有限公司 一种氢火焰离子化检测器
CN105891395B (zh) * 2015-01-14 2024-06-04 山东鲁南瑞虹化工仪器有限公司 一种氢火焰离子化检测器

Also Published As

Publication number Publication date
JP2578654Y2 (ja) 1998-08-13

Similar Documents

Publication Publication Date Title
Christensen et al. Chronopotentiometry in Thin Layer of Solution.
EP3372998B1 (en) Sensor and method for measuring content of hydrogen in metal melt
EP0807818A2 (en) Method for measuring nitrogen oxide
JP2509981Y2 (ja) 導電率測定用セル
US5192414A (en) Electrode probe for use in aqueous environments of high temperature and high radiation
CH655184A5 (de) Wasserstoff-fuehler.
CA2164438A1 (en) Gas detection, identification and elemental and quantitative analysis system
JPH0592709U (ja) 導電率測定用セル
EP0096417B1 (en) Apparatus for measuring dissolved hydrogen concentration
JP2838239B2 (ja) ガス中の微量不純物の測定方法
Mao et al. Tungsten oxide flow sensor and its performance regulation
Gancy et al. Conductance of aqueous electrolyte solutions at high pressures. Data for eleven 1, 1 electrolyte systems
Nagy et al. In situ electrochemical impedance spectroscopy of Zr–1% Nb under VVER primary circuit conditions
Kurita et al. Measuring apparatus for hydrogen permeation using oxide proton conductor
Tatsumi et al. Streaming Conductive Powder Electrodes for the Measurement of Volta Potential Difference
US20060254908A1 (en) Electrochemical solid electrolyte sensor for the detection of oxygen, hydrocarbons and moisture in vacuum environments
RU223126U1 (ru) Твердотельный электрохимический сенсор для обнаружения кислорода
CN217638834U (zh) 一种水中臭氧浓度检测装置
JPH09297118A (ja) 金属材質の腐食測定装置
JPH06138079A (ja) 隙間水質測定用電極
JPS5991359A (ja) 酸素ガス検出器
CN117030801A (zh) 一种检测sf6气体分解特征产物的方法和系统
JP3855010B2 (ja) 金属流体中の酸素濃度測定装置
JP2001311710A (ja) 多元電気伝導度測定装置
Nagy et al. Electrochemical cell and electrode designs for high-temperature/high-pressure kinetic measurements

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R323531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R323533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term