JPH0590329A - Semiconductor optical element - Google Patents

Semiconductor optical element

Info

Publication number
JPH0590329A
JPH0590329A JP24816091A JP24816091A JPH0590329A JP H0590329 A JPH0590329 A JP H0590329A JP 24816091 A JP24816091 A JP 24816091A JP 24816091 A JP24816091 A JP 24816091A JP H0590329 A JPH0590329 A JP H0590329A
Authority
JP
Japan
Prior art keywords
bump
semiconductor optical
ausn
semiconductor
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24816091A
Other languages
Japanese (ja)
Inventor
Atsushi Fukushima
淳 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24816091A priority Critical patent/JPH0590329A/en
Publication of JPH0590329A publication Critical patent/JPH0590329A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Led Devices (AREA)
  • Wire Bonding (AREA)
  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve the positional accuracy, and to reduce losses resulting from a self-alignment by forming a bump electrode of a semiconductor optical element in the shape of a recess. CONSTITUTION:An Au bump 3 to become a p-type electrode and an Au bump 4 to become an n-type electrode are patterned so that they can be partially etched by photolithography techniques, and they are etched in the form of a recess with gently-sloping sides. Alumina is used for a sub-mount substrate 1 on which an optical element is mounted, and Au pads are wired. An AuSn bump 2 is formed on the Au pad, and the substrate with a light emitting diode 5 disposed on the AuSn bump 2 is heated so that the diode is fused and adhered to the bump. In short, in a semiconductor optical element wherein a semiconductor element is mounted in the manner of a flip chip on the AuSn bump 2 of the sub-mount 1, a bump electrode of the element is formed in the shape of a recess. This configuration provides a larger contact area which is used for a fusing adhesion, whereby the positional accuracy of the element is improved, and the semiconductor optical element can be coupled in self- aligning manner with an optical fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、サブマウントのAuS
nもしくはPbSnのバンプ上に半導体光素子をフリッ
プチップ実装する半導体光素子に関し、位置精度が向上
し、セルフアラインによる結合損失が少なくなることが
可能な半導体光素子に関するものである。
The present invention relates to a submount AuS.
The present invention relates to a semiconductor optical device in which a semiconductor optical device is flip-chip mounted on a bump of n or PbSn, and to a semiconductor optical device capable of improving position accuracy and reducing coupling loss due to self-alignment.

【0002】[0002]

【従来の技術】本発明光素子の実装方法において、フリ
ップチップ実装が実現されている。フリップチップ実装
は、Auワイヤで配線をしないために配線距離を短くで
き且つセルフアライン実装が可能である。
2. Description of the Related Art In the method of mounting an optical element according to the present invention, flip chip mounting is realized. In the flip-chip mounting, the wiring distance can be shortened and self-aligned mounting is possible because wiring is not performed with Au wires.

【0003】近年の半導体光素子の需要増と低コスト化
のためには、半導体光素子自体の低コスト化とともに、
組立工程における低コスト化も必要になってくる。その
ためには、セルフアライン実装が可能なフリップチップ
実装が重要である。フリップチップ実装は、Auワイヤ
ボンディングをすることなく実装でき、しかもセルフア
ラインによって自動的に実装位置が決まる。
In order to increase the demand and cost of semiconductor optical devices in recent years, the cost of the semiconductor optical device itself has been reduced and
It is also necessary to reduce the cost in the assembly process. For that purpose, flip-chip mounting that enables self-aligned mounting is important. Flip chip mounting can be performed without Au wire bonding, and the mounting position is automatically determined by self-alignment.

【0004】しかし、マウント上のAuSnやPbSn
等のバンプ量や形状などによって位置精度が異なってく
る。光ファイバ結合をセルフアラインで行う場合、位置
精度が悪くなると結合損失が大きくなる。従って、結合
損失を最小限に抑えるためには、セルフアラインの位置
精度を高めていくことが重要である。
However, AuSn or PbSn on the mount
The positional accuracy varies depending on the bump amount, shape, etc. When the optical fiber coupling is performed by self-alignment, the coupling loss increases when the positional accuracy deteriorates. Therefore, in order to minimize the coupling loss, it is important to improve the position accuracy of self-alignment.

【0005】図5は、フリップチップ実装した第1の従
来例の構造の断面概略図である。第1の従来例として、
レンズ付きメサ型面発光ダイオードを示す。発光ダイオ
ード5は、通常のフォトリソグラフィ技術を用い、電流
狭搾メサ部6を作成した。図には示していないが、絶縁
膜として窒化シリコンを用い、Ti/Pt及びAuGe
でオーミック電極をつけ、更にp型電極用Auバンプ3
及びn型電極用Auバンプ4を電解メッキ法により作成
した。発光ダイオード5の発光部分は、ウェットエッチ
ング法により凸状のレンズ部7を作成し、発光効率を高
めた。実装するサブマウント基板1には、アルミナを用
い、Auパッドを配線した。Auパッド上にAuSnバ
ンプ2を作成し、その後発光ダイオード5を乗せ温度を
あげ融着した。
FIG. 5 is a schematic sectional view of the structure of the first conventional example mounted by flip chip. As a first conventional example,
1 shows a mesa type surface emitting diode with a lens. For the light emitting diode 5, the current squeezing mesa portion 6 was created by using a normal photolithography technique. Although not shown in the figure, silicon nitride is used as the insulating film, and Ti / Pt and AuGe are used.
Ohmic electrode is attached with and Au bump 3 for p-type electrode
And Au bumps 4 for n-type electrodes were formed by electrolytic plating. In the light emitting portion of the light emitting diode 5, a convex lens portion 7 was formed by a wet etching method to improve the light emitting efficiency. Alumina was used for the submount substrate 1 to be mounted, and Au pads were wired. The AuSn bump 2 was formed on the Au pad, and then the light emitting diode 5 was placed on the Au pad to raise the temperature and fuse them.

【0006】図6は、フリップチップ実装した第2の従
来例の構造の断面概略図である。第2の従来例として、
レンズ付き裏面入射型pinフォトダイオードを示す。
pinフォトダイオード8は、通常のフォトリソグラフ
ィ技術を用い、Zn拡散によりp+ 拡散領域9を作成
し、pn接合を作成した。図には示していないが、絶縁
膜且つパッシベーション膜として窒化シリコンを用い、
AuZn及びAuGeでオーミック電極をつけ更にp型
電極用Auバンプ3及びn型電極用Auバンプ4を電解
メッキ法により作成した。pinフォトダイオード8の
光入射部分には、ウェットエッチング法により凸状のレ
ンズ部7を作成し、量子効率を高めた。実装するサブマ
ウント基板1には、アルミナを用い、Auパッドを配線
した。Auパッド上にAuSnバンプ2を作成し、その
後pinフォトダイオード8を乗せ温度をあげ融着し
た。
FIG. 6 is a schematic sectional view of the structure of the second conventional example which is flip-chip mounted. As a second conventional example,
A back-illuminated pin photodiode with a lens is shown.
For the pin photodiode 8, a normal photolithography technique was used to form ap + diffusion region 9 by Zn diffusion to form a pn junction. Although not shown in the figure, silicon nitride is used as an insulating film and a passivation film,
An ohmic electrode was attached using AuZn and AuGe, and Au bumps 3 for p-type electrodes and Au bumps 4 for n-type electrodes were formed by electrolytic plating. A convex lens portion 7 was formed on the light incident portion of the pin photodiode 8 by a wet etching method to improve quantum efficiency. Alumina was used for the submount substrate 1 to be mounted, and Au pads were wired. The AuSn bump 2 was formed on the Au pad, and then the pin photodiode 8 was placed on the Au pad to raise the temperature and fuse them.

【0007】尚、実装の方法を図7に簡単に示す。The mounting method is briefly shown in FIG.

【0008】工程1(AuSnバンプ固定) サブマウント基板1上に配線したAuパッド10上に、
AuSnバンプ2を乗せる。
Step 1 (Fixing AuSn bump) On the Au pad 10 wired on the submount substrate 1,
Place the AuSn bump 2.

【0009】工程2(リフロー) Auパッド10上に仮固定したAuSnバンプ2を、温
度を上げて溶かし(300℃程度)、リフローニングす
る。
Step 2 (Reflow) The AuSn bump 2 temporarily fixed on the Au pad 10 is melted by raising the temperature (about 300 ° C.) and reflowed.

【0010】工程3(半導体光素子実装) リフローニングしたAuSnバンプ2上に半導体光素子
11(発光ダイオード,面発光レーザ,pinフォトダ
イオード及びアバランシェフォトダイオード等を含む半
導体光素子及び半導体光素子を含む光集積素子)を乗せ
温度を上げ融着する。
Step 3 (semiconductor optical device mounting) A semiconductor optical device 11 (including a semiconductor optical device including a light emitting diode, a surface emitting laser, a pin photodiode, an avalanche photodiode, and the like) is provided on the reflowed AuSn bump 2. An optical integrated device) is placed and the temperature is raised to fuse.

【0011】[0011]

【発明が解決しようとする課題】図8の(a)及び
(b)に、第1及び第2の従来例として発光ダイオード
及びpinフォトダイオードの位置ズレの個数を示し
た。位置確認は、サブマウントに予め目印としてつけた
確認位置と半導体光素子のズレ具合を位置ズレ量とした
(200個〜250個程度)。第1の従来例及び第2の
従来例とも位置ズレ量は、±10μm以上あり、精密な
位置精度がでていない。この原因は、AuSnの量及び
リフローした時の形状などが大きく影響していると考え
られる。量や形状を精密に制御することも重要である
が、逆に精度を許容する範囲つまりトレランスを大きく
することも必要である。
FIGS. 8A and 8B show the number of positional deviations of the light emitting diode and the pin photodiode as the first and second conventional examples. In the position confirmation, the amount of positional deviation is the degree of deviation between the confirmation position and the semiconductor optical element, which are previously marked on the submount as a mark (about 200 to 250 pieces). The positional deviation amount is ± 10 μm or more in both the first conventional example and the second conventional example, and precise positional accuracy cannot be obtained. It is considered that the cause of this is that the amount of AuSn and the shape after reflow have a great influence. Although it is important to precisely control the quantity and shape, it is also necessary to increase the range in which accuracy is allowed, that is, the tolerance.

【0012】こうした問題は、セルフアラインによる光
ファイバーとの結合において結合損失が大きくなるばか
りでなくセルフアラインによる結合ができなくなり、コ
ストが高くなる。
[0012] These problems not only increase coupling loss in coupling with an optical fiber by self-alignment but also prevent coupling by self-alignment, resulting in high cost.

【0013】本発明の目的は、上記の課題を克服し、フ
リップチップ実装する半導体光素子に関し、位置精度が
向上し、セルフアラインによる結合損失が少なくなるこ
とが可能な半導体光素子を提供することにある。
An object of the present invention is to overcome the above problems and to provide a semiconductor optical device for flip-chip mounting, in which the positional accuracy is improved and the coupling loss due to self-alignment can be reduced. It is in.

【0014】[0014]

【課題を解決するための手段】本発明は、サブマウント
のAuSnもしくはPbSnのバンプ上にフリップチッ
プ実装された半導体光素子であって、素子のバンプ電極
が凹状になっていることを特徴とする。
SUMMARY OF THE INVENTION The present invention is a semiconductor optical device flip-chip mounted on AuSn or PbSn bumps of a submount, wherein the bump electrodes of the device are concave. ..

【0015】半導体光素子は、半導体発光素子、半導体
受光素子、これら素子のアレイ,マトリックス素子、ま
たは光電気集積素子例えばPIN−FET,LD−FE
T等である。
The semiconductor optical device is a semiconductor light emitting device, a semiconductor light receiving device, an array of these devices, a matrix device, or an optoelectronic integrated device such as a PIN-FET or LD-FE.
T etc.

【0016】[0016]

【作用】本発明は、上述の手段をとることにより、従来
技術の問題点を解決した。
The present invention has solved the problems of the prior art by taking the above-mentioned means.

【0017】これは、サブマウントのAuSnもしくは
PbSnのバンプ上に半導体素子をフリップチップ実装
する半導体光素子において、素子のバンプ電極を凹状に
することにより、融着する接触面積を大きくとることに
よって位置精度が向上し、光ファイバーとのセルフアラ
イン結合を可能にし、結合損失を少なくすることが可能
となる。
This is because, in a semiconductor optical device in which a semiconductor device is flip-chip mounted on a bump of AuSn or PbSn of a submount, the bump electrode of the device is formed into a concave shape so as to increase the contact area for fusion. The accuracy is improved, the self-alignment coupling with the optical fiber is enabled, and the coupling loss can be reduced.

【0018】[0018]

【実施例】本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described.

【0019】図1は、本発明による第1の実施例の半導
体発光素子をフリップチップ実装した断面概略図であ
る。第1の実施例として、レンズ付きメサ型面発光ダイ
オードを示す。発光ダイオード5は、通常のフォトリソ
グラフィ技術を用い、電流狭搾メサ部6を作成した。図
には示していないが、絶縁膜として窒化シリコンを用
い、Ti/Pt及びAuGeでオーミックを電極をつけ
更にp型電極用Auバンプ3及びn型電極用Auバンプ
4を電解メッキ法により作成した。p型電極用Auバン
プ3及びn型電極用Auバンプ4は、フォトリソグラフ
ィ技術により一部だけをエッチングするようにパターニ
ングし、なだらかな凹状にエッチング加工する(静止エ
ッチングでは、急峻な段差はできない)。発光ダイオー
ド5の発光部分は、ウェットエッチング法により凸状の
レンズ部7を作成し、発光効率を高めた。実装するサブ
マウント基板1には、アルミナを用い、Auパッドを配
線した。Auパッド上にAuSnバンプ2を作成し、そ
の後発光ダイオード5を乗せ温度を上げ融着した。サブ
マウント1は、熱伝導率の高い窒化アルミ等も利用され
る。
FIG. 1 is a schematic sectional view of a semiconductor light emitting device according to the first embodiment of the present invention, which is flip-chip mounted. As a first embodiment, a mesa type surface emitting diode with a lens will be shown. For the light emitting diode 5, the current squeezing mesa portion 6 was created by using a normal photolithography technique. Although not shown in the figure, silicon nitride was used as an insulating film, an ohmic electrode was attached using Ti / Pt and AuGe, and Au bumps 3 for p-type electrodes and Au bumps 4 for n-type electrodes were formed by electrolytic plating. . The Au bumps 3 for p-type electrodes and the Au bumps 4 for n-type electrodes are patterned by photolithography so that only a part of them is etched, and etched into a gentle concave shape (a steep step cannot be formed by static etching). . In the light emitting portion of the light emitting diode 5, a convex lens portion 7 was formed by a wet etching method to improve the light emitting efficiency. Alumina was used for the submount substrate 1 to be mounted, and Au pads were wired. The AuSn bump 2 was formed on the Au pad, and then the light emitting diode 5 was placed on the Au pad to raise the temperature and fuse them. The submount 1 is also made of aluminum nitride or the like having high thermal conductivity.

【0020】図2は、本発明による第2の実施例の半導
体受光素子をフリップチップ実装した断面概略図であ
る。第2の本実施例として、レンズ付き裏面入射型pi
nフォトダイオードを示す。pinフォトダイオード8
は、通常のフォトリソグラフィ技術を用い、Zn拡散に
よりp+ 拡散領域9を作成し、pn接合を作成した。図
には示していないが、絶縁膜且つパッシベーション膜と
して窒化シリコンを用い、AuAn及びAuGeでオー
ミック電極をつけ更にp型電極用Auバンプ3及びn型
電極用Auバンプ4を電解メッキ法により作成した。p
型電極用Auバンプ3及びn型電極用Auバンプ4は、
第1の実施例と同様に作成した。pinフォトダイオー
ド8の光入射部分には、ウェットエッチング法により凸
状のレンズ部7を作成し、量子効率を高めた。実装する
サブマウント基坂1には、アルミナを用い、Auパッド
を配線した。Auパッド上にAuSnバンプ2を作成
し、その後pinフォトダイオード8を乗せ温度を上げ
融着した。
FIG. 2 is a schematic sectional view of a semiconductor light receiving element of the second embodiment according to the present invention, which is flip-chip mounted. As a second embodiment, a back-illuminated pi with lens is used.
n photodiode is shown. pin photodiode 8
Was formed into a p + diffusion region 9 by Zn diffusion using a normal photolithography technique to form a pn junction. Although not shown in the figure, silicon nitride was used as an insulating film and a passivation film, ohmic electrodes were attached with AuAn and AuGe, and Au bumps 3 for p-type electrodes and Au bumps 4 for n-type electrodes were formed by electrolytic plating. .. p
The type electrode Au bump 3 and the n-type electrode Au bump 4 are
It was created in the same manner as in the first embodiment. A convex lens portion 7 was formed on the light incident portion of the pin photodiode 8 by a wet etching method to improve quantum efficiency. Alumina was used for the submount Kisaka 1 to be mounted, and Au pads were wired. The AuSn bump 2 was formed on the Au pad, and then the pin photodiode 8 was placed on the Au pad to raise the temperature and fuse them.

【0021】尚、実装の方法を図3に簡単に示す。The mounting method is briefly shown in FIG.

【0022】工程1(AuSnバンプ固定) サブマウント基坂1上に配線したAuパッド10上に、
AuSnバンプ2を乗せる。
Step 1 (fixing AuSn bump) On the Au pad 10 wired on the submount Kisaka 1
Place the AuSn bump 2.

【0023】工程2(リフロー) Auパッド10上に仮固定したAuSnバンプ2を、温
度を上げて溶かし(300℃程度)、リフローニングす
る。
Step 2 (Reflow) The AuSn bump 2 temporarily fixed on the Au pad 10 is melted by raising the temperature (about 300 ° C.) and reflowed.

【0024】工程3(半導体光素子実装) リフローニングしたAuSnバンプ2上に半導体光素子
11(発光ダイオード,面発光レーザ,pinフォトダ
イオード及びアバランシェフォトダイオード等を含む半
導体光素子及び半導体光素子を含む光集積素子)を乗せ
温度を上げ融着する。
Step 3 (Semiconductor Optical Device Mounting) The semiconductor optical device 11 (including a semiconductor optical device including a light emitting diode, a surface emitting laser, a pin photodiode, an avalanche photodiode, etc.) is provided on the reflowed AuSn bump 2. An optical integrated device) is placed and the temperature is raised to fuse.

【0025】この様にp型及びn型電極用Auバンプを
凹状に加工することで、融着の接触面積を大きく取るこ
とができ、位置精度を高くすることができ光ファイバー
結合をセルフアラインですることが可能となる。
By processing the Au bumps for the p-type and n-type electrodes in a concave shape in this manner, a large contact area for fusion can be secured, the positional accuracy can be increased, and the optical fiber coupling can be self-aligned. It becomes possible.

【0026】得られた発光ダイオード及びpinフォト
ダイオードの位置精度を表す位置ズレに対する個数を図
4に示す。位置ズレは、前記従来例における位置ズレ測
定と同じ手法である。位置ズレは従来例に対して半分程
度に収まり、位置精度が飛躍的に向上していることがわ
かる。これは、凹状のAuバンプを有する半導体光素子
において、サブマウント基坂に融着する接触面積を大き
くすることによって、接触強度を高めセルフアライン効
果を高めたことによるものである。
FIG. 4 shows the number of obtained light emitting diodes and pin photodiodes with respect to the positional deviation, which represents the positional accuracy. The positional deviation is the same method as the positional deviation measurement in the conventional example. It can be seen that the positional deviation is reduced to about half that of the conventional example, and the positional accuracy is dramatically improved. This is because, in the semiconductor optical device having the concave Au bumps, the contact area fused to the submount substrate is increased to increase the contact strength and enhance the self-alignment effect.

【0027】[0027]

【発明の効果】本発明による半導体光素子は、得られる
半導体光素子において、サブマウント基坂にフリップチ
ップ実装した場合位置精度が向上することが可能となっ
た。
According to the semiconductor optical device of the present invention, it is possible to improve the positional accuracy of the obtained semiconductor optical device when it is flip-chip mounted on the submount substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による第1の実施例の発光ダイオードを
実装したときの断面概略図である。
FIG. 1 is a schematic cross-sectional view of a mounted light emitting diode according to a first embodiment of the present invention.

【図2】本発明による第2の実施例のpinフォトダイ
オードを実装したときの断面概略図である。
FIG. 2 is a schematic sectional view when a pin photodiode of a second embodiment according to the present invention is mounted.

【図3】半導体光素子の実装方法の工程概略図である。FIG. 3 is a schematic process diagram of a method for mounting a semiconductor optical device.

【図4】発光ダイオード及びpinフォトダイオードの
位置ズレ量に対する個数を示した図である。
FIG. 4 is a diagram showing the number of light emitting diodes and pin photodiodes with respect to the positional deviation amount.

【図5】第1の従来例の発光ダイオードを実装したとき
の断面概略図である。
FIG. 5 is a schematic cross-sectional view when a light emitting diode of a first conventional example is mounted.

【図6】第2の従来例のpinフォトダイオードを実装
したときの断面概略図である。
FIG. 6 is a schematic sectional view when a pin photodiode of a second conventional example is mounted.

【図7】半導体光素子の実装方法の工程概略図である。FIG. 7 is a process schematic diagram of a method for mounting a semiconductor optical device.

【図8】発光ダイオード及びpinフォトダイオードの
位置ズレ量に対する個数を示した図である。
FIG. 8 is a diagram showing the number of light emitting diodes and pin photodiodes with respect to the positional deviation amount.

【符号の説明】[Explanation of symbols]

1 サブマウント基坂 2 AuSnバンプ 3 p型電極用Auバンプ 4 n型電極用Auバンプ 5 発光ダイオード 6 電流狭搾メサ部 7 レンズ部 8 pinフォトダイオード 9 p+ 拡散領域 10 Auパッド 11 半導体光素子 12 Auバンプ1 Submount Kisaka 2 AuSn Bump 3 Au Bump for p-type Electrode 4 Au Bump for n-type Electrode 5 Light Emitting Diode 6 Current Squeezing Mesa Part 7 Lens Part 8 Pin Photodiode 9 p + Diffusion Area 10 Au Pad 11 Semiconductor Photonic Device 12 Au bump

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】サブマウントのAuSnもしくはPbSn
のバンプ上にフリップチップ実装された半導体光素子で
あって、素子のバンプ電極が凹状になっていることを特
徴とする半導体光素子。
1. Submount AuSn or PbSn
The semiconductor optical device flip-chip mounted on the bump of, wherein the bump electrode of the device is concave.
【請求項2】前記半導体素子が、半導体発光素子、また
は半導体受光素子、または半導体集積素子であることを
特徴とする請求項1記載の半導体光素子。
2. The semiconductor optical device according to claim 1, wherein the semiconductor device is a semiconductor light emitting device, a semiconductor light receiving device, or a semiconductor integrated device.
JP24816091A 1991-09-27 1991-09-27 Semiconductor optical element Pending JPH0590329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24816091A JPH0590329A (en) 1991-09-27 1991-09-27 Semiconductor optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24816091A JPH0590329A (en) 1991-09-27 1991-09-27 Semiconductor optical element

Publications (1)

Publication Number Publication Date
JPH0590329A true JPH0590329A (en) 1993-04-09

Family

ID=17174117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24816091A Pending JPH0590329A (en) 1991-09-27 1991-09-27 Semiconductor optical element

Country Status (1)

Country Link
JP (1) JPH0590329A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003776A1 (en) * 1994-07-21 1996-02-08 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
JP2002043623A (en) * 2000-07-27 2002-02-08 Nichia Chem Ind Ltd Optical semiconductor element and its manufacturing method
US7456438B2 (en) 2005-10-17 2008-11-25 Samsung Electro-Mechanics Co., Ltd. Nitride-based semiconductor light emitting diode
JP2011034989A (en) * 2009-07-29 2011-02-17 Showa Denko Kk Semiconductor light-emitting element and method for manufacturing the same, lamp, electronic apparatus, and mechanical apparatus
US8643046B2 (en) 2009-05-14 2014-02-04 Toyoda Gosei Co., Ltd. Semiconductor light-emitting element, method for producing the same, lamp, lighting device, electronic equipment, mechanical device and electrode
KR20160053138A (en) * 2014-10-31 2016-05-13 서울바이오시스 주식회사 High efficiency light emitti ng device
JP2019004064A (en) * 2017-06-16 2019-01-10 ウシオオプトセミコンダクター株式会社 Multi-beam semiconductor laser element and multi-beam semiconductor laser device
KR20190088562A (en) * 2016-12-06 2019-07-26 엘지이노텍 주식회사 Light emitting element
CN113161455A (en) * 2021-01-26 2021-07-23 江西乾照光电有限公司 MiniLED chip and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140280A (en) * 1979-04-20 1980-11-01 Hitachi Ltd Light emitting diode
JPS62279645A (en) * 1986-05-28 1987-12-04 Hitachi Ltd Method for solder connection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140280A (en) * 1979-04-20 1980-11-01 Hitachi Ltd Light emitting diode
JPS62279645A (en) * 1986-05-28 1987-12-04 Hitachi Ltd Method for solder connection

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
EP1473781A2 (en) * 1994-07-21 2004-11-03 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US5895225A (en) * 1994-07-21 1999-04-20 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US6133058A (en) * 1994-07-21 2000-10-17 Matsushita Electric Industrial Co., Ltd. Fabrication of semiconductor light-emitting device
US5751013A (en) * 1994-07-21 1998-05-12 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
WO1996003776A1 (en) * 1994-07-21 1996-02-08 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
EP1473781A3 (en) * 1994-07-21 2007-02-21 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
JP2002043623A (en) * 2000-07-27 2002-02-08 Nichia Chem Ind Ltd Optical semiconductor element and its manufacturing method
US7456438B2 (en) 2005-10-17 2008-11-25 Samsung Electro-Mechanics Co., Ltd. Nitride-based semiconductor light emitting diode
US8643046B2 (en) 2009-05-14 2014-02-04 Toyoda Gosei Co., Ltd. Semiconductor light-emitting element, method for producing the same, lamp, lighting device, electronic equipment, mechanical device and electrode
JP2011034989A (en) * 2009-07-29 2011-02-17 Showa Denko Kk Semiconductor light-emitting element and method for manufacturing the same, lamp, electronic apparatus, and mechanical apparatus
KR20160053138A (en) * 2014-10-31 2016-05-13 서울바이오시스 주식회사 High efficiency light emitti ng device
KR20190088562A (en) * 2016-12-06 2019-07-26 엘지이노텍 주식회사 Light emitting element
JP2019004064A (en) * 2017-06-16 2019-01-10 ウシオオプトセミコンダクター株式会社 Multi-beam semiconductor laser element and multi-beam semiconductor laser device
CN113161455A (en) * 2021-01-26 2021-07-23 江西乾照光电有限公司 MiniLED chip and manufacturing method thereof

Similar Documents

Publication Publication Date Title
AU592256B2 (en) Optical device and method
KR100809413B1 (en) Vertical cavity surface emitting laser having monitoring photodiode and method of fabrication the same
US6678292B2 (en) Top contact VCSEL with monitor
US9065235B2 (en) Method of assembling VCSEL chips on a sub-mount
JPH0590329A (en) Semiconductor optical element
US4136351A (en) Photo-coupled semiconductor device
US6717711B2 (en) Structure and method for forming a high efficiency electro-optics device
JP3610235B2 (en) Surface light emitting device
JP2678944B2 (en) Method for bonding a semiconductor chip to a substrate
JP3386571B2 (en) Method of manufacturing dual beam semiconductor laser
JPS5996789A (en) Photosemiconductor device
JPS5833885A (en) Laser diode
EP0081554A4 (en) Led having self-aligned lens.
JP3768099B2 (en) Light receiving element and optical semiconductor device including the same
JP2795627B2 (en) Optical module having vertical cavity surface emitting laser and method of manufacturing the same
KR20020042873A (en) Optical component and method of manufacturing same
KR20030054596A (en) Method for manufacturing light emitting diode
KR100862457B1 (en) Structure for flip-chip bonding a light emitting device using metal column
JPH0478031B2 (en)
JP2945438B2 (en) Optical semiconductor device and optical receiver using the same
KR890003417B1 (en) Photo transducer
JPH01150379A (en) Light emitting device
JP2529397B2 (en) Electrode for mounting chip parts
JPH04167565A (en) Flip chip type photodetective element
JP2002368274A (en) Light-emitting module and semiconductor light-emitting device