JPH058997B2 - - Google Patents

Info

Publication number
JPH058997B2
JPH058997B2 JP61080054A JP8005486A JPH058997B2 JP H058997 B2 JPH058997 B2 JP H058997B2 JP 61080054 A JP61080054 A JP 61080054A JP 8005486 A JP8005486 A JP 8005486A JP H058997 B2 JPH058997 B2 JP H058997B2
Authority
JP
Japan
Prior art keywords
reactor
pressure
tank
pressure tank
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61080054A
Other languages
Japanese (ja)
Other versions
JPS62237395A (en
Inventor
Masahiro Yamashita
Takashi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61080054A priority Critical patent/JPS62237395A/en
Publication of JPS62237395A publication Critical patent/JPS62237395A/en
Publication of JPH058997B2 publication Critical patent/JPH058997B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、原子力発電所に用いられる非常用炉
心冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an emergency core cooling system used in a nuclear power plant.

(従来の技術) 原子力発電所に於いて原子炉圧力容器バウンダ
リーの破断が発生し、冷却材喪失事故に至つた場
合、従来の原子炉では動的機器であるポンプを用
いた非常用炉心冷却装置(以下ECCSと略記す
る)を用いて炉心冷却を行い、その健全性を確保
している。即ち、小口径の破断(以下小LOCAと
略記する)の場合、破断口からの冷却材の流出が
少なく原子炉圧力は高圧に保たれる。従つてこの
場合は高圧ECCSを用いて原子炉内に冷却水を注
入することによつて、炉心を露出すること無く冷
却を行うことが出来る。一方、大口径の破断(以
下大LOCAと略記する)の場合、破断口からの冷
却水の流出量が多く原子炉炉心では一時的に露出
し、原子炉圧力も大幅に低下する。しかし、この
場合は大容量の低圧ECCSを用いて原子炉内に冷
却水を注入することによつて炉心を再冠水させ冷
却を確保することが出来る。後者の場合、前者の
場合に比べて厳しい状況となるが、燃料被覆管の
最高温度は制限値より充分低く保たれる。
(Prior technology) When a rupture of the reactor pressure vessel boundary occurs in a nuclear power plant, leading to a loss of coolant accident, in conventional nuclear reactors, an emergency core cooling system using a pump, which is a dynamic device, is used. (hereinafter abbreviated as ECCS) is used to cool the core and ensure its integrity. That is, in the case of a small diameter rupture (hereinafter abbreviated as small LOCA), there is little coolant flowing out from the rupture port, and the reactor pressure is maintained at a high pressure. Therefore, in this case, by injecting cooling water into the reactor using high-pressure ECCS, cooling can be performed without exposing the reactor core. On the other hand, in the case of a large-diameter rupture (hereinafter abbreviated as large LOCA), a large amount of cooling water flows out from the rupture port, temporarily exposing the reactor core, and the reactor pressure drops significantly. However, in this case, by injecting cooling water into the reactor using a large-capacity, low-pressure ECCS, it is possible to re-flood the core and ensure cooling. In the latter case, the situation is more severe than in the former case, but the maximum temperature of the fuel cladding tube is kept sufficiently lower than the limit value.

一方、近年ECCSの合理化、及び、信頼性向上
の観点から第3図に示す様な非常用炉心冷却装置
を有する原子炉の実用化が提唱されるに至つてい
る。なお、以下に示す非常用炉心冷却装置を
ElevatedPool方式と呼ぶ。ここで第3図を参照
して従来の非常用炉心冷却装置について説明す
る。第3図において、原子炉圧力容器1内には炉
心2が収容されている。この原子炉圧力容器1の
周囲にはドライウエル3が形成され、このドライ
ウエル3の上部側方には冷却材4を貯溜するプー
ル5が配置されている。これらプール5の上方は
燃料交換エリアを形成する上部構造物6が設けら
れている。また、前記原子炉圧力容器1には前記
ドライウエル3を貫通して給水配管7が接続され
ており、この給水配管7には事故時に前記プール
5から逆止弁8を介して冷却材を給水配管7内に
導びく冷却材注入配管9が接続されている。
On the other hand, in recent years, from the viewpoint of streamlining ECCS and improving reliability, the practical application of a nuclear reactor equipped with an emergency core cooling system as shown in Figure 3 has been proposed. In addition, the emergency core cooling system shown below is installed.
This is called the ElevatedPool method. Here, a conventional emergency core cooling system will be explained with reference to FIG. In FIG. 3, a reactor core 2 is housed within a reactor pressure vessel 1. As shown in FIG. A dry well 3 is formed around the reactor pressure vessel 1, and a pool 5 for storing a coolant 4 is arranged on the upper side of the dry well 3. Above these pools 5, there is provided an upper structure 6 that forms a fuel exchange area. Further, a water supply pipe 7 is connected to the reactor pressure vessel 1 through the dry well 3, and coolant is supplied to the water supply pipe 7 from the pool 5 via a check valve 8 in the event of an accident. A coolant injection pipe 9 leading into the pipe 7 is connected.

以上の構成において、冷却水源となるプールが
原子炉より上部に位置するため、従来のECCSの
様にポンプを使用せずに冷却材の水頭差により冷
却材を原子炉内へ注入することが出来る。従つ
て、ECCSは動的機器であるポンプを使用せず、
静的機器である配管・弁類等のみから構成される
ため信頼性が高く、かく、コストが低い利点を有
している。
In the above configuration, the pool that serves as the cooling water source is located above the reactor, so coolant can be injected into the reactor by the difference in the coolant head without using a pump like in conventional ECCS. . Therefore, ECCS does not use pumps, which are dynamic equipment, and
Since it is composed only of static equipment such as piping and valves, it has the advantage of high reliability and low cost.

しかし、既に述べた様に小LOCAの場合、原子
炉圧力は高圧(約70Kg/cm2程度)に維持されるた
めElevated Poolの冷却材の自重のみで原子炉内
に冷却材を注入することは不可能である。従つ
て、Elevated Pool方式の原子炉に於いて小
LOCAが発生した場合、自動減圧装置により原子
炉内の蒸気を外部に放出させ原子炉圧力を低下さ
せた後、Elevated Poolの冷却材を原子炉内に注
入する。自動減圧装置を用いた減圧過程に於いて
一時的に炉心が露出するが、その後冷却材の注入
によつて炉心は再冠水され冷却が確保されるに至
る。
However, as mentioned above, in the case of a small LOCA, the reactor pressure is maintained at a high pressure (approximately 70 kg/ cm2 ), so it is not possible to inject coolant into the reactor using only the dead weight of the coolant in the Elevated Pool. It's impossible. Therefore, in an elevated pool reactor,
In the event of a LOCA, automatic depressurization equipment releases steam inside the reactor to the outside to lower the reactor pressure, and then coolant from the Elevated Pool is injected into the reactor. During the depressurization process using an automatic decompression device, the core is temporarily exposed, but the core is then re-submerged with water through the injection of coolant, ensuring cooling.

(発明が解決しようとする問題点) Elevated Pool方式の格納容器を有する原子炉
に於いて、冷却材喪失事故の発生を想定すると、
大LOCAに比べて比較的発生頻度が高いと想定さ
れる小LOCAの場合、自動減圧装置を用いて原子
炉圧力を低下させた後、初めてElevated Poolの
冷却材を原子炉内に注入することが可能となる。
この減圧過程で小LOCAにも拘らず、一時的に炉
心が露出するに至り、最終的には炉心が再冠水さ
れ炉心冷却が確保されるものの、比較的発生する
可能性がある小LOCA時に炉心露出が発生するこ
とは好ましくない問題である。
(Problems to be solved by the invention) Assuming that a loss of coolant accident occurs in a nuclear reactor with an elevated pool type containment vessel,
In the case of small LOCA, which is assumed to occur relatively more frequently than large LOCA, coolant from the Elevated Pool can only be injected into the reactor after reducing the reactor pressure using an automatic decompression device. It becomes possible.
During this depressurization process, the core is temporarily exposed despite a small LOCA, and although the core is eventually re-flooded and core cooling is ensured, the core is exposed during a small LOCA, which is relatively likely to occur. Exposure is an undesirable problem.

本発明の目的は、Elevated Pool方式の非常用
炉心冷却装置を有する原子炉に於いて小LOCA時
に原子炉を減圧させること無く冷却水を原子炉内
に注入し炉心露出を防止し、炉心の健全性を確保
することのできる非常用炉心冷却装置を提供する
ことにある。
The purpose of the present invention is to prevent core exposure by injecting cooling water into the reactor without depressurizing the reactor during a small LOCA in a nuclear reactor equipped with an elevated pool type emergency core cooling system, thereby ensuring the safety of the reactor core. An object of the present invention is to provide an emergency core cooling system that can ensure safety.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するために、本発明において
は、内部に炉心を収納する原子炉圧力容器と、こ
の原子炉圧力容器の上方に配置され内部に冷却材
を保有するプールと、前記プールに隣接して配置
され前記原子炉圧力容器に開動作する逆止弁が配
設された冷却材注入配管を介して前記原子炉圧力
容器側に接続される高圧タンクと、この高圧タン
クの気相部と前記原子炉圧力容器の気相部とを接
続しかつ高圧タンクから原子炉圧力容器に注入す
る時のみ開動作する弁を有する加圧配管と、前記
高圧タンクの上部に一端を接続し他端を前記プー
ルの液相部に開放させかつ高圧タンク内の冷却水
が一定値以下になつた場合にこの高圧タンク内の
圧力を前記プールに導くために開動作する開閉弁
を有する減圧配管と、前記タンクの液相部と高圧
タンクとを接続し前記開閉弁が開動作し高圧タン
ク内が減圧した時にこの高圧タンク側に開動作す
る逆止弁が配設された冷却材補給配管とから成る
ことを特徴とする非常用炉心冷却装置を提供す
る。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a reactor pressure vessel that houses a reactor core therein, and a reactor pressure vessel that is arranged above the reactor pressure vessel and that has a coolant inside. a high-pressure tank located adjacent to the pool and connected to the reactor pressure vessel side through a coolant injection pipe provided with a check valve that opens the reactor pressure vessel; , a pressurizing pipe connecting the gas phase part of the high pressure tank and the gas phase part of the reactor pressure vessel and having a valve that opens only when injecting from the high pressure tank to the reactor pressure vessel; One end is connected to the upper part, the other end is opened to the liquid phase part of the pool, and when the cooling water in the high pressure tank falls below a certain value, it opens to guide the pressure in the high pressure tank to the pool. A pressure reducing pipe having an on-off valve is connected to the liquid phase part of the tank and the high-pressure tank, and a check valve is disposed on the high-pressure tank side that opens when the on-off valve opens and the pressure inside the high-pressure tank is reduced. The present invention provides an emergency core cooling system characterized by comprising a coolant supply pipe.

(作用) この様にして構成された非常用炉心冷却装置に
於いては、小LOCAまたは給水喪失トランジエン
ト時のように原子炉圧力が高圧に維持され、かつ
原子炉水位が低下する事象の場合、冷却材を貯え
た高圧タンクに原子炉圧力を背圧として加えるこ
とにより原子炉内に冷却材が供給される。更に、
同タンク内に貯えた冷却材が枯渇した場合は、ま
ず原子炉からの圧力の供給を一旦隔離した上で同
タンクを減圧することにより、Elevated Poolに
貯えられた冷却材を自重によつて高圧タンク内に
注入する。この様な高圧タンク等から構成される
系統を2系統以上設置すると、一方の高圧タンク
が冷却水をElevated Poolから補給中にも、残り
のタンクから冷却水を原子炉内へ注入することが
出来、原子炉への注水を連続して行うことが出来
る。
(Function) In the emergency core cooling system configured in this way, in the case of an event where the reactor pressure is maintained at a high pressure and the reactor water level drops, such as during a small LOCA or a transient loss of feed water, Coolant is supplied into the reactor by applying reactor pressure as back pressure to a high-pressure tank storing coolant. Furthermore,
If the coolant stored in the Elevated Pool is depleted, first isolate the pressure supply from the reactor and then depressurize the tank, thereby increasing the pressure of the coolant stored in the Elevated Pool under its own weight. Inject into the tank. If two or more systems consisting of such high-pressure tanks are installed, even if one high-pressure tank is replenishing cooling water from the Elevated Pool, cooling water can be injected into the reactor from the remaining tank. , it is possible to continuously inject water into the reactor.

この様にして高圧の冷却水を原子炉内へ継続的
に注入することが出来るため、原子炉圧力が高圧
に維持され、かつ、原子炉水位が低下する小
LOCA時、給水喪失トランジエンド時等に於いて
も、炉心露出を防止すると同時に充分な炉心冷却
を確保することが可能となる。
In this way, high-pressure cooling water can be continuously injected into the reactor, so the reactor pressure can be maintained at a high pressure and the reactor water level can be lowered.
Even during LOCA, water supply loss transition, etc., it is possible to prevent core exposure and at the same time ensure sufficient core cooling.

(実施例) 以下本発明の一実施例を第1図に基づいて説明
する。なお、第1図において、第3図と同一部分
には同一符号を付し、その構成の説明は省略す
る。第1図に示す様に、炉心2を収容した原子炉
圧力容器1の上方にはプールが設けられている。
このプール5に隣接して高圧タンク10が設置さ
れる。この高圧タンク10には冷却材を原子炉圧
力容器1内に注入するための冷却材注入配管1
1、及び、逆止弁12が設けられている。更に、
高圧タンク10内部の冷却材が枯渇した際に、冷
却材をプール5から補給するために冷却材補給配
管13、及び、逆止弁14がプール5の液相部と
高圧タンク10とを接続して設けられている。た
だし、高圧タンク10へプール5からの冷却材を
補給する際には高圧タンク10の内圧を一時的に
下げる必要があるため高圧タンク10の気相部か
らプール5内の冷却材4中に高圧タンク10内の
高圧気体を放出する減圧配管15、及び、電動弁
16が設けられている。
(Example) An example of the present invention will be described below based on FIG. In FIG. 1, the same parts as in FIG. 3 are given the same reference numerals, and the explanation of the structure will be omitted. As shown in FIG. 1, a pool is provided above a reactor pressure vessel 1 containing a reactor core 2.
A high pressure tank 10 is installed adjacent to this pool 5. This high pressure tank 10 has a coolant injection pipe 1 for injecting coolant into the reactor pressure vessel 1.
1 and a check valve 12 are provided. Furthermore,
A coolant replenishment pipe 13 and a check valve 14 connect the liquid phase part of the pool 5 and the high pressure tank 10 in order to replenish the coolant from the pool 5 when the coolant inside the high pressure tank 10 is depleted. It is provided. However, when replenishing the high-pressure tank 10 with the coolant from the pool 5, it is necessary to temporarily lower the internal pressure of the high-pressure tank 10. A pressure reduction pipe 15 and an electric valve 16 are provided to release high pressure gas from the tank 10.

また高圧タンク10に冷却材を補給されている
状態で高圧タンク10を原子炉圧力容器1の内圧
と等圧力迄加圧するために、原子炉圧力容器1の
気相部から高圧タンク10の気相部に至る加圧配
管17、及び、電動弁18が設けられている。こ
の加圧配管17を介して高圧タンク10に流入し
た原子炉蒸気による疲労を防止するために高圧タ
ンク10内の気・液界面には断熱性の高いセラミ
ツクス製のフロート19が配置されている。
In addition, in order to pressurize the high-pressure tank 10 to a pressure equal to the internal pressure of the reactor pressure vessel 1 while the high-pressure tank 10 is supplied with coolant, the gas phase of the high-pressure tank 10 is transferred from the gas phase of the reactor pressure vessel 1 to the gas phase of the high-pressure tank 10. A pressurizing pipe 17 and an electric valve 18 are provided. In order to prevent fatigue due to reactor steam flowing into the high pressure tank 10 through the pressurizing pipe 17, a float 19 made of highly insulating ceramics is placed at the gas/liquid interface within the high pressure tank 10.

また高圧タンク10の内面も断熱性の高いセラ
ミツクスでコーテイングを施し高圧タンク10内
の熱サイクルによる疲労を防止するような構成に
なつている。
The inner surface of the high-pressure tank 10 is also coated with highly insulating ceramics to prevent fatigue due to thermal cycles within the high-pressure tank 10.

この様な構成の非常用炉心冷却装置を設置した
原子炉に於いて、小LOCA或いは給水喪失トラン
ジエントの様な原子炉圧力が高圧に維持され、か
つ、原子炉水位が低下する事象が発生した場合、
加圧配管の電動弁を開にし、冷却水を貯えた高圧
タンクに原子炉圧力を背圧として加えると高圧タ
ンクと原子炉との水頭差により原子炉圧力容器内
に冷却水が供給される。更に高圧タンク内に貯え
られた冷却水が枯渇した際はまず加圧配管の電動
弁を閉じ原子炉からの圧力を一旦隔離した上で、
減圧配管上の電動弁を開動作させて、高圧タンク
を減圧させ、冷却材補給配管上の逆止弁を開させ
て冷却水をプールからの水頭差によつて高圧タン
ク内に注入する。次に減圧配管の弁を閉じ、加圧
配管10上の電動弁を開することによつて高圧タ
ンクを原子炉圧力と等圧力迄加圧する。また、冷
却材補給配管の弁は逆止弁であるのでこの際自動
的に閉鎖する。
In a reactor equipped with such an emergency core cooling system, an event such as a small LOCA or a loss of feedwater transient in which the reactor pressure is maintained at a high pressure and the reactor water level drops occurs. case,
When the electric valve in the pressurizing pipe is opened and reactor pressure is applied as back pressure to the high-pressure tank storing cooling water, cooling water is supplied into the reactor pressure vessel due to the water head difference between the high-pressure tank and the reactor. Furthermore, when the cooling water stored in the high-pressure tank is depleted, the electric valve of the pressurized piping is closed to temporarily isolate the pressure from the reactor, and then
The electric valve on the pressure reduction pipe is opened to reduce the pressure in the high pressure tank, and the check valve on the coolant supply pipe is opened to inject cooling water from the pool into the high pressure tank using the head difference. Next, the valve of the pressure reducing pipe is closed and the electric valve on the pressurizing pipe 10 is opened to pressurize the high pressure tank to a pressure equal to the reactor pressure. Furthermore, since the valve of the coolant supply pipe is a check valve, it is automatically closed at this time.

高圧タンクが原子炉圧力により加圧されると、
冷却材注入配管を通つて冷却材を高圧タンクの原
子炉圧力容器の水頭差で原子炉内へ注入すること
が出来る。尚、このような一連の作用を自動化す
るため、高圧タンク内に水位計を設置し、加圧配
管の弁及び減圧配管の弁をインターロツクにより
連動させることも可能である。
When the high pressure tank is pressurized by the reactor pressure,
Coolant can be injected into the reactor through the coolant injection pipe using the water head difference between the high-pressure tank and the reactor pressure vessel. In order to automate such a series of operations, it is also possible to install a water level gauge in the high pressure tank and interlock the valves of the pressure piping and the valves of the pressure reduction piping.

更にこの様な高圧タンク等から構成される系統
を2系統以上設置することで、一方のタンクが冷
却水を補給中にも残りの高圧タンクから冷却材を
原子炉圧力容器内へ注入することが出来、継続的
な冷却材供給が可能となる。
Furthermore, by installing two or more systems consisting of such high-pressure tanks, etc., even when one tank is replenishing cooling water, coolant can be injected into the reactor pressure vessel from the remaining high-pressure tank. This enables continuous supply of coolant.

この様にして高圧の冷却材を原子炉圧力容器内
に継続的に注入させることができるため原子炉圧
力が高圧に維持され、かつ、原子炉水位が低下す
る小LOCAの場合にも、炉心露出を防止すると同
時に充分な炉心冷却を確保することが可能とな
る。また給水喪失トランジエント時のように原子
炉圧力が高圧に維持され、かつ、原子炉水位が低
下するトランジエントの場合にも炉水の補給を高
圧のまま行うことが可能となる。
In this way, high-pressure coolant can be continuously injected into the reactor pressure vessel, so the reactor pressure can be maintained at a high level, and even in the case of a small LOCA where the reactor water level drops, the reactor core can be exposed. This makes it possible to prevent this and at the same time ensure sufficient core cooling. In addition, even in the case of a transient in which the reactor pressure is maintained at a high pressure and the reactor water level decreases, such as during a transient in which the reactor water is lost, it is possible to replenish the reactor water while maintaining the high pressure.

次に本発明の他の実施例について第2図を参照
して説明する。なお第2図において、第1図と同
一部分には同一符号を付し、その部分の構成の説
明は省略する。第2図において、高圧タンク10
には常時加圧するための窒素ガス封入装置20が
設けられている。即ち、この窒素ガス封入装置2
0は窒素ガスを貯えておく窒素ガスボンベ21
と、窒素ガスを加圧するためのコンプレツサー2
2と、コンプレツサー22から高圧窒素を逆止弁
23を介して高圧タンク10に導く窒素供給配管
24とから構成されている。
Next, another embodiment of the present invention will be described with reference to FIG. In FIG. 2, the same parts as in FIG. 1 are given the same reference numerals, and the explanation of the structure of those parts will be omitted. In FIG. 2, the high pressure tank 10
is equipped with a nitrogen gas filling device 20 for constant pressurization. That is, this nitrogen gas filling device 2
0 is a nitrogen gas cylinder 21 that stores nitrogen gas
and compressor 2 for pressurizing nitrogen gas.
2, and a nitrogen supply pipe 24 that guides high-pressure nitrogen from the compressor 22 to the high-pressure tank 10 via a check valve 23.

以上の構成によつて、本発明の他の実施例に係
る非常用炉心冷却装置は、窒素ガスボンベ21の
窒素ガスをコンプレツサー22により加圧して、
このコンプレツサー22から窒素供給配管24を
介して高圧タンク10の気相部に常時高圧の窒素
ガスを封入しておく構成になつている。よつて高
圧タンク10を常時高圧に維持しておくことが可
能である。従つて、高圧タンク10の気相部を原
子炉圧力の背圧を加えることによる時間遅れ無し
に高圧の冷却材を原子炉圧力容器1内に注入する
ことが出来る。
With the above configuration, the emergency core cooling system according to another embodiment of the present invention pressurizes the nitrogen gas in the nitrogen gas cylinder 21 with the compressor 22,
The structure is such that high-pressure nitrogen gas is always sealed in the gas phase portion of the high-pressure tank 10 from the compressor 22 via the nitrogen supply pipe 24. Therefore, it is possible to maintain the high pressure tank 10 at high pressure at all times. Therefore, high-pressure coolant can be injected into the reactor pressure vessel 1 without the time delay caused by applying back pressure of the reactor pressure to the gas phase portion of the high-pressure tank 10.

以上の様に非常用炉心冷却装置を有する原子炉
に於いて小LOCA或いは給水喪失トランジエント
の様に原子炉圧力が高圧に維持され、かつ、原子
炉水位が低下する事象が発生した場合、窒素ガス
で加圧された高圧タンクから直ちに高圧冷却水の
原子炉内への注入が出来るため、第1の実施例に
比べて一層の炉心冷却性能向上が計れる。
As mentioned above, in a reactor equipped with an emergency core cooling system, if an event occurs in which the reactor pressure is maintained at a high pressure and the reactor water level drops, such as a small LOCA or a transient loss of feed water, nitrogen Since high-pressure cooling water can be immediately injected into the reactor from the high-pressure tank pressurized with gas, the core cooling performance can be further improved compared to the first embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば非常用炉心冷却装置を有する原
子炉に於いて、給水喪失トランジエント時や小
LOCA時、このように原子炉水位が低下し、か
つ、原子炉圧力が高圧に維持されている場合であ
つても原子炉を減圧させることなく冷却水を原子
炉圧力容器内に継続して注入することが可能であ
るため、炉心露出を防止し、原子炉の充分な冷却
を確保することが出来る。
According to the present invention, in a nuclear reactor having an emergency core cooling system, it is possible to
During LOCA, cooling water can be continuously injected into the reactor pressure vessel without depressurizing the reactor, even when the reactor water level is low and the reactor pressure is maintained at a high pressure. This makes it possible to prevent core exposure and ensure sufficient cooling of the reactor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す非常用炉心冷
却装置の概略系統図、第2図は本発明の他の実施
例を示す非常用炉心冷却装置の概略系統図、第3
図は非常用炉心冷却系の従来例を示す概略縦断面
図である。 1……原子炉圧力容器、2……炉心、5……プ
ール、10……高圧タンク、11……冷却材注入
配管、13……冷却材補給配管、15……減圧配
管、17……加圧配管。
FIG. 1 is a schematic system diagram of an emergency core cooling system showing one embodiment of the present invention, FIG. 2 is a schematic system diagram of an emergency core cooling system showing another embodiment of the invention, and FIG.
The figure is a schematic longitudinal sectional view showing a conventional example of an emergency core cooling system. 1... Reactor pressure vessel, 2... Reactor core, 5... Pool, 10... High pressure tank, 11... Coolant injection pipe, 13... Coolant supply pipe, 15... Decompression pipe, 17... Pressure piping.

Claims (1)

【特許請求の範囲】[Claims] 1 内部に炉心を収納する原子炉圧力容器と、こ
の原子炉圧力容器の上方に配置され内部に冷却材
を保有するプールと、前記プールに隣接して配置
され前記原子炉圧力容器側に開動作する逆止弁が
配設された冷却材注入配管を介して前記原子炉圧
力容器に接続される高圧タンクと、この高圧タン
クの気相部と前記原子炉圧力容器の気相部とを接
続しかつ高圧タンクから原子炉圧力容器に注入す
る時のみ開動作する弁を有する加圧配管と、前記
高圧タンクの上部に一端を接続し他端を前記プー
ルの液相部に開放させかつ高圧タンク内の冷却水
が一定値以下になつた場合にこの高圧タンク内の
圧力を前記プールに導くために開動作する開閉弁
を有する減圧配管と、前記タンクの液相部と高圧
タンクとを接続し前記開閉弁が開動作し高圧タン
ク内が減圧した時にこの高圧タンク側に開動作す
る逆止弁が配設された冷却材補給配管とから成る
ことを特徴とする非常用炉心冷却装置。
1. A reactor pressure vessel that houses the reactor core inside, a pool that is placed above the reactor pressure vessel and holds coolant inside, and a pool that is placed adjacent to the pool and that opens on the side of the reactor pressure vessel. A high pressure tank is connected to the reactor pressure vessel via a coolant injection pipe provided with a check valve, and a gas phase part of the high pressure tank is connected to a gas phase part of the reactor pressure vessel. and a pressurizing pipe having a valve that opens only when injecting from the high pressure tank to the reactor pressure vessel, one end connected to the upper part of the high pressure tank, the other end open to the liquid phase part of the pool, and inside the high pressure tank. A pressure reducing pipe having an on-off valve that opens and closes to guide the pressure in the high-pressure tank to the pool when the cooling water of the tank falls below a certain value, and a liquid phase part of the tank and the high-pressure tank are connected to the high-pressure tank. An emergency core cooling system comprising a coolant supply pipe provided with a check valve that opens on the high-pressure tank side when the on-off valve opens and the pressure inside the high-pressure tank is reduced.
JP61080054A 1986-04-09 1986-04-09 Emergency core cooling device Granted JPS62237395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61080054A JPS62237395A (en) 1986-04-09 1986-04-09 Emergency core cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61080054A JPS62237395A (en) 1986-04-09 1986-04-09 Emergency core cooling device

Publications (2)

Publication Number Publication Date
JPS62237395A JPS62237395A (en) 1987-10-17
JPH058997B2 true JPH058997B2 (en) 1993-02-03

Family

ID=13707521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61080054A Granted JPS62237395A (en) 1986-04-09 1986-04-09 Emergency core cooling device

Country Status (1)

Country Link
JP (1) JPS62237395A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762716B2 (en) * 1987-11-24 1995-07-05 株式会社日立製作所 Fluid injection device into pressure vessel
JPH0762715B2 (en) * 1988-09-21 1995-07-05 株式会社日立製作所 Emergency core cooling system
JPH0762717B2 (en) * 1988-09-21 1995-07-05 株式会社日立製作所 Liquid injection device for high temperature and high pressure vessels
JP6277466B2 (en) * 2011-05-23 2018-02-14 元浩 岡田 Nuclear power plant equipment.
JP2015087387A (en) * 2013-09-27 2015-05-07 長浦 善昭 Method for freezing tundra wall by using liquefaction lng of -162°c capable of supplying large amount of cold heat inexpensively as coolant for freezing tundra wall mainly built at fukushima daiichi nuclear plant

Also Published As

Publication number Publication date
JPS62237395A (en) 1987-10-17

Similar Documents

Publication Publication Date Title
JP5016066B2 (en) Nuclear power plants using nanoparticles in emergency systems and related methods
US7983376B2 (en) Boiling water nuclear reactor and emergency core cooling system of the same
US6795518B1 (en) Integral PWR with diverse emergency cooling and method of operating same
JP2977234B2 (en) Passive safety injection equipment for nuclear power plants.
JPH0666985A (en) Method for reducing leakage from heat-transfer pipe of pressurized water reactor and steam generator
EP0418701A1 (en) Reactor core decay heat removing system in a pressurized water reactor
US4702879A (en) Nuclear reactor with passive safety system
CN1022357C (en) Nature cycling reactor
JPH05134078A (en) Spare safe injecting system for atomic reactor plant
KR101463441B1 (en) High concentration boron injection system and safety injection system having the same
JPH058997B2 (en)
US4239596A (en) Passive residual heat removal system for nuclear power plant
US5120490A (en) Liquid filling method for a high-temperature and high-pressure vessel and apparatus therefor
KR20060020756A (en) Integral pwr with diverse emergency cooling and method of operating same
JP2548838B2 (en) Core collapse heat removal system for pressurized water reactor
JPS6375691A (en) Natural circulation type reactor
JPH05264774A (en) Emergency reactor cooling equipment
JPS63261196A (en) Emergency core cooling device
KR100306123B1 (en) Core makeup tanks with pressure-balancing lines connected to a pressurizer
JPH06258491A (en) Water supply equipment for condensate storage tank
JPH0715506B2 (en) Emergency core cooling system for pressurized water reactors
JPH03100496A (en) Nuclear reactor having emergency cooling water replenishing equipment
JPH04258794A (en) Pressure accumulator injection tank for nuclear reactor emergency cooling water feeder
US5217680A (en) Liquid filling method for a high-temperature and high-pressure vessel and apparatus therefor
JPS59114492A (en) Boric acid solution injecting device