JPH04258794A - Pressure accumulator injection tank for nuclear reactor emergency cooling water feeder - Google Patents
Pressure accumulator injection tank for nuclear reactor emergency cooling water feederInfo
- Publication number
- JPH04258794A JPH04258794A JP3020845A JP2084591A JPH04258794A JP H04258794 A JPH04258794 A JP H04258794A JP 3020845 A JP3020845 A JP 3020845A JP 2084591 A JP2084591 A JP 2084591A JP H04258794 A JPH04258794 A JP H04258794A
- Authority
- JP
- Japan
- Prior art keywords
- cooling water
- flow port
- injection
- pressure
- injection tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000002347 injection Methods 0.000 title claims abstract description 95
- 239000007924 injection Substances 0.000 title claims abstract description 95
- 239000000498 cooling water Substances 0.000 title claims abstract description 55
- 238000001816 cooling Methods 0.000 claims abstract description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 50
- 238000009825 accumulation Methods 0.000 claims description 40
- 239000007788 liquid Substances 0.000 claims description 8
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000002826 coolant Substances 0.000 description 15
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 12
- 239000004327 boric acid Substances 0.000 description 12
- 230000007423 decrease Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、原子炉の緊急冷却水供
給装置に関し、特に、同装置において用いられる蓄圧注
入タンクに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an emergency cooling water supply system for a nuclear reactor, and more particularly to an accumulator injection tank used in the system.
【0002】0002
【従来の技術】図3は、蒸気発生器2及び一次冷却材ポ
ンプ3をそれぞれ2基づつ有する従来の代表的な2ルー
プ加圧水型原子炉の一次冷却系を概略的に示すもので、
一次冷却系設備には、原子炉容器1、蒸気発生器2、一
次冷却材循環ポンプ3、これ等を接続して閉回路を形成
する一次冷却材配管5、7からなる一次冷却系ループ6
、及び加圧器4等が含まれる。2. Description of the Related Art FIG. 3 schematically shows a primary cooling system of a typical conventional two-loop pressurized water reactor having two steam generators 2 and two primary coolant pumps 3.
The primary cooling system equipment includes a reactor vessel 1, a steam generator 2, a primary coolant circulation pump 3, and a primary cooling system loop 6 consisting of primary coolant pipes 5 and 7 that connect these to form a closed circuit.
, and a pressurizer 4.
【0003】原子炉容器1内の炉心10で加熱された一
次冷却材は、原子炉容器1から、各ループ6の高温側配
管5を経て縦置きの蒸気発生器2内のU字形伝熱管8へ
搬送され、そこで該伝熱管8の周囲を流れる二次冷却材
と熱交換する。このようにして蒸気発生器2で冷却され
た一次冷却材は、一次冷却材循環ポンプ3で水頭が付与
され、低温側配管7を経て再び原子炉容器1内に戻され
る。The primary coolant heated in the reactor core 10 in the reactor vessel 1 is transferred from the reactor vessel 1 to the U-shaped heat exchanger tubes 8 in the vertically installed steam generator 2 via the high-temperature side piping 5 of each loop 6. There, heat is exchanged with the secondary coolant flowing around the heat transfer tubes 8. The primary coolant thus cooled by the steam generator 2 is given a water head by the primary coolant circulation pump 3, and is returned to the reactor vessel 1 via the low temperature side pipe 7.
【0004】ところが、一次冷却系圧力の大巾な低下を
もたらし、緊急冷却水供給装置が作動するような事故、
例えば、符号9で示すような一次冷却系の配管等の箇所
の破断事故に伴う一次冷却材喪失事故時には、配管破断
箇所9からの一次冷却材の系外への流出により、炉心1
0は一旦露出する。この場合には、原子炉は、事故発生
直後に停止されるようになっているが、炉心内には核燃
料が存在するので、原子炉停止後も炉心崩壊熱が発生し
ている。仮に長期にわたり炉心の露出状態が続き、炉心
が十分に冷却されない場合、この崩壊熱により炉心溶融
のような最悪の事態に至ることが、実際には起きること
はなくても、想定事故としては考えられる。従つて、一
次冷却材喪失事故時には、一次冷却系内に緊急炉心冷却
水を注入し、注入された冷却水を炉心内に効率良く、且
つ早期に供給し蓄積させることが重要であるため、緊急
冷却水供給装置が設けられている。However, accidents that cause a large drop in the primary cooling system pressure and activate the emergency cooling water supply system,
For example, in the event of a loss of primary coolant accident due to a rupture of a piping or other part of the primary cooling system as shown by reference numeral 9, the primary coolant leaks out of the system from the piping rupture part 9, causing the core to
0 is exposed once. In this case, the reactor is designed to be shut down immediately after the accident occurs, but since nuclear fuel is present in the reactor core, core decay heat is still generated even after the reactor is shut down. If the reactor core remains exposed for a long period of time and the reactor core is not cooled sufficiently, this decay heat could lead to the worst case scenario, such as core meltdown, although this may not actually occur, but it is considered a hypothetical accident. It will be done. Therefore, in the event of a loss of primary coolant accident, it is important to inject emergency core cooling water into the primary cooling system and to supply and accumulate the injected cooling water into the core efficiently and quickly. A cooling water supply device is provided.
【0005】従来の緊急冷却水供給装置は、蓄圧注入タ
ンク12からなる蓄圧注入系機器と、高圧注入ポンプ1
9等を含む高圧注入系機器と、低圧注入ポンプ18等を
含む低圧注入系機器とからなる。蓄圧注入タンク12は
、図3では1基のみ示されているが、一次冷却系の1ル
ープ当たり1基の蓄圧注入タンクが用いられるのが普通
であり、また、同蓄圧注入タンク12は、緊急冷却水と
してほう酸水13を窒素ガス11で常時加圧保持してお
り、万一冷却材喪失事故が起こった時には、一次冷却系
の減圧に伴って逆止弁15が自動的に開き、冷却水注入
用の配管14を介して一次冷却系の低圧側配管7にほう
酸水13を注入する。また、低圧注入ポンプ18及び高
圧注入ポンプ19は、燃料取替時に原子炉キヤビィテイ
ーに水張りするためにほう酸水を貯蔵した燃料取替用水
タンク(図示せず)を水源として使用しており、蓄圧注
入タンク12からの放出後、高圧注入ポンプ19、低圧
注入ポンプ18の順に作動され、一次冷却系への注水を
長期に渡り行うようになつている。[0005] The conventional emergency cooling water supply system includes a pressure accumulation injection system device consisting of a pressure accumulation injection tank 12 and a high pressure injection pump 1.
It consists of high pressure injection system equipment including 9 etc. and low pressure injection system equipment including low pressure injection pump 18 etc. Although only one accumulator injection tank 12 is shown in FIG. 3, one accumulator injection tank is normally used for each loop of the primary cooling system, and the accumulator injection tank 12 is also used in emergency situations. As cooling water, boric acid water 13 is constantly pressurized with nitrogen gas 11, and in the event of a loss of coolant accident, the check valve 15 will automatically open as the pressure in the primary cooling system is reduced, and the cooling water will be Boric acid water 13 is injected into the low-pressure side pipe 7 of the primary cooling system via the injection pipe 14. Furthermore, the low-pressure injection pump 18 and the high-pressure injection pump 19 use a fuel exchange water tank (not shown) storing boric acid water as a water source to fill the reactor cavity with water during fuel exchange. After the water is discharged from the tank 12, the high-pressure injection pump 19 and the low-pressure injection pump 18 are operated in this order to inject water into the primary cooling system over a long period of time.
【0006】緊急冷却水供給装置が上述のように蓄圧注
入タンク12、低圧注入ポンプ18及び高圧注入ポンプ
19を備える構成となっている理由は、これ等の設備を
組み合わせることにより、種々の一次冷却系圧力変化時
にも冷却水の適切な安全注入を実現するためである。The reason why the emergency cooling water supply system is configured to include the pressure accumulation injection tank 12, the low pressure injection pump 18, and the high pressure injection pump 19 as described above is that by combining these facilities, various types of primary cooling can be achieved. This is to realize appropriate and safe injection of cooling water even when system pressure changes.
【0007】注水段階について具体的に説明すると、一
次冷却材喪失事故発生時には、一時的に空になった原子
炉容器1に注水され、原子炉容器1の下部プレナム部1
7が先ず満水になり(リフィル段階)、その後、ダウン
カマー部16が満水となって、ダウンカマー部16の水
頭により炉心10は次第に冠水されていく(炉心再冠水
段階)。炉心10が冠水される時には、高温の原子炉炉
心10で発生した蒸気は一次冷却系外へ放出されるのに
圧力損失を生じるため、炉心10は緩やかに冠水される
。このように、リフィル段階及び炉心再冠水段階初期は
、多量の注水を行い、早期に下部プレナム部17、ダウ
ンカマー部16を満水にする必要があるが、炉心再冠水
段階以降では、比較的に少量の注水で十分である。To explain the water injection stage in detail, when a primary coolant loss accident occurs, water is injected into the temporarily empty reactor vessel 1 and the lower plenum part 1 of the reactor vessel 1 is filled with water.
7 is first filled with water (refill stage), then the downcomer section 16 is filled with water, and the reactor core 10 is gradually submerged with water by the water head of the downcomer section 16 (core re-submersion stage). When the reactor core 10 is submerged, the steam generated in the high-temperature reactor core 10 is released to the outside of the primary cooling system, causing a pressure loss, so that the reactor core 10 is submerged slowly. In this way, at the beginning of the refill stage and core re-flooding stage, it is necessary to inject a large amount of water to quickly fill the lower plenum section 17 and downcomer section 16 with water, but after the core re-flooding stage, it is necessary to inject a large amount of water. A small amount of water is sufficient.
【0008】図4は、上述した緊急冷却水供給装置に要
求される注入流量の典型的な概略例を横軸に時間をとっ
て説明するもので、冷却材喪失事故の発生により一次冷
却系の圧力が低下し、同圧力が蓄圧注入タンク12のほ
う酸水13の保持圧力以下になったら、蓄圧注入タンク
12より一次冷却系への注水が開始される(図4におい
ては事故発生より約10秒後)。一次冷却系の減圧によ
り蓄圧注入タンク12からの注入水量は曲線28で示す
ように増加する。そして、一次冷却系への注入により蓄
圧注入タンク12内のほう酸水13の体積が減少し、タ
ンク内圧力が低下することに伴い(約20秒後)、一次
冷却系への注入水量は曲線29で示すように徐々に減少
する。炉心再冠水初期以降(約80秒後)は、低高圧注
入ポンプ18、19により曲線30で示されるように注
入される。FIG. 4 shows a typical example of the injection flow rate required for the above-mentioned emergency cooling water supply system, with time plotted on the horizontal axis. When the pressure decreases and becomes equal to or lower than the holding pressure of the boric acid water 13 in the pressure accumulation injection tank 12, water injection from the pressure accumulation injection tank 12 to the primary cooling system begins (in Fig. 4, approximately 10 seconds after the accident occurred). rear). Due to the reduced pressure in the primary cooling system, the amount of water injected from the pressure accumulation injection tank 12 increases as shown by a curve 28. Then, as the volume of the boric acid water 13 in the pressure accumulation injection tank 12 decreases due to injection into the primary cooling system, and the pressure inside the tank decreases (after about 20 seconds), the amount of water injected into the primary cooling system decreases as shown in curve 29. It gradually decreases as shown in . After the initial stage of core re-flooding (approximately 80 seconds later), the low and high pressure injection pumps 18 and 19 inject water as shown by a curve 30.
【0009】[0009]
【発明が解決しようとする課題】以上のように、従来の
緊急冷却水供給装置では、所望の注水を行うためには、
蓄圧注入タンクに加えて、低圧注入ポンプ及び高圧注入
ポンプ並びにそれ等に付随した設備も必要であるため、
緊急冷却水注入装置の複雑化を避けられず、それに伴っ
て、製作コストの上昇だけでなく、作動の信頼性の低下
という問題があった。[Problems to be Solved by the Invention] As described above, in the conventional emergency cooling water supply system, in order to perform the desired water injection,
In addition to the pressure accumulation injection tank, low-pressure injection pumps, high-pressure injection pumps, and associated equipment are also required.
The complexity of the emergency cooling water injection device cannot be avoided, resulting in problems such as not only an increase in manufacturing costs but also a decrease in operational reliability.
【0010】従って、本発明の目的は、低高圧注入ポン
プを用いることなく、1基の蓄圧注入タンクからの注水
流量を切り替えもしくは変化できる簡素な原子炉緊急冷
却水供給装置を提供することである。[0010] Accordingly, an object of the present invention is to provide a simple reactor emergency cooling water supply system that can switch or change the water injection flow rate from one pressure accumulation injection tank without using a low/high pressure injection pump. .
【0011】[0011]
【課題を解決するための手段】この目的を達成するため
に、一次冷却系に供給するための緊急冷却水を加圧下に
収容する原子炉緊急冷却水供給装置の蓄圧注入タンクは
、本発明によると、同蓄圧注入タンクの底部を貫いて同
蓄圧注入タンクの内部に延入し、同内部で開口する端部
分を有する冷却水注入配管と、同蓄圧注入タンクの内部
に配置され、同内部に緊急冷却水が所定水位以上存在す
る時に、同緊急冷却水の液面上に浮かぶ浮弁組立体とを
備えている。[Means for Solving the Problems] In order to achieve this object, a pressure accumulation injection tank of a nuclear reactor emergency cooling water supply system that stores emergency cooling water under pressure to be supplied to a primary cooling system is provided according to the present invention. , a cooling water injection pipe that penetrates the bottom of the pressure accumulation injection tank, extends into the inside of the pressure accumulation injection tank, and has an end portion that opens inside the pressure accumulation injection tank; A floating valve assembly that floats on the surface of the emergency cooling water when the emergency cooling water is present at a predetermined water level or higher.
【0012】冷却水注入配管は、一次冷却系に連通可能
であると共に、その端部分には、大流量口と小流量口と
が形成されており、浮弁組立体は、緊急冷却水が所定水
位以上である時には大流量口及び小流量口の双方を開放
し、緊急冷却水が所定水位以下に低下した時に、大流量
口を閉止するように構成されている。The cooling water injection pipe is capable of communicating with the primary cooling system, and has a large flow port and a small flow port formed at its end portion, and the floating valve assembly allows the emergency cooling water to be supplied to a predetermined level. When the water level is above the water level, both the large flow port and the small flow port are opened, and when the emergency cooling water drops below a predetermined water level, the large flow port is closed.
【0013】[0013]
【作用】通常、蓄圧注入タンク内には緊急冷却水が所定
水位以上に保持されていて、浮弁組立体は緊急冷却水の
液面に浮いており、冷却水注入配管の大流量口及び小流
量口は開放している。この状態で、一次冷却系において
冷却材喪失事故が起きると、一次冷却系と蓄圧注入タン
クとの圧力バランスが崩れて、蓄圧注入タンク内の緊急
冷却水は、大流量口及び小流量口の双方から大流量で冷
却水注入配管に流入し、そこに設けられた逆止弁を介し
て一次冷却系に注入される。[Operation] Normally, the emergency cooling water is maintained at a predetermined water level or higher in the pressure accumulation injection tank, and the floating valve assembly is floating on the liquid level of the emergency cooling water. The flow port is open. If a loss of coolant accident occurs in the primary cooling system in this state, the pressure balance between the primary cooling system and the pressure accumulation injection tank will collapse, and the emergency cooling water in the pressure accumulation injection tank will flow to both the large flow port and the small flow port. The water flows into the cooling water injection pipe at a large flow rate, and is injected into the primary cooling system via the check valve installed there.
【0014】かかる注入により、蓄圧注入タンク内の緊
急冷却水の液面が所定水位以下に低下し、それに伴って
浮弁組立体も下降すると、同浮弁組立体により大流量口
が閉止され、一次冷却系への以降の冷却水注入は、小流
量口から冷却水注入配管に流入した小流量で行われる。[0014] Due to this injection, the liquid level of the emergency cooling water in the pressure accumulation injection tank falls below a predetermined water level, and the floating valve assembly also lowers accordingly, and the large flow port is closed by the floating valve assembly. Subsequent injection of cooling water into the primary cooling system is performed at a small flow rate that flows into the cooling water injection pipe from the small flow port.
【0015】[0015]
【実施例】次に、本発明の好適な実施例について添付図
面を参照して詳細に説明するが、図中、同一符号は同一
又は対応部分を示すものとする。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, in which the same reference numerals indicate the same or corresponding parts.
【0016】図面を参照すると、図1及び図2には、本
発明による蓄圧注入タンク12とその中に配置された浮
弁組立体31とが示されている。蓄圧注入タンク12に
は、その頂部近くに、同タンク内のガス抜きを行って圧
力を低下させるための減圧弁25を有する配管26が接
続されると共に、タンク底部に、タンク内に延入しそこ
で開口する冷却水注入配管14が接続されている。また
、蓄圧注入タンク12内には、緊急冷却水であるほう酸
水13上に通常浮遊する浮弁組立体31が設けられてい
る。Referring to the drawings, FIGS. 1 and 2 illustrate an accumulator injection tank 12 and a floating valve assembly 31 disposed therein in accordance with the present invention. A pipe 26 having a pressure reducing valve 25 for degassing the tank and lowering the pressure is connected near the top of the pressure accumulation injection tank 12, and a pipe 26 extending into the tank is connected to the bottom of the tank. A cooling water injection pipe 14 that opens there is connected. Further, in the pressure accumulation injection tank 12, a floating valve assembly 31 which normally floats on the boric acid water 13, which is emergency cooling water, is provided.
【0017】タンク12内に開口する配管14の端部は
、上方が円錐形に開いた漏斗状に形成されていて、大流
量口20を画成しており、この端部の近傍において、図
示のように配管14の内部と流体連通して適宜の手段に
より取り付けられた筒体27は、小流量口21を画成し
ている。The end of the pipe 14 that opens into the tank 12 is shaped like a funnel with a conical opening at the top, and defines a large flow port 20. A cylindrical body 27 attached by appropriate means in fluid communication with the interior of the pipe 14 defines a small flow port 21 .
【0018】一方、浮弁組立体31は、前記小流体口2
1を閉塞可能な外形もしくは直径を有する球状の弁体2
2と、該弁体22にチェーン23等の適宜の屈曲もしく
は変形可能な結合手段により結合される球状のフロート
24とからなっている。フロート24は、自重で沈もう
とする弁体22を図1に示すようにほう酸水13中に浮
遊させるのに十分な浮力を有する。On the other hand, the floating valve assembly 31 is connected to the small fluid port 2.
A spherical valve body 2 having an outer shape or diameter capable of closing 1
2, and a spherical float 24 connected to the valve body 22 by a suitable bending or deformable connecting means such as a chain 23. The float 24 has sufficient buoyancy to float the valve body 22 in the boric acid water 13, as shown in FIG. 1, which would otherwise sink due to its own weight.
【0019】通常時もしくは非冷却材喪失事故時、ほう
酸水13は蓄圧注入タンク12内に上限水位に保持され
ているため、浮弁組立体31のフロート24は図1に示
すようにほう酸水13の液面上に浮いており、それにチ
ェーン23を介して結合された弁体22も配管14の端
部分の上方に浮いており、大流量口20は弁体22によ
り閉塞されていない。Under normal conditions or in the event of a non-coolant loss accident, the boric acid solution 13 is maintained at the upper limit water level in the pressure accumulation injection tank 12, so the float 24 of the floating valve assembly 31 is configured to absorb the boric acid solution 13 as shown in FIG. The valve body 22 , which is floating on the liquid level and connected thereto via a chain 23 , also floats above the end portion of the pipe 14 , and the large flow port 20 is not blocked by the valve body 22 .
【0020】今、上述の状態で一次冷却材喪失事故が発
生したと仮定すると、一次冷却系の圧力が蓄圧注入タン
ク12内の保持圧力よりも低下するため、同蓄圧注入タ
ンク12は、その内部の加圧封入ガス、即ち窒素ガス1
1の圧力の助けを借りて、逆止弁15(図3参照)を有
する配管14を経由する一次冷却系へのほう酸水13の
注入を開始する。この時点では、上述したように大流量
口20も小流量口21も開放しているため、リフィル段
階及び炉心再冠水段階初期においては、図1に符号a及
びbで示すように、ほう酸水13は、大流量口20及び
小流量口21の双方から大流量で配管14を経て一次冷
却系に注入される。Now, assuming that a primary coolant loss accident occurs under the above-mentioned conditions, the pressure in the primary cooling system will drop below the holding pressure in the pressure accumulation injection tank 12, so the pressure accumulation injection tank 12 will of pressurized gas, i.e. nitrogen gas 1
With the help of pressure 1, the injection of boric acid water 13 into the primary cooling system via piping 14 having check valve 15 (see FIG. 3) is started. At this point, as described above, both the large flow port 20 and the small flow port 21 are open, so in the refill stage and the early stage of the core re-flooding stage, the boric acid water 13 is injected into the primary cooling system through the pipe 14 at a large flow rate from both the large flow port 20 and the small flow port 21.
【0021】この注入が続くに従い、蓄圧注入タンク1
2内の液面が所定水位まで低下すると、浮弁組立体31
も低下する。炉心再冠水段階初期からそれ以降に移る際
、即ち、一次冷却系への注入水量が大流量から小流量へ
切り替わる時期に相当する上述の所定水位まで蓄圧注入
タンク12内の液面が下降すると、弁体22は、大流量
口20に指向する流れに吸い寄せられて、大流量口20
を閉止するため、一次冷却系への注入水量は図1に符号
bで示す小流量口21のみからの小流量へ切り替えられ
る。As this injection continues, the pressure accumulation injection tank 1
When the liquid level in 2 drops to a predetermined water level, the floating valve assembly 31
also decreases. When the liquid level in the pressure accumulation injection tank 12 falls to the above-mentioned predetermined water level, which corresponds to the time when the reactor core re-flooding stage begins at the beginning and thereafter, that is, when the amount of water injected into the primary cooling system switches from a large flow rate to a small flow rate, The valve body 22 is attracted by the flow directed toward the large flow port 20 and is moved toward the large flow port 20.
In order to close the cooling system, the amount of water injected into the primary cooling system is switched to a small flow rate from only the small flow port 21 indicated by the symbol b in FIG.
【0022】蓄圧注入タンク12の容積、小流量口21
の断面積等は、上述した小流量での蓄圧注入タンク12
からの注水機能が期待される間、蓄圧注入タンク12の
液面が大流量口20より上方に保持されるように、設定
されているため、非凝縮性の窒素ガス11が一次冷却系
に侵入することはない。Volume of pressure accumulation injection tank 12, small flow port 21
The cross-sectional area etc. of the pressure accumulation injection tank 12 at the small flow rate mentioned above are
Since the liquid level in the pressure accumulation injection tank 12 is maintained above the large flow port 20 while the water injection function is expected to occur, non-condensable nitrogen gas 11 will not enter the primary cooling system. There's nothing to do.
【0023】尚、蓄圧注入タンク12の頂部近くに設け
られた配管26にある減圧弁25を適当な時期に開き、
蓄圧注入タンク12内の窒素ガス11を抜いて、同タン
クの内圧を減少させることにより、単位時間当たりの一
次冷却系への注入水量を減少し、蓄圧注入タンク12か
ら一次冷却系への注入期間を更に延長することが可能で
ある。[0023] Incidentally, the pressure reducing valve 25 in the pipe 26 provided near the top of the pressure accumulation injection tank 12 is opened at an appropriate time.
By removing the nitrogen gas 11 in the pressure accumulation injection tank 12 and reducing the internal pressure of the tank, the amount of water injected into the primary cooling system per unit time is reduced, and the injection period from the pressure accumulation injection tank 12 to the primary cooling system is reduced. It is possible to extend further.
【0024】[0024]
【発明の効果】以上のように、本発明によれば、蓄圧注
入タンクの内部に流体連通する一次冷却系注入配管の端
部分で大流量口及び小流量口を画成すると共に、蓄圧注
入タンク内に、その液面低下時に大流量口を閉止しうる
大きさを有する浮弁組立体を設けたので、従来の緊急冷
却水供給装置に必要であった低圧注入ポンプや高圧注入
ポンプを用いることなく、一次冷却系への冷却水量を切
り替え可能であり、系統を簡素化して、製作コストを低
減すると共に作動の信頼性を向上させることができる。As described above, according to the present invention, a large flow port and a small flow port are defined at the end portions of the primary cooling system injection pipe that fluidly communicates with the inside of the pressure accumulation injection tank, and A floating valve assembly with a size that can close the large flow port when the liquid level drops is installed inside the tank, making it possible to use a low-pressure injection pump or high-pressure injection pump that was required for conventional emergency cooling water supply systems. It is possible to switch the amount of cooling water to the primary cooling system, simplifying the system, reducing manufacturing costs, and improving operational reliability.
【0025】また、好適な実施例においては、蓄圧注入
タンクの頂部に接続された配管に減圧弁が設けられてい
るために、この減圧弁を適宜の時期に開操作して、蓄圧
注入タンク内部の加圧封入ガスを放出し減圧することに
より、蓄圧注入タンクから一次冷却系への冷却水注入期
間を延長することができる。Furthermore, in a preferred embodiment, since a pressure reducing valve is provided in the pipe connected to the top of the pressure accumulation injection tank, this pressure reduction valve is opened at an appropriate time to remove the inside of the pressure accumulation injection tank. By discharging and reducing the pressure of the pressurized gas, it is possible to extend the cooling water injection period from the pressure accumulation injection tank to the primary cooling system.
【図1】原子炉緊急冷却水供給装置において使用される
本発明の蓄圧注入タンクを示す概要図。FIG. 1 is a schematic diagram showing a pressure accumulation injection tank of the present invention used in a nuclear reactor emergency cooling water supply system.
【図2】図1の蓄圧注入タンク内に設けられた浮弁組立
体を一部省略して示す拡大立面図。FIG. 2 is an enlarged elevational view, partially omitted, showing a floating valve assembly provided in the pressure accumulation injection tank of FIG. 1;
【図3】従来の緊急冷却水供給装置を含む原子炉一次冷
却系を示す概要図。FIG. 3 is a schematic diagram showing a nuclear reactor primary cooling system including a conventional emergency cooling water supply system.
【図4】図3の緊急冷却水供給装置を用いた冷却水注入
曲線の典型例を示す曲線図。FIG. 4 is a curve diagram showing a typical example of a cooling water injection curve using the emergency cooling water supply device of FIG. 3;
12 蓄圧注入タンク
13 緊急冷却水(ほう酸水)14
冷却水注入配管
20 冷却水注入配管の大流量口21
冷却水注入配管の小流量口31 浮弁
組立体12 Pressure accumulation injection tank 13 Emergency cooling water (boric acid water) 14
Cooling water injection pipe 20 Large flow port 21 of cooling water injection pipe
Cooling water injection pipe small flow port 31 Floating valve assembly
Claims (1)
加圧下に収容する原子炉緊急冷却水供給装置の蓄圧注入
タンクであって、その底部を貫いて同蓄圧注入タンクの
内部に延入し同内部で開口する端部分を有すると共に、
前記一次冷却系に連通可能であり、前記端部分には、大
流量口と小流量口とが形成されている、冷却水注入配管
と、前記蓄圧注入タンクの前記内部に配置され、同内部
に前記緊急冷却水が所定水位以上存在する時に、同緊急
冷却水の液面上に浮かんで前記大流量口及び前記小流量
口を開放し、前記緊急冷却水が前記所定水位以下に低下
した時に、前記大流量口を閉止するように構成された浮
弁組立体とを備える、原子炉緊急冷却水供給装置の蓄圧
注入タンク。Claim 1: A pressure accumulation injection tank for a reactor emergency cooling water supply system that stores emergency cooling water under pressure to be supplied to the primary cooling system, the pressure accumulation injection tank extending through the bottom of the tank and extending into the inside of the pressure accumulation injection tank. It has an end portion that is inserted and opens inside the same, and
A cooling water injection pipe that can communicate with the primary cooling system and has a large flow port and a small flow port formed in the end portion; When the emergency cooling water exists above a predetermined water level, floating on the liquid surface of the emergency cooling water and opening the large flow port and the small flow port, and when the emergency cooling water drops below the predetermined water level, and a floating valve assembly configured to close the large flow port.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3020845A JPH04258794A (en) | 1991-02-14 | 1991-02-14 | Pressure accumulator injection tank for nuclear reactor emergency cooling water feeder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3020845A JPH04258794A (en) | 1991-02-14 | 1991-02-14 | Pressure accumulator injection tank for nuclear reactor emergency cooling water feeder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04258794A true JPH04258794A (en) | 1992-09-14 |
Family
ID=12038418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3020845A Withdrawn JPH04258794A (en) | 1991-02-14 | 1991-02-14 | Pressure accumulator injection tank for nuclear reactor emergency cooling water feeder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04258794A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996008017A1 (en) * | 1994-09-02 | 1996-03-14 | Westinghouse Electric Corporation | Primary coolant system of a nuclear power plant with accumulator tank for emergency and long term cooling |
CN103413582A (en) * | 2013-07-31 | 2013-11-27 | 中科华核电技术研究院有限公司 | Safety injection tank |
CN108766597A (en) * | 2018-05-04 | 2018-11-06 | 中国核电工程有限公司 | It is a kind of can automatism isolation safety injection tank |
-
1991
- 1991-02-14 JP JP3020845A patent/JPH04258794A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996008017A1 (en) * | 1994-09-02 | 1996-03-14 | Westinghouse Electric Corporation | Primary coolant system of a nuclear power plant with accumulator tank for emergency and long term cooling |
US5519743A (en) * | 1994-09-02 | 1996-05-21 | Westinghouse Electric Corporation | Primary coolant system of a nuclear power plant for providing coolant to a primary loop |
CN103413582A (en) * | 2013-07-31 | 2013-11-27 | 中科华核电技术研究院有限公司 | Safety injection tank |
CN108766597A (en) * | 2018-05-04 | 2018-11-06 | 中国核电工程有限公司 | It is a kind of can automatism isolation safety injection tank |
CN108766597B (en) * | 2018-05-04 | 2021-05-18 | 中国核电工程有限公司 | Safety injection box capable of being automatically isolated |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100300889B1 (en) | How to alleviate the leakage of pressurized water reactor and steam generator | |
US5102616A (en) | Full pressure passive emergency core cooling and residual heat removal system for water cooled nuclear reactors | |
JP2977234B2 (en) | Passive safety injection equipment for nuclear power plants. | |
US7983376B2 (en) | Boiling water nuclear reactor and emergency core cooling system of the same | |
US4587079A (en) | System for the emergency cooling of a pressurized water nuclear reactor core | |
KR890001251B1 (en) | Emergency cooling device for a pressurized water nuclear reactor | |
RU2153201C2 (en) | Nuclear reactor with stand-by cooling system and its cooling process | |
KR101447029B1 (en) | Multi-stage safety injection device and passive safety injection system having the same | |
KR101447028B1 (en) | Multi stage safety injection device and passive safety injection system having the same | |
WO2002073625A2 (en) | Integral pwr with diverse emergency cooling and method of operating same | |
US4608224A (en) | Nuclear reactor cooled by a liquid metal | |
JPH0659075A (en) | Nuclear reactor | |
CN109903863B (en) | Safe injection system and nuclear power system | |
JPH0648473Y2 (en) | Nuclear reactor equipment | |
US20240029904A1 (en) | Integrated passive reactor | |
CN114038590A (en) | Passive and active reactor cavity water injection cooling system and method | |
US4643871A (en) | Emergency cooling device for a pressurized water reactor core | |
JPH0283494A (en) | Apparatus and method for injecting liquid into high temperature and high pressure container | |
JPH04258794A (en) | Pressure accumulator injection tank for nuclear reactor emergency cooling water feeder | |
JP2548838B2 (en) | Core collapse heat removal system for pressurized water reactor | |
CN108597630B (en) | Nuclear power plant full-pressure passive gravity injection system | |
JPH05142380A (en) | Emergency core cooling system | |
KR100306123B1 (en) | Core makeup tanks with pressure-balancing lines connected to a pressurizer | |
WO2021138806A1 (en) | Safety system for handling severe accident of nuclear power plant and control method therefor | |
CN220651664U (en) | Passive safety system and ATF fuel-based reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980514 |