JPH0715506B2 - Emergency core cooling system for pressurized water reactors - Google Patents

Emergency core cooling system for pressurized water reactors

Info

Publication number
JPH0715506B2
JPH0715506B2 JP62005604A JP560487A JPH0715506B2 JP H0715506 B2 JPH0715506 B2 JP H0715506B2 JP 62005604 A JP62005604 A JP 62005604A JP 560487 A JP560487 A JP 560487A JP H0715506 B2 JPH0715506 B2 JP H0715506B2
Authority
JP
Japan
Prior art keywords
pressure
injection
accumulator
pipe
emergency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62005604A
Other languages
Japanese (ja)
Other versions
JPS63173997A (en
Inventor
正男 荻野
忠邦 博田
繁彦 森
強 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62005604A priority Critical patent/JPH0715506B2/en
Publication of JPS63173997A publication Critical patent/JPS63173997A/en
Publication of JPH0715506B2 publication Critical patent/JPH0715506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 (イ)発明の目的 [産業上の利用分野] この発明は原子炉発電プラントにおいて非常用炉心冷却
装置が作動するような原子炉事故に好適に対応する非常
用炉心冷却設備の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Object of the invention [Industrial field of application] The present invention provides an emergency core cooling system suitable for a reactor accident in which an emergency core cooling system operates in a reactor power plant. It concerns the improvement of equipment.

[従来の技術] 第3図は、蒸気発生器及び1次冷却材ポンプをそれぞれ
2基づつ有する2ループプラントの1次冷却系を示す系
統図である。但し、この図ではループの一部を省略して
いる。
[Prior Art] FIG. 3 is a system diagram showing a primary cooling system of a two-loop plant having two steam generators and two primary coolant pumps. However, a part of the loop is omitted in this figure.

加圧水型原子炉の1次冷却系設備は、原子炉容器1、蒸
気発生器2、1次冷却材ポンプ3、及び、これらを接続
する1次冷却材配管からなる1次冷却系閉ループ6及び
加圧器4で構成されている。
The primary cooling system equipment of a pressurized water reactor includes a reactor vessel 1, a steam generator 2, a primary coolant pump 3, and a primary cooling system closed loop 6 including a primary coolant pipe connecting these components and a heating unit. It is composed of a pressure device 4.

原子炉容器の中の炉心10で加熱された1次冷却材は、原
子炉容器1から高温側配管5を経て蒸気発生器2へ輸送
され、そこで蒸気発生器内の伝熱管8を介して2次冷却
材に熱交換する。そして、蒸気発生器で冷却された1次
冷却材は1次冷却材ポンプ3により水頭が付与され、低
温側配管7を経て再び原子炉容器1に供給される。な
お、図示していないが蒸気発生器2では、放射性物質を
含まない2次冷却系の水が蒸気に変換され、タービン系
へ供給される。
The primary coolant heated in the reactor core 10 in the reactor vessel is transported from the reactor vessel 1 to the steam generator 2 through the high temperature side pipe 5, and there through the heat transfer pipe 8 in the steam generator 2. Heat is exchanged with the next coolant. Then, the primary coolant cooled by the steam generator is provided with a head of water by the primary coolant pump 3, and is supplied again to the reactor vessel 1 through the low temperature side pipe 7. Although not shown, in the steam generator 2, the water in the secondary cooling system that does not contain radioactive substances is converted into steam and supplied to the turbine system.

ところで、1次冷却系圧力の大幅な圧力低下をもたらし
て非常用炉心冷却装置が作動するような事故、例えば1
次冷却系の配管等の破断事故、すなわち1次冷却材喪失
事故時には、配管破断箇所9からの1次冷却材の系外へ
の流出により炉心10は一旦露出し、その後は非常用炉心
冷却系の作動により炉心は冠水され、事故終息に至る。
しかしながら、原子炉停止後も引き続き炉心崩壊熱を除
去する必要があり、非常用炉心冷却設備は長期に亙る炉
心冷却の機能も要求される。
By the way, an accident in which the emergency core cooling device is activated by causing a large pressure drop of the primary cooling system pressure, for example, 1
In the event of a breakage in the piping of the secondary cooling system, that is, in the event of the loss of the primary coolant, the core 10 is once exposed by the outflow of the primary coolant from the broken pipe 9 and then the emergency core cooling system. The operation will cause the reactor core to be flooded and the accident will end.
However, it is necessary to continuously remove core decay heat even after the reactor is shut down, and the emergency core cooling equipment is also required to have a long-term core cooling function.

このため、従来の加圧水型原子力プラントの非常用炉心
冷却設備は、事故発生直後に緊急かつ大量の非常用冷却
水を1次冷却水ループの低温側配管7に注入し原子炉容
器に蓄積せしめる蓄圧系注水設備(蓄圧器12)と、炉心
再冠水時に消費される冷却材とその後長期に亙る炉心崩
壊熱による冷却材の蒸気放散分を補給するためのポンプ
注入設備13,14とから構成されている。
Therefore, in the conventional emergency core cooling equipment of the pressurized water nuclear power plant, immediately after the accident, a large amount of emergency cooling water is injected into the low temperature side pipe 7 of the primary cooling water loop to accumulate the pressure in the reactor vessel. System water injection equipment (pressure accumulator 12), coolant consumed during core re-submersion, and pump injection equipment 13 and 14 for replenishing the vapor emission of coolant due to core decay heat for a long period thereafter There is.

ここで、蓄圧系注水設備の蓄圧器12は第3図に示すよう
に内部に非常用冷却水として蓄圧器注入水12aを保有
し、液面上部には加圧された窒素ガス12bが封入されて
いる。また、液相部は逆止弁11を介して配管18にて低温
側配管7に連通しており、1次冷却材喪失事故時には1
次系の圧力が蓄圧器の保持圧力(加圧封入ガスの圧力)
以下に低下すると逆止弁11が自動的に作動し蓄圧器注入
水12aを1次冷却系に注入し炉心10を緊急に冷却するも
のである。
Here, as shown in FIG. 3, the pressure accumulator 12 of the accumulator system water injection equipment has the accumulator injection water 12a as an emergency cooling water inside, and the pressurized nitrogen gas 12b is enclosed in the liquid level upper part. ing. Further, the liquid phase portion communicates with the low temperature side pipe 7 via the check valve 11 through the pipe 18 and is 1 when the primary coolant loss accident occurs.
The pressure of the next system is the holding pressure of the accumulator (pressure of the pressurized charged gas)
When the pressure falls below the level, the check valve 11 automatically operates to inject the accumulator injection water 12a into the primary cooling system to urgently cool the core 10.

一方、ポンプ注入設備は、非常用冷却水タンク15を水源
とする低締切圧力の低圧注入ポンプ13a及び高締切圧力
の高圧注入ポンプ14aを起動することにより、低温側配
管7より1次冷却系に非常用冷却水を注入する。ここ
で、低圧注入ポンプ13aの機能は1次冷却系6の圧力が
十分低下する大破断LOCA時に大容量の非常用冷却水を注
入することにより、蓄圧器12注入終了後の炉心冠水維持
も計り、高圧注入ポンプ14aは、蓄圧器12の設定圧力及
び低圧注入ポンプ13aの締切圧力まで1次冷却系の圧力
が低下しないような小破断LOCA時に、高圧注入ポンプ14
a単独で、炉心崩壊熱による蒸散量を補給することによ
り炉心の冠水を維持し、長期に亙る炉心冷却を行う。
On the other hand, the pump injection facility activates the low-pressure injection pump 13a with a low dead pressure and the high-pressure injection pump 14a with a high dead pressure, which uses the emergency cooling water tank 15 as a water source, so that the low-temperature side pipe 7 changes the primary cooling system Inject emergency cooling water. Here, the function of the low-pressure injection pump 13a is to maintain the core flooding after injection of the pressure accumulator 12 by injecting a large amount of emergency cooling water at the time of large break LOCA when the pressure of the primary cooling system 6 is sufficiently reduced. , The high-pressure injection pump 14a is a high-pressure injection pump 14a at the time of a small break LOCA in which the pressure of the primary cooling system does not drop to the set pressure of the accumulator 12 and the dead pressure of the low-pressure injection pump 13a.
a Alone to maintain the flooding of the core by replenishing the amount of transpiration due to core decay heat, and cooling the core for a long time.

[発明が解決しようとする問題点] これら、蓄圧器、低圧注入ポンプ、高圧注入ポンプから
構成される非常用炉心冷却設備(技術Aと呼ぶ)は、機
能的には優れたものであるが、小破断LOCAに対しては、
蓄圧器は作動しないため、その分高圧注入ポンプ容量を
大きくする必要がある。
[Problems to be Solved by the Invention] Although the emergency core cooling equipment (referred to as technology A) including these accumulator, low-pressure injection pump, and high-pressure injection pump is functionally excellent, For small break LOCA,
Since the pressure accumulator does not operate, it is necessary to increase the capacity of the high pressure injection pump accordingly.

一方、窒素ガスを駆動源とする蓄圧器に類似したもの
で、窒素ガス圧力の代りにタンク保有水の自重を駆動力
として注入する方法もある(例えば特公昭61-23518号公
報参照)。この技術は、冷却水タンクの上部と原子炉圧
力容器の気相部とを配管で連通させておき、一方、冷却
水タンクの下部と原子炉圧力容器の液相部とを通常時閉
の隔離弁を有する配管で連結し、冷却材喪失事故時に
は、原子炉圧力容器1の圧力低信号による隔離弁を開と
することにより、冷却水タンクを開放系にし冷却水タン
ク保有水の自重より注入配管より原子炉圧力容器に冷却
水を注入せしめるものである。
On the other hand, there is also a method similar to a pressure accumulator using nitrogen gas as a driving source, in which the own weight of water held in the tank is injected as the driving force instead of the nitrogen gas pressure (see, for example, Japanese Patent Publication No. 61-23518). In this technology, the upper part of the cooling water tank and the gas phase part of the reactor pressure vessel are connected by piping, while the lower part of the cooling water tank and the liquid phase part of the reactor pressure vessel are normally closed. In the event of a loss of coolant, the isolation valve for the low pressure signal of the reactor pressure vessel 1 is opened to open the cooling water tank and open the cooling water tank from the dead weight of the water held by the cooling water tank. The cooling water can be injected into the reactor pressure vessel.

しかしながら、この方法では、注入系の駆動源は冷却水
タンク保有水の自重のみであることから大きな駆動力を
得ることができず、上記の蓄圧器のように短期間で大量
の注入を行わせるのには現実的に不可能である。また、
加圧水型軽水炉プラントの場合には、原子炉圧力容器全
体はサブクール状態であり、事故時でも、破損の規模に
もよるが、原子炉圧力容器内は気液混合の二相状態が長
く続くことから原子炉圧力容器の上部と冷却水タンクの
上部とを配管で連結したとしても、配管内に冷却水が流
れ込むことにより、冷却水タンクの自重による注入配管
から原子炉圧力容器への冷却水の注入が阻害され、冷却
水タンクの注入機能が著しく損われる恐れがある。
However, in this method, since the drive source of the injection system is only the own weight of the cooling water tank holding water, a large drive force cannot be obtained, and a large amount of injection is performed in a short period of time like the above-mentioned pressure accumulator. Is impossible in reality. Also,
In the case of a pressurized water LWR plant, the entire reactor pressure vessel is in a subcooled state, and even in the event of an accident, depending on the scale of damage, the two-phase state of gas-liquid mixing continues for a long time in the reactor pressure vessel. Even if the upper part of the reactor pressure vessel and the upper part of the cooling water tank are connected by piping, the cooling water flows into the piping, and the cooling water flows into the reactor pressure vessel from the injection pipe due to the dead weight of the cooling water tank. May be impaired and the injection function of the cooling water tank may be significantly impaired.

従って、加圧水型軽水炉プラントに上記冷却水タンクを
適用する場合には、冷却水タンク上部に接続する圧力開
放管は原子炉圧力容器ではなく、自由液面の存在する加
圧器の上部に接続する必要がある。
Therefore, when applying the cooling water tank to a pressurized water type LWR plant, the pressure release pipe connected to the upper part of the cooling water tank must be connected not to the reactor pressure vessel but to the upper part of the pressurizer with a free liquid level. There is.

このような従来の技術によれば、蓄圧器を有する非常用
炉心冷却設備(従来技術A)の場合は大破断LOCA時に
は、蓄圧器12、低圧注入ポンプ13a及び高圧注入ポンプ1
4aのすべてが作動し炉心冷却が行なわれるが、蓄圧器注
入終了後の炉心冷却には大容量の低圧注入ポンプ13aだ
けで十分であり、高圧注入ポンプ14aによる注入はむし
ろ過剰注入となる。一方、小破断LOCA時には、蓄圧器12
及び低圧注入ポンプ13aによる注入はなされず、高圧注
入ポンプ13a単独で炉心崩壊熱による蒸気放散量(第2
図A)を上まわる量の冷却水を注入する必要があり(第
2図B)、これは高圧注入ポンプ14aについての条件を
厳しくする。このように従来の技術は破断事故の大きさ
に対してそれぞれの設備を設けており設備構成は効率的
でない。
According to such a conventional technique, in the case of the emergency core cooling equipment having a pressure accumulator (conventional technique A), the pressure accumulator 12, the low pressure injection pump 13a and the high pressure injection pump 1 are provided at the time of a large break LOCA.
Although all of 4a operate to perform core cooling, only the low-pressure injection pump 13a having a large capacity is sufficient for core cooling after the injection of the pressure accumulator, and the injection by the high-pressure injection pump 14a is rather excessive injection. On the other hand, during small break LOCA, pressure accumulator 12
And the high-pressure injection pump 13a alone does not inject the low-pressure injection pump 13a, and the amount of vapor emitted by the core decay heat (second
It is necessary to inject an amount of cooling water which exceeds that of Figure A) (Figure 2B), which makes the conditions for the high pressure injection pump 14a severe. As described above, in the conventional technology, each equipment is provided depending on the magnitude of the breakage accident, and the equipment configuration is not efficient.

一方、蓄圧器の代りに冷却水タンク保有水の自重により
注入する従来技術(技術B)は、窒素ガスで高圧状態に
加圧されている蓄圧器のように、短期に大流量を得るこ
とはできなく、小流量で長期間の注入を継続するのに適
したもので、この技術で大流量を得ようとすると、タン
ク位置を高レベルにし、かつ大口径の配管を必要とする
為、経済性、耐震性の問題から非常な困難を伴う。更
に、この技術を原子炉圧力容器上部に蒸気相ができにく
い加圧水型軽水炉プラントにそのまま適用しようとする
と、前述したように、冷却水タンクの注入機能が著しく
損われる。
On the other hand, the conventional technique (technique B) of injecting by the own weight of the cooling water tank holding water instead of the pressure accumulator cannot obtain a large flow rate in a short time like a pressure accumulator pressurized to a high pressure state with nitrogen gas. It is not suitable for continuous injection with a small flow rate for a long period of time, and when trying to obtain a large flow rate with this technology, the tank position is at a high level and a large-diameter pipe is required, which is economical. It is extremely difficult to use due to the problems of the durability and earthquake resistance. Furthermore, if this technique is applied as it is to a pressurized water type LWR plant in which a vapor phase is hard to form in the upper part of the reactor pressure vessel, as mentioned above, the injection function of the cooling water tank is significantly impaired.

この発明は、上記の如き事情に鑑みてなされたものであ
って、従来の技術がもつ設備の効率が低い問題を解決す
るため、1次冷却材事故の種類(破断の大きさ)による
蓄圧器と高圧注入ポンプへの機能要求の違い、並びに、
高圧注入ポンプ必要注入量が炉心崩壊熱の減衰と共に時
間依存で低減して行く(第2図A)ことに着目し、小破
断LOCA時に蓄圧器12を高圧注入系14の一部として共用さ
せることにより、比較的大容量の冷却材注入を必要とす
る事故初期に高圧注入ポンプ14aの負担(容量)を軽減
し、高圧注入ポンプの容量を削減(第2図D)すること
を可能にし、持てる設備を有効に活用して原子炉の安全
を向上させる得る加圧水型原子炉の非常用炉心冷却設備
を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and in order to solve the problem that the efficiency of the equipment of the conventional technique is low, the pressure accumulator according to the type of primary coolant accident (the size of breakage) is provided. And the difference in functional requirements for high-pressure injection pumps, and
High-pressure injection pump Focusing on the fact that the required injection amount decreases with the decay of core decay heat in a time-dependent manner (Fig. 2A), use the pressure accumulator 12 as a part of the high-pressure injection system 14 during small break LOCA. This makes it possible to reduce the load (capacity) of the high-pressure injection pump 14a and reduce the capacity of the high-pressure injection pump (FIG. 2D) at the initial stage of the accident when a relatively large amount of coolant needs to be injected. It is an object of the present invention to provide an emergency core cooling system for a pressurized water reactor, which can effectively utilize the system and improve the safety of the reactor.

(ロ)発明の構成 [問題を解決するための手段] この目的に対応して、この発明の加圧水型原子炉の非常
用炉心冷却設備は、蓄圧器の液相部と原子炉1次冷却系
との間を前記原子炉1次冷却系に向う流れを許容する液
相逆止弁を介して配管にて接続しかつ前記蓄圧器の気相
部と加圧器の気相部との間を前記蓄圧器の前記気相部に
向う流れを許容する気相逆止弁を介して配管にて接続し
てなる蓄圧器注入系と、非常用冷却水タンクと前記蓄圧
器注入系の前記液相逆止弁の上流側配管との間をポンプ
及び止弁を介して配管にて接続してなる高圧注入系と、
及び前記非常用冷却水タンクと前記蓄圧器注入系の前記
液相逆止弁の上流側配管との間をポンプ及び止弁を介し
て配管にて接続してなる低圧注入系とを備えることを特
徴としている。
(B) Structure of the Invention [Means for Solving the Problem] To this end, the emergency core cooling equipment for a pressurized water reactor according to the present invention has a liquid phase part of a pressure accumulator and a primary reactor cooling system. And a gas phase portion of the accumulator and a gas phase portion of the pressurizer through a liquid phase check valve that allows a flow toward the reactor primary cooling system. A pressure accumulator injection system connected by piping through a gas phase check valve that allows a flow toward the gas phase part of the pressure accumulator, and an emergency cooling water tank and the liquid phase reversal of the pressure accumulator injection system. A high-pressure injection system that is connected to the upstream pipe of the stop valve by piping via a pump and a stop valve,
And a low-pressure injection system in which the emergency cooling water tank and the upstream pipe of the liquid phase check valve of the pressure accumulator injection system are connected by a pipe via a pump and a stop valve. It has a feature.

以下、この発明の詳細を一実施例を示す図面について説
明する。
Hereinafter, details of the present invention will be described with reference to the drawings illustrating an embodiment.

第1図において、101は加圧水型原子炉の1次冷却系設
備であり、1次冷却系設備101は原子炉容器1、蒸気発
生器2、1次冷却材ポンプ3、これらを接続する1次冷
却材配管からなる1次冷却系閉ループ6、加圧器4、及
び非常用炉心冷却設備102で構成されている。
In FIG. 1, 101 is a primary cooling system equipment of a pressurized water reactor, and a primary cooling system equipment 101 is a reactor vessel 1, a steam generator 2, a primary coolant pump 3, and a primary connecting them. It is composed of a primary cooling system closed loop 6 composed of a coolant pipe, a pressurizer 4, and an emergency core cooling facility 102.

非常用炉心冷却設備102は蓄圧器注入系103と低圧注入系
13と高圧注入系14とからなっている。
The emergency core cooling facility 102 includes a pressure accumulator injection system 103 and a low pressure injection system.
It consists of 13 and high pressure injection system 14.

蓄圧系注入系103は蓄圧器12を備え、蓄圧器12の液相部1
2aは配管18によって1次冷却系閉ループ6の低温側配管
7に接続している。配管18には逆止弁11が設けられてい
る。逆止弁11は蓄圧器12から低温側配管7に向う方向の
流れだけを許容する。
The pressure accumulator injection system 103 includes a pressure accumulator 12 and a liquid phase portion 1 of the accumulator 12
2a is connected to the low temperature side pipe 7 of the primary cooling system closed loop 6 by a pipe 18. A check valve 11 is provided in the pipe 18. The check valve 11 allows only the flow in the direction from the pressure accumulator 12 to the low temperature side pipe 7.

蓄圧器12の気相部12bは配管19によって加圧器4の気相
部4aに連通している。配管19には止弁17及び逆止弁16が
設けられている。逆止弁16は加圧器の気相部4aから蓄圧
器12の気相部12bに向う方向の流れだけを許容する。低
圧注入系13は後述する高圧注入系14と共用の非常用冷却
水タンク15を備え、非常用冷却水タンク15は配管13bに
よって蓄圧器注入系103の逆止弁11の上流側において配
管18に接続している。配管13bにはポンプ13a,止弁13c,1
3d、逆止弁13e,13fが設けられている。逆止弁13e,13fは
非常用冷却水タンク15から配管18に向う方向の流れのみ
を許容する。
The gas phase portion 12b of the pressure accumulator 12 communicates with the gas phase portion 4a of the pressurizer 4 through the pipe 19. The pipe 19 is provided with a stop valve 17 and a check valve 16. The check valve 16 allows only the flow in the direction from the gas phase portion 4a of the pressurizer to the gas phase portion 12b of the pressure accumulator 12. The low-pressure injection system 13 includes an emergency cooling water tank 15 shared with a high-pressure injection system 14 described later, and the emergency cooling water tank 15 is connected to a pipe 18 upstream of the check valve 11 of the pressure accumulator injection system 103 by a pipe 13b. Connected. Pump 13a, stop valve 13c, 1 is installed in pipe 13b.
3d and check valves 13e and 13f are provided. The check valves 13e and 13f allow only the flow from the emergency cooling water tank 15 to the pipe 18.

高圧注入系14は前述する低圧注入系13と共用の非常用冷
却水タンク15を備え、非常用冷却水タンク15は配管14b
によって蓄圧器注入系103の逆止弁11の上流側において
配管18に接続している。配管14bにはポンプ14a,止弁14
c,14d、逆止弁14e,14fが設けられている。逆止弁14e,14
fは非常用冷却水タンク15から配管18に向う方向の流れ
のみを許容する。
The high-pressure injection system 14 includes an emergency cooling water tank 15 that is shared with the low-pressure injection system 13 described above, and the emergency cooling water tank 15 is a pipe 14b.
Is connected to the pipe 18 on the upstream side of the check valve 11 of the pressure accumulator injection system 103. A pump 14a and a stop valve 14 are installed in the pipe 14b.
c, 14d and check valves 14e, 14f are provided. Check valves 14e, 14
f allows only the flow from the emergency cooling water tank 15 to the pipe 18.

[作用] このように構成された非常用炉心冷却設備102の作用は
次の通りである。
[Operation] The operation of the emergency core cooling equipment 102 thus configured is as follows.

原子炉容器の中の炉心10で加熱された1次冷却材は、原
子炉容器1から高温側配管5を経て蒸気発生器2へ輸送
され、そこで蒸気発生器内の伝熱管8を介して2次冷却
材に熱交換する。そして、蒸気発生器で冷却された1次
冷却材は1次冷却材ポンプ3により水頭が付与され、低
温側配管7を経て再び原子炉容器1に供給される。な
お、図示していないが蒸気発生器2では、放射性物質を
含まない2次冷却系の水が蒸気に変換され、タービン系
へ供給される。
The primary coolant heated in the reactor core 10 in the reactor vessel is transported from the reactor vessel 1 to the steam generator 2 through the high temperature side pipe 5, and there through the heat transfer pipe 8 in the steam generator 2. Heat is exchanged with the next coolant. Then, the primary coolant cooled by the steam generator is provided with a head of water by the primary coolant pump 3, and is supplied again to the reactor vessel 1 through the low temperature side pipe 7. Although not shown, in the steam generator 2, the water in the secondary cooling system that does not contain radioactive substances is converted into steam and supplied to the turbine system.

1次冷却材喪失事故時には、破断点9からの冷却材流出
により加圧器の自由液面4cは急速に低下し、短時間で加
圧器下端に達する。まず小破断LOCAの場合について説明
すると、事故時には1次冷却材ポンプは停止される為、
加圧器4が接続されている高温側配管5と蓄圧器12が接
続されている低温側配管7との圧力差はほとんど無いこ
とから、蓄圧器の自由液面12cのエレベーションに比し
て加圧器水位が十分低下すると、それを信号として、1
次冷却系6の圧力が十分に低下しない小破断LOCA時で
も、蓄圧器気相部12bと加圧器気相部4aを接続する配管1
9の止弁17を開とすることにより、蓄圧器12は自重(水
頭差)により小流量でかつ長期間の注入を行う(第2図
C斜線部分)。この場合には駆動力は自重だけである為
に、注入流量は小流量でかつ長期に亙って注入され、ほ
ぼ第2図Cの斜線部分のような注入特性を持つ為、小容
量の高圧注入系14の注入流量(第2図D)と合せて第2
図Aに示す必要注入水量(炉心崩壊熱による蒸気放散
量)を好適に満足する。次に大破断LOCAの場合について
説明すると、1次冷却系6の圧力が急速に大気圧付近ま
で低下する大破断LOCA時には、蓄圧器に封入されている
窒素が逆止弁16により加圧器4を経由して1次冷却系6
に放出されないため、加圧器4の圧力が蓄圧器12の圧力
よりも低くなっても蓄圧器12の窒素ガスは加圧器4に流
出することはなく、蓄圧器12の気相部12bの窒素ガス12b
と1次冷却系6との大きな差圧により従来と同じ注入特
性で短時間に大量の注入を行うことができる。
At the time of the primary coolant loss accident, the free liquid level 4c of the pressurizer rapidly decreases due to the coolant flowing out from the break point 9, and reaches the lower end of the pressurizer in a short time. First, in the case of small break LOCA, the primary coolant pump is stopped in the event of an accident.
Since there is almost no pressure difference between the high temperature side pipe 5 to which the pressurizer 4 is connected and the low temperature side pipe 7 to which the pressure accumulator 12 is connected, the pressure difference is higher than the elevation of the free liquid surface 12c of the pressure accumulator. When the pressure level of the pressure gauge is sufficiently low,
Pipe 1 for connecting the accumulator gas phase part 12b and the pressurizer gas phase part 4a even during a small break LOCA in which the pressure of the secondary cooling system 6 does not drop sufficiently.
By opening the stop valve 17 of 9, the pressure accumulator 12 performs injection at a small flow rate and for a long period of time due to its own weight (head difference) (hatched portion in FIG. 2C). In this case, since the driving force is only its own weight, the injection flow rate is small and injection is performed over a long period of time. Since the injection characteristics are almost as shown by the shaded area in FIG. The second together with the injection flow rate of the injection system 14 (Fig. 2D)
The required amount of injected water (vapor emission amount due to core decay heat) shown in FIG. A is preferably satisfied. Next, the case of large break LOCA will be described. At the time of large break LOCA in which the pressure of the primary cooling system 6 rapidly decreases to near atmospheric pressure, the nitrogen enclosed in the pressure accumulator causes the checker 16 to press the pressurizer 4. Via primary cooling system 6
Therefore, even if the pressure of the pressurizer 4 becomes lower than the pressure of the pressure accumulator 12, the nitrogen gas of the pressure accumulator 12 does not flow out to the pressurizer 4, and the nitrogen gas of the gas phase portion 12b of the pressure accumulator 12 is not discharged. 12b
Due to the large pressure difference between the primary cooling system 6 and the primary cooling system 6, a large amount of injection can be performed in a short time with the same injection characteristics as the conventional one.

(ハ)発明の効果 このようにこの発明では従来の大破断LOCAを対象に設置
されている蓄圧器を1次冷却系の圧力が十分に低下しな
い小破断LOCA時にも有効に利用することができ、そのた
め、小破断LOCAを対象に設置されている高圧注入系の容
量を大幅に低減できる。また、これによって設備の合理
化が図られるのでコストダウンできる。
(C) Effect of the Invention As described above, according to the present invention, the accumulator installed for the conventional large-break LOCA can be effectively used even in the small-break LOCA where the pressure of the primary cooling system does not drop sufficiently. Therefore, the capacity of the high-pressure injection system installed for small break LOCA can be significantly reduced. In addition, the rationalization of the equipment can be achieved thereby, and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の非常用炉心冷却設備の一実施例を示す
図、第2図は高圧注入流量必要量の時間依存性と本発明
の非常用炉心冷却設備を適用した場合の小破断LOCA時の
注入特性を示すグラフ、及び第3図は従来の非常用炉心
設備及び1次冷却系を示す図である。 1……原子炉容器、2……蒸気発生器、3……1次冷却
材ポンプ、4……加圧器、4……気相部、4c……自由液
面、6……1次冷却系閉ループ、7……低温側配管、11
……逆止弁、12……蓄圧器、13……低圧注入系、13a…
…低圧注入ポンプ、13b……配管、13c,13d……止弁、13
e,13f……逆止弁、14……高圧注入系、14a……高圧注入
ポンプ、14b……配管、14c,14d……止弁、14e,14f……
逆止弁、15……非常用冷却水タンク、16……逆止弁、17
……止弁、18……配管、19……配管、101……加圧水型
原子炉の1次冷却系設備、102……非常用炉心冷却設
備、103……蓄圧器注入系
FIG. 1 is a diagram showing an embodiment of an emergency core cooling equipment of the present invention, and FIG. 2 is a time dependence of a required amount of high-pressure injection flow rate and a small break LOCA when the emergency core cooling equipment of the present invention is applied. FIG. 3 is a graph showing injection characteristics at the time, and FIG. 3 is a diagram showing a conventional emergency core facility and a primary cooling system. 1 ... Reactor vessel, 2 ... Steam generator, 3 ... Primary coolant pump, 4 ... Pressurizer, 4 ... Gas phase section, 4c ... Free liquid level, 6 ... Primary cooling system Closed loop, 7 ... Low temperature side piping, 11
…… Check valve, 12 …… Accumulator, 13 …… Low pressure injection system, 13a ・ ・ ・
… Low-pressure injection pump, 13b …… Piping, 13c, 13d …… Stop valve, 13
e, 13f …… Check valve, 14 …… High pressure injection system, 14a …… High pressure injection pump, 14b …… Piping, 14c, 14d …… Stop valve, 14e, 14f ……
Check valve, 15 …… Emergency cooling water tank, 16 …… Check valve, 17
...... Stop valve, 18 ...... Piping, 19 ...... Piping, 101 ...... Pressure water reactor primary cooling system equipment, 102 ...... Emergency core cooling equipment, 103 …… Accumulator injection system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松岡 強 東京都千代田区丸の内2丁目5番1号 三 菱重工業株式会社内 (56)参考文献 特開 昭60−259994(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsuyoshi Matsuoka 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (56) Reference JP-A-60-259994 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】蓄圧器の液相部と原子炉1次冷却系との間
を前記原子炉1次冷却系に向う流れを許容する液相逆止
弁を介して配管にて接続しかつ前記蓄圧器の気相部と加
圧器の気相部との間を前記蓄圧器の前記気相部に向う流
れを許容する気相逆止弁を介して配管にて接続してなる
蓄圧器注入系と、非常用冷却水タンクと前記蓄圧器注入
系の前記液相逆止弁の上流側配管との間をポンプ及び止
弁を介して配管にて接続してなる高圧注入系と、及び前
記非常用冷却水タンクと前記蓄圧器注入系の前記液相逆
止弁の上流側配管との間をポンプ及び止弁を介して配管
にて接続してなる低圧注入系とを備えることを特徴とす
る加圧水型原子炉の非常用炉心冷却設備
1. A liquid phase part of a pressure accumulator and a reactor primary cooling system are connected by a pipe through a liquid phase check valve which allows a flow toward the reactor primary cooling system, and A pressure accumulator injection system in which a gas phase portion of the pressure accumulator and a gas phase portion of the pressurizer are connected by piping through a gas phase check valve that allows a flow toward the gas phase portion of the pressure accumulator. And a high-pressure injection system in which an emergency cooling water tank and an upstream pipe of the liquid phase check valve of the accumulator injection system are connected by a pipe via a pump and a stop valve, and the emergency And a low-pressure injection system in which a cooling water tank and an upstream pipe of the liquid phase check valve of the accumulator injection system are connected by a pipe via a pump and a stop valve. Emergency core cooling system for pressurized water reactors
JP62005604A 1987-01-13 1987-01-13 Emergency core cooling system for pressurized water reactors Expired - Lifetime JPH0715506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62005604A JPH0715506B2 (en) 1987-01-13 1987-01-13 Emergency core cooling system for pressurized water reactors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62005604A JPH0715506B2 (en) 1987-01-13 1987-01-13 Emergency core cooling system for pressurized water reactors

Publications (2)

Publication Number Publication Date
JPS63173997A JPS63173997A (en) 1988-07-18
JPH0715506B2 true JPH0715506B2 (en) 1995-02-22

Family

ID=11615818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62005604A Expired - Lifetime JPH0715506B2 (en) 1987-01-13 1987-01-13 Emergency core cooling system for pressurized water reactors

Country Status (1)

Country Link
JP (1) JPH0715506B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2800504B1 (en) * 1999-11-02 2002-04-05 Framatome Sa METHOD AND DEVICE FOR INJECTING AN AQUEOUS SOLUTION CONTAINING A NEUTRON ABSORBING ELEMENT IN A PIPE OF A PRIMARY CIRCUIT OF A NUCLEAR REACTOR COOLED BY PRESSURIZED WATER
DE102005050646B4 (en) * 2005-10-20 2010-08-05 Areva Np Gmbh Method for pressure control of the pressure of a coolant in the primary circuit of a nuclear reactor plant and nuclear reactor plant
KR101071415B1 (en) * 2011-04-15 2011-10-07 한국수력원자력 주식회사 High pressure safety injection tank system for loca and sbo
KR101373676B1 (en) * 2012-08-03 2014-03-13 한국원자력연구원 Safety injection tank system pressurized with separated nitrogen gas tank
KR101343051B1 (en) * 2012-08-03 2013-12-18 한국원자력연구원 Hybrid safety injection tank system pressurized with safty valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259994A (en) * 1984-06-06 1985-12-23 株式会社日立製作所 Emergency core cooling device

Also Published As

Publication number Publication date
JPS63173997A (en) 1988-07-18

Similar Documents

Publication Publication Date Title
Lee et al. The concept of the innovative power reactor
US4057465A (en) Nuclear reactor auxiliary heat removal system
US20080219397A1 (en) Decay Heat Removal System for Liquid Metal Reactor
JPH04125495A (en) Nuclear reactor facility
KR101463441B1 (en) High concentration boron injection system and safety injection system having the same
JPH0734040B2 (en) Preliminary safety injection system for a reactor plant
Kang et al. Performance analysis of the passive safety features of iPOWER under Fukushima-like accident conditions
JPH0715506B2 (en) Emergency core cooling system for pressurized water reactors
JP2899979B2 (en) High temperature gas furnace
JPS5860293A (en) Emergency core cooling system
JPS6375691A (en) Natural circulation type reactor
JPH04109197A (en) Reactor core decay heat removing device for pressurized water reactor
Muraviev Liquid-metal-cooled divertor for ARIES
US4347623A (en) Flash jet coolant pumping system
JPS6319597A (en) Emergency water injector for nuclear reactor
JPH058997B2 (en)
JPS61173195A (en) Accumulation system water injection facility for pressurizedwater type reactor
Morin et al. Copernic, a new tool based on simplified calculation methods for innovative lwrs conceptual design studies
JPH0427517B2 (en)
Shumway General features of emergency core cooling systems
Wendel et al. Analysis of loss-of-coolant accidents in the high-flux isotope reactor
Redding Nuclear reactor core cooling arrangement
Asaka et al. Sub-to supercritical flow transition in a horizontally-stratified two-phase flow in PWR hot legs
JPH03100496A (en) Nuclear reactor having emergency cooling water replenishing equipment
JPH07318684A (en) Alternative water injector for reactor machinery and facility