JPS62237395A - Emergency core cooling device - Google Patents

Emergency core cooling device

Info

Publication number
JPS62237395A
JPS62237395A JP61080054A JP8005486A JPS62237395A JP S62237395 A JPS62237395 A JP S62237395A JP 61080054 A JP61080054 A JP 61080054A JP 8005486 A JP8005486 A JP 8005486A JP S62237395 A JPS62237395 A JP S62237395A
Authority
JP
Japan
Prior art keywords
reactor
pressure
coolant
tank
pressure tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61080054A
Other languages
Japanese (ja)
Other versions
JPH058997B2 (en
Inventor
正弘 山下
崇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61080054A priority Critical patent/JPS62237395A/en
Publication of JPS62237395A publication Critical patent/JPS62237395A/en
Publication of JPH058997B2 publication Critical patent/JPH058997B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、原子力発電所に用いられる非常用炉心冷却装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an emergency core cooling system used in a nuclear power plant.

(従来の技術) 原子力発電所に於いて原子炉圧力容器バウンダリーの破
断が発生し、冷却材喪失事故に至った場合、従来の原子
炉では動的機器であるポンプを用いた非常用炉心冷却装
置(以下ECC5と略記する)を用いて炉心冷却を行い
、その健全性を確保している。即ち、小口径の破断(以
下小LOGAと略記する)の場合、破断口からの冷却材
の流出が少なく原子炉圧力は高圧に保たれる。従ってこ
の場合は高圧ECC5を用いて原子炉内に冷却水を注入
することによって、炉心を露出すること無く冷却を行う
ことが出来る。一方、大口径の破断(以下大LOCAと
略記する)の場合、破断口からの冷却水の流出量が多く
原子炉炉心では一時的に露出し、原子炉圧力も大幅に低
下する。しかし、この場合は大容量の低圧ECC5を用
いて原子炉内に冷却水を注入することによって炉心を再
冠水させ冷却を確保することが出来る。後者の場合、前
者の場合に比べて厳しい状況となるが、燃料被覆管の最
高温度は制限値より充分低く保たれる。
(Prior technology) When a rupture of the reactor pressure vessel boundary occurs in a nuclear power plant, resulting in a loss of coolant accident, in conventional nuclear reactors, an emergency core cooling system using a pump, which is a dynamic device, is used. (hereinafter abbreviated as ECC5) is used to cool the core and ensure its integrity. That is, in the case of a small-diameter rupture (hereinafter abbreviated as small LOGA), there is little coolant flowing out from the rupture port, and the reactor pressure is maintained at a high pressure. Therefore, in this case, by injecting cooling water into the reactor using the high-pressure ECC 5, cooling can be performed without exposing the reactor core. On the other hand, in the case of a large-diameter rupture (hereinafter abbreviated as large LOCA), a large amount of cooling water flows out from the rupture port and is temporarily exposed in the reactor core, causing a significant drop in reactor pressure. However, in this case, by injecting cooling water into the reactor using the large-capacity, low-pressure ECC 5, it is possible to re-flood the reactor core and ensure cooling. In the latter case, the situation is more severe than in the former case, but the maximum temperature of the fuel cladding tube is kept sufficiently lower than the limit value.

一方、近年ECC5の合理化、及び、信頼性向上の観点
から第3図に示す様な非常用炉心冷却装置を有する原子
炉の実用化が提唱されるに至っている。
On the other hand, in recent years, from the viewpoint of streamlining ECC5 and improving reliability, the practical application of a nuclear reactor having an emergency core cooling system as shown in FIG. 3 has been proposed.

なお、以下に示す非常用炉心冷却装置をElevate
dPool方式と呼ぶ。ここで第3図を参照して従来の
非常用炉心冷却装置について説明する。第3図において
、原子炉圧力容器1内には炉心2が収容されている。こ
の原子炉圧力容器1の周囲にはドライウェル3が形成さ
れ、このドライウェル3の上部側方には冷却材4を貯溜
するプール5が配置されている。これらプール5の上方
は燃料交換エリアを形成する上部構造物6が設けられて
いる。また、前記原子炉圧力容器1には前記ドライウェ
ル3を貫通して給水配管7が接続されており、この給水
配管7には事故時に前記プール5から逆止弁8を介して
冷却材を給水配管7内に導びく冷却材注入配管9が接続
されている。
In addition, the emergency core cooling system shown below is
This is called the dPool method. Here, a conventional emergency core cooling system will be explained with reference to FIG. In FIG. 3, a reactor core 2 is housed within a reactor pressure vessel 1. As shown in FIG. A dry well 3 is formed around the reactor pressure vessel 1, and a pool 5 for storing a coolant 4 is arranged on the upper side of the dry well 3. Above these pools 5, there is provided an upper structure 6 that forms a fuel exchange area. Further, a water supply pipe 7 is connected to the reactor pressure vessel 1 through the dry well 3, and coolant is supplied to the water supply pipe 7 from the pool 5 via a check valve 8 in the event of an accident. A coolant injection pipe 9 leading into the pipe 7 is connected.

以上の構成において、冷却水源となるプールが原子炉よ
り上部に位置するため、従来のECC5の様にポンプを
使用せずに冷却材の水頭差により冷却材を原子炉内へ注
入することが出来る。従って、ECC5は動的機器であ
るポンプを使用せず、静的機器である配管・昇順等のみ
から構成されるため信頼性が高く、かく、コストが低い
利点を有している。
In the above configuration, the pool that serves as the cooling water source is located above the reactor, so coolant can be injected into the reactor by the difference in the coolant head without using a pump like in the conventional ECC5. . Therefore, the ECC 5 does not use a pump, which is a dynamic device, and is composed only of static devices such as piping, ascending, etc., and therefore has the advantage of high reliability and low cost.

しかし、既に述べた様に小LOCAの場合、原子炉圧力
は高圧(約70kg/cot程度)に維持されるためE
levated Poolの冷却材の自重のみで原子炉
内に冷却材を注入することは不可能である。従って、E
levated Pool方式の原子炉に於いて小LO
CAが発生した場合、自動減圧装置により原子炉内の蒸
気を外部に放出させ原子炉圧力を低下させた後、Ele
vated Poolの冷却材を原子炉内に注入する。
However, as mentioned above, in the case of a small LOCA, the reactor pressure is maintained at a high pressure (approximately 70 kg/cot), so the E
It is impossible to inject coolant into the reactor using only the weight of the coolant in the levated pool. Therefore, E
Small LO in a levated pool reactor
When a CA occurs, the steam inside the reactor is released to the outside by an automatic decompression device to lower the reactor pressure, and then
Inject the vated pool coolant into the reactor.

自動減圧装置を用いた減圧過程に於いて一時的に炉心が
露出するが、その後冷却材の注入によって炉心は再冠水
され冷却が確保されるに至る。
During the depressurization process using an automatic decompression device, the core is temporarily exposed, but the core is then re-submerged with water by injection of coolant, ensuring cooling.

(発明が解決しようとする問題点) Elevated Pool方式の格納容器を有する原
子炉に於いて、冷却材喪失事故の発生を想定すると、大
LOCAに比べて比較的発生頻度が高いと想定される小
LOCAの場合、自動減圧装置を用いて原子炉圧力を低
下させた後、初めてElevated Poolの冷却
材を原子炉内に注入することが可能となる。この減圧過
程で小LOCAにも拘らず、一時的に炉心が露出するに
至り、最終的には炉心が再冠水され炉心冷却が確保され
るものの、比較的発生する可能性がある小LOCA時に
炉心露出が発生することは好ましくない問題である。
(Problem to be solved by the invention) When assuming that a loss of coolant accident occurs in a nuclear reactor with an elevated pool type containment vessel, a small LOCA is expected to occur relatively more frequently than a large LOCA. In the case of LOCA, coolant from the Elevated Pool can only be injected into the reactor after the reactor pressure is reduced using an automatic decompression device. Despite the small LOCA during this depressurization process, the reactor core is temporarily exposed, and although the core is eventually re-flooded and core cooling is ensured, the reactor core is relatively likely to occur during a small LOCA. Exposure is an undesirable problem.

本発明の目的は、Elevated Pool方式の非
常用炉心冷却装置を有する原子炉に於いて小LOCA時
に原子炉を減圧させること無く冷却水を原子炉内に注入
し炉心露出を防止し、炉心の健全性を確保することので
きる非常用炉心冷却装置を提供することにある。
The purpose of the present invention is to prevent core exposure by injecting cooling water into the reactor without depressurizing the reactor during a small LOCA in a nuclear reactor equipped with an elevated pool type emergency core cooling system, thereby maintaining the health of the reactor core. An object of the present invention is to provide an emergency core cooling system that can ensure safety.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するために、本発明においては。 (Means for solving problems) In order to achieve the above object, in the present invention.

有するプールと、前記プールに隣接して配置され冷却材
注入配管を介して前記原子炉圧力容器に接続される高圧
タンクと、この高圧タンクの気相部と前記原子炉圧力容
器の気相部とを接続しかつ高圧タンクから原子炉圧力容
器に注入する時のみ開動作する弁を有する加圧配管と、
前記高圧タンクの上部に一端を接続し他端を前記プール
の液相部に開放させかつ高圧タンク内の冷却水が一定値
以下になった場合に開動作する弁を有する減圧配管と、
前記タンクの液相部と高圧タンクとを接続する冷却材補
給配管とから成ることを特徴とする非常用炉心冷却装置
を提供する。
a high-pressure tank arranged adjacent to the pool and connected to the reactor pressure vessel via a coolant injection pipe; a gas phase part of the high-pressure tank; and a gas phase part of the reactor pressure vessel. a pressurized pipe that connects the high pressure tank and has a valve that opens only when injecting from the high pressure tank to the reactor pressure vessel;
a pressure reducing pipe having one end connected to the upper part of the high pressure tank and the other end open to the liquid phase part of the pool and having a valve that opens when the cooling water in the high pressure tank falls below a certain value;
An emergency core cooling system is provided, comprising a coolant supply pipe connecting the liquid phase part of the tank and a high-pressure tank.

(作 用) この様にして構成された非常用炉心冷却装置に於いては
、小LOCAまたは給水喪失トランジェント時のように
原子炉圧力が高圧に維持され、かつ原子炉水位が低下す
る事象の場合、冷却材を貯えた高圧タンクに原子炉圧力
を背圧として加えることにより原子炉内に冷却材が供給
される。更に、同タンク内に貯えた冷却材が枯渇した場
合は、まず原子炉からの圧力の供給を一旦隔離した上で
同タンクを減圧することにより、  Elevated
 Poolに貯えられた冷却材を自重によって高圧タン
ク内に注入する。この様な高圧タンク等から構成される
系統を2系統以上設置すると、一方の高圧タンクが冷却
水をElevated Poolから補給中にも、残り
のタンクから冷却水を原子炉内へ注入することが出来、
原子炉への注水を連続して行うことが出来る。
(Function) In the emergency core cooling system configured in this way, in the case of an event where the reactor pressure is maintained at a high pressure and the reactor water level drops, such as during a small LOCA or a feed water loss transient, Coolant is supplied into the reactor by applying reactor pressure as back pressure to a high-pressure tank storing coolant. Furthermore, if the coolant stored in the tank is depleted, the pressure supply from the reactor is first isolated and then the tank is depressurized.
The coolant stored in the Pool is injected into the high pressure tank by its own weight. If two or more systems consisting of such high-pressure tanks are installed, even if one high-pressure tank is replenishing cooling water from the Elevated Pool, cooling water can be injected into the reactor from the remaining tank. ,
Water can be continuously injected into the reactor.

この様にして高圧の冷却水を原子炉内へ継続的に注入す
ることが出来るため、原子炉圧力が高圧に維持され、か
つ、原子炉水位が低下する小LOCA時、給水喪失トラ
ンジェント時等に於いても、炉心露出を防止すると同時
に充分な炉心冷却を確保することが可能となる6 (実施例) 以下本発明の一実施例を第1図に基づいて説明する。な
お、第1図において、第3図と同一部分には同一符号を
付し、その構成の説明は省略する。
In this way, high-pressure cooling water can be continuously injected into the reactor, so the reactor pressure is maintained at a high level and the reactor water level drops during a small LOCA, during a feed water loss transient, etc. 6. (Example) An example of the present invention will be described below with reference to FIG. 1. Note that in FIG. 1, the same parts as in FIG. 3 are given the same reference numerals, and explanations of their configurations will be omitted.

第1図に示す様に、炉心2を収容した原子炉圧力容器1
の上方にはプールが設けられている。このプール5に隣
接して高圧タンク10が設置される。
As shown in FIG. 1, a reactor pressure vessel 1 containing a reactor core 2
There is a pool above. A high pressure tank 10 is installed adjacent to this pool 5.

この高圧タンク10には冷却材を原子炉圧力容器1内に
注入するための冷却材注入配管11、及び、逆止弁12
が設けられている。更に、高圧タンク10内部の冷却材
が枯渇した際に、冷却材をプール5から補給するために
冷却材補給配管13、及び、逆止弁14がプール5の液
相部と高圧タンク10とを接続して設けられている。た
だし、高圧タンク10ヘプール5からの冷却材を補給す
る際には高圧タンク10の内圧を一時的に下げる必要が
あるため高圧タンク10の気相部からプール5内の冷却
材4中に高圧タンク10内の高圧気体を放出する減圧配
管15、及び、電動弁16が設けられている。
This high pressure tank 10 includes a coolant injection pipe 11 for injecting coolant into the reactor pressure vessel 1, and a check valve 12.
is provided. Further, when the coolant inside the high-pressure tank 10 is depleted, a coolant replenishment pipe 13 and a check valve 14 connect the liquid phase part of the pool 5 and the high-pressure tank 10 in order to replenish the coolant from the pool 5. are connected and provided. However, when replenishing the high-pressure tank 10 with the coolant from the pool 5, it is necessary to temporarily lower the internal pressure of the high-pressure tank 10. A depressurizing pipe 15 and an electric valve 16 for discharging high pressure gas in the air conditioner 10 are provided.

また高圧タンク10に冷却材を補給されている状態で高
圧タンク10を原子炉圧力容器1の内圧と等圧力追加圧
するために、原子炉圧力容器1の気相部から高圧タンク
10の気相部に至る加圧配管17、及び、電動弁18が
設けられている。この加圧配管17を介して高圧タンク
10に流入した原子炉蒸気による疲労を防止するために
高圧タンクlO内の気・液界面には断熱性の高いセラミ
ックス製のフロート19が配置されている。
In addition, in order to additionally pressurize the high-pressure tank 10 to the same pressure as the internal pressure of the reactor pressure vessel 1 while the high-pressure tank 10 is being supplied with coolant, the gas phase part of the high-pressure tank 10 is A pressurizing pipe 17 and an electric valve 18 are provided. In order to prevent fatigue caused by reactor steam flowing into the high-pressure tank 10 via this pressurizing pipe 17, a float 19 made of highly insulating ceramics is arranged at the gas-liquid interface in the high-pressure tank IO.

また高圧タンク10の内面も断熱性の高いセラミックス
でコーティングを施し高圧タンク10内の熱サイクルに
よる疲労を防止するような構成になっている。
The inner surface of the high-pressure tank 10 is also coated with highly insulating ceramic to prevent fatigue due to thermal cycles within the high-pressure tank 10.

この様な構成の非常用炉心冷却装置を設置した原子炉に
於いて、ホしOCA或いは給水喪失トランジェントの様
な原子炉圧力が高圧に維持され、かつ、原子炉水位が低
下する事象が発生した場合、加圧配管の電動弁を開にし
、冷却水を貯えた高圧タンクに原子炉圧力を背圧として
加えると高圧タンクと原子炉との水頭差により原子炉圧
力容器内に冷却水が供給される。更に、高圧タンク内に
貯えられた冷却水が枯渇した際はまず加圧配管の電動弁
を閉じ原子炉からの圧力を一旦隔離した上で、減圧配管
上の電動弁を開動作させて、高圧タンクを減圧させ、冷
却材補給配管上の逆止弁を開させて冷却材をプールから
の水頭差によって高圧タンク内に注入する。次に減圧配
管の弁を閉じ、加圧配管10上の電動弁を開することに
よって高圧タンクを原子炉圧力と等圧力追加圧する。ま
た、冷却材補給配管の弁は逆止弁であるのでこの際自動
的に閉鎖する。
In a reactor equipped with such an emergency core cooling system, an event such as an OCA or feed water loss transient in which the reactor pressure is maintained at a high pressure and the reactor water level drops occurs. If the reactor pressure is applied as back pressure to the high-pressure tank storing cooling water by opening the electric valve of the pressurizing pipe, cooling water will be supplied into the reactor pressure vessel due to the water head difference between the high-pressure tank and the reactor. Ru. Furthermore, when the cooling water stored in the high-pressure tank is depleted, first close the electric valve on the pressure piping to isolate the pressure from the reactor, then open the electric valve on the pressure reduction piping to reduce the high pressure. The tank is depressurized, the check valve on the coolant supply pipe is opened, and the coolant is injected into the high-pressure tank using the water head difference from the pool. Next, the valve of the pressure reducing pipe is closed and the electric valve on the pressurizing pipe 10 is opened to apply additional pressure to the high pressure tank equal to the reactor pressure. Furthermore, since the valve of the coolant supply pipe is a check valve, it is automatically closed at this time.

高圧タンクが原子炉圧力により加圧されると。When the high pressure tank is pressurized by the reactor pressure.

冷却材注入配管を通って冷却材を高圧タンクの原子炉圧
力容器の水頭差で原子炉内へ注入することが出来る。尚
、このような一連の作用を自動化するため、高圧タンク
内に水位計を設置し、加圧配管の弁及び減圧配管の弁を
インターロックにより連動させることも可能である。
Coolant can be injected into the reactor through the coolant injection pipe using the water head difference between the high-pressure tank and the reactor pressure vessel. In addition, in order to automate such a series of operations, it is also possible to install a water level gauge in the high pressure tank and interlock the valves of the pressure piping and the valves of the pressure reduction piping.

更にこの様な高圧タンク等から構成される系統を2系統
以上設置することで、一方のタンクが冷却水を補給中に
も残りの高圧タンクから冷却材を原子炉圧力容器内へ注
入することが出来、継続的な冷却材供給が可能となる。
Furthermore, by installing two or more systems consisting of such high-pressure tanks, etc., even when one tank is replenishing cooling water, coolant can be injected into the reactor pressure vessel from the remaining high-pressure tank. This enables continuous supply of coolant.

この様にして高圧の冷却材を原子炉圧力容器内に継続的
に注入させることができるため原子炉圧力が高圧に維持
され、かつ、原子炉水位が低下する小LOCAの場合に
も、炉心露出を防止すると同時に充分な炉心冷却を確保
することが可能となる。
In this way, high-pressure coolant can be continuously injected into the reactor pressure vessel, so the reactor pressure can be maintained at a high level, and even in the case of a small LOCA where the reactor water level drops, the reactor core can be exposed. This makes it possible to prevent this and at the same time ensure sufficient core cooling.

また給水喪失トランジェント時のように原子炉圧力が高
圧に維持され、かつ、yK子炉水位が低下するトランジ
ェントの場合にも炉水の補給を高圧のまま行うことが可
能となる。
Furthermore, even in the case of a transient situation in which the reactor pressure is maintained at a high pressure and the yK sub-reactor water level decreases, such as during a feed water loss transient, it is possible to replenish reactor water at a high pressure.

次に本発明の他の実施例について第2図を参照して説明
する。なお第2図において、第1図と同一部分には同一
符号を付し、その部分の構成の説明は省略する。第2図
において、高圧タンク1oには常時加圧するための窒素
ガス封入装置2oが設けられている。即ち、この窒素ガ
ス封入装置2oは窒素ガスを貯えておく窒素ガスボンベ
21と、窒素ガスを加圧するためのコンプレッサー22
と、コンプレッサー22から高圧窒素を逆止弁23を介
して高圧タンク10に導く窒素供給配管24とから構成
されている。
Next, another embodiment of the present invention will be described with reference to FIG. In FIG. 2, the same parts as in FIG. 1 are given the same reference numerals, and the explanation of the structure of those parts will be omitted. In FIG. 2, a high pressure tank 1o is provided with a nitrogen gas filling device 2o for constant pressurization. That is, this nitrogen gas filling device 2o includes a nitrogen gas cylinder 21 for storing nitrogen gas, and a compressor 22 for pressurizing the nitrogen gas.
and a nitrogen supply pipe 24 that guides high-pressure nitrogen from the compressor 22 to the high-pressure tank 10 via a check valve 23.

以上の構成によって、本発明の他の実施例に係る非常用
炉心冷却装置は、窒素ガスボンベ21の窒素ガスをコン
プレッサー22により加圧して、このコンプレッサー2
2から窒素供給配管24を介して高圧タンク10の気相
部に常時高圧の窒素ガスを封入しておく構成になってい
る。よって高圧タンク10を常時高圧に維持しておくこ
とが可能である。従って、高圧タンク10の気相部を原
子炉圧力の背圧を加えることによる時間遅れ無しに高圧
の冷却材を原子炉圧力容器1内に注入することが出来る
With the above configuration, the emergency core cooling system according to another embodiment of the present invention pressurizes the nitrogen gas in the nitrogen gas cylinder 21 with the compressor 22.
The structure is such that high-pressure nitrogen gas is always sealed into the gas phase portion of the high-pressure tank 10 from 2 through the nitrogen supply pipe 24. Therefore, it is possible to maintain the high pressure tank 10 at high pressure at all times. Therefore, high-pressure coolant can be injected into the reactor pressure vessel 1 without the time delay caused by applying back pressure of the reactor pressure to the gas phase portion of the high-pressure tank 10.

以上の様に非常用炉心冷却装置を有する原子炉に於いて
小LOGA或いは給水喪失トランジェントの様に原子炉
圧力が高圧に維持され、かつ、原子炉水位が低下する事
象が発生した場合、窒素ガスで加圧された高圧タンクか
ら直ちに高圧冷却水の原子炉内への注入が出来るため、
第1の実施例に比べて一層の炉心冷却性能向上が計れる
As mentioned above, in a reactor equipped with an emergency core cooling system, if an event occurs in which the reactor pressure is maintained at a high pressure and the reactor water level drops, such as a small LOGA or a transient loss of feed water, nitrogen gas High-pressure cooling water can be immediately injected into the reactor from the pressurized high-pressure tank.
The core cooling performance can be further improved compared to the first embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば非常用炉心冷却装置を有する原子炉に於
いて、給水喪失トランジェント時や小LOCA時、この
ように原子炉水位が低下し、がっ、原子炉圧力が高圧に
維持されている場合であっても原子炉を減圧させること
なく冷却水を原子炉圧力容器内に継続して注入すること
が可能であるため、炉心露出を防止し、原子炉の充分な
冷却を確保することが出来る。
According to the present invention, in a nuclear reactor equipped with an emergency core cooling system, during a feed water loss transient or a small LOCA, the reactor water level decreases in this way, and the reactor pressure is maintained at a high pressure. Since it is possible to continuously inject cooling water into the reactor pressure vessel without depressurizing the reactor even in the case of a nuclear reactor, it is possible to prevent core exposure and ensure sufficient cooling of the reactor. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す非常用炉心冷却装置の
概略系統図、第2図は本発明の他の実施例を示す非常用
炉心冷却装置の概略系統図、第3図は非常用炉心冷却系
の従来例を示す概略縦断面図である。 1・・・原子炉圧力容器   2・・・炉心5・・・プ
ール       10・・・高圧タンク11・・・冷
却材注入配管   13・・・冷却材補給配管15・・
・減圧配管      17・・・加圧配管代理人 弁
理士  則 近 憲 倍 量  三俣弘文 第1図 第2図 第a図
Figure 1 is a schematic system diagram of an emergency core cooling system showing one embodiment of the present invention, Figure 2 is a schematic system diagram of an emergency core cooling system showing another embodiment of the invention, and Figure 3 is an emergency core cooling system diagram showing another embodiment of the present invention. FIG. 2 is a schematic longitudinal sectional view showing a conventional example of a core cooling system. 1...Reactor pressure vessel 2...Reactor core 5...Pool 10...High pressure tank 11...Coolant injection pipe 13...Coolant supply pipe 15...
・Reducing pressure piping 17... Pressurizing piping agent Patent attorney Norihiro Chika Hirofumi Mitsumata Figure 1 Figure 2 Figure a

Claims (1)

【特許請求の範囲】[Claims] (1)内部に炉心を収納する原子炉圧力容器と、この原
子炉圧力容器の上方に配置され内部に冷却材を保有する
プールと、前記プールに隣接して配置され冷却材注入配
管を介して前記原子炉圧力容器に接続される高圧タンク
と、この高圧タンクの気相部と前記原子炉圧力容器の気
相部とを接続しかつ高圧タンクから原子炉圧力容器に注
入する時のみ開動作する弁を有する加圧配管と、前記高
圧タンクの上部に一端を接続し他端を前記プールの液相
部に開放させかつ高圧タンク内の冷却水が一定値以下に
なった場合に開動作する弁を有する減圧配管と、前記タ
ンクの液相部と高圧タンクとを接続する冷却材補給配管
とから成ることを特徴とする非常用炉心冷却装置。
(1) A reactor pressure vessel that houses the reactor core inside, a pool that is placed above the reactor pressure vessel and holds coolant inside, and a coolant injection pipe that is placed adjacent to the pool. A high pressure tank connected to the reactor pressure vessel, a gas phase part of this high pressure tank and a gas phase part of the reactor pressure vessel are connected, and the opening operation is performed only when injecting from the high pressure tank to the reactor pressure vessel. A pressurized pipe having a valve, and a valve that connects one end to the upper part of the high pressure tank and opens the other end to the liquid phase part of the pool, and opens when the cooling water in the high pressure tank falls below a certain value. 1. An emergency core cooling system comprising: a decompression pipe having a pressure reduction pipe; and a coolant supply pipe connecting a liquid phase portion of the tank and a high pressure tank.
JP61080054A 1986-04-09 1986-04-09 Emergency core cooling device Granted JPS62237395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61080054A JPS62237395A (en) 1986-04-09 1986-04-09 Emergency core cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61080054A JPS62237395A (en) 1986-04-09 1986-04-09 Emergency core cooling device

Publications (2)

Publication Number Publication Date
JPS62237395A true JPS62237395A (en) 1987-10-17
JPH058997B2 JPH058997B2 (en) 1993-02-03

Family

ID=13707521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61080054A Granted JPS62237395A (en) 1986-04-09 1986-04-09 Emergency core cooling device

Country Status (1)

Country Link
JP (1) JPS62237395A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136097A (en) * 1987-11-24 1989-05-29 Hitachi Ltd Injector for fluid into pressure container
JPH0283495A (en) * 1988-09-21 1990-03-23 Hitachi Ltd Core cooling apparatus for emergency
JPH0283494A (en) * 1988-09-21 1990-03-23 Hitachi Ltd Apparatus and method for injecting liquid into high temperature and high pressure container
JP2012242375A (en) * 2011-05-23 2012-12-10 Motohiro Okada Nuclear power plant system
JP2015087387A (en) * 2013-09-27 2015-05-07 長浦 善昭 Method for freezing tundra wall by using liquefaction lng of -162°c capable of supplying large amount of cold heat inexpensively as coolant for freezing tundra wall mainly built at fukushima daiichi nuclear plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136097A (en) * 1987-11-24 1989-05-29 Hitachi Ltd Injector for fluid into pressure container
JPH0283495A (en) * 1988-09-21 1990-03-23 Hitachi Ltd Core cooling apparatus for emergency
JPH0283494A (en) * 1988-09-21 1990-03-23 Hitachi Ltd Apparatus and method for injecting liquid into high temperature and high pressure container
JP2012242375A (en) * 2011-05-23 2012-12-10 Motohiro Okada Nuclear power plant system
JP2015087387A (en) * 2013-09-27 2015-05-07 長浦 善昭 Method for freezing tundra wall by using liquefaction lng of -162°c capable of supplying large amount of cold heat inexpensively as coolant for freezing tundra wall mainly built at fukushima daiichi nuclear plant

Also Published As

Publication number Publication date
JPH058997B2 (en) 1993-02-03

Similar Documents

Publication Publication Date Title
US6795518B1 (en) Integral PWR with diverse emergency cooling and method of operating same
JP5016066B2 (en) Nuclear power plants using nanoparticles in emergency systems and related methods
US20020101951A1 (en) Boiling water reactor nuclear power plant
JPH0666985A (en) Method for reducing leakage from heat-transfer pipe of pressurized water reactor and steam generator
US5349616A (en) Reactor cooling system for boiling water reactors
US5085825A (en) Standby safety injection system for nuclear reactor plants
US5120490A (en) Liquid filling method for a high-temperature and high-pressure vessel and apparatus therefor
JPS62237395A (en) Emergency core cooling device
JPS633294A (en) Nuclear reactor and passive safety system thereof
KR20060020756A (en) Integral pwr with diverse emergency cooling and method of operating same
JP2548838B2 (en) Core collapse heat removal system for pressurized water reactor
JPS6375691A (en) Natural circulation type reactor
JPH05264774A (en) Emergency reactor cooling equipment
JPS63261196A (en) Emergency core cooling device
JPH1090468A (en) Emergency core cooling system
JPH06258491A (en) Water supply equipment for condensate storage tank
JPS63173997A (en) Emergency core cooling facility for pressurized water type reactor
JPH053559B2 (en)
KR0127036B1 (en) Passive type pressurized light water reactor
US5217680A (en) Liquid filling method for a high-temperature and high-pressure vessel and apparatus therefor
JPH06214081A (en) Vent device for nuclear reactor containment vessel
JPH03216592A (en) Cooling water supplying device of boiling water nuclear reactor
JPH03100496A (en) Nuclear reactor having emergency cooling water replenishing equipment
JPH04258794A (en) Pressure accumulator injection tank for nuclear reactor emergency cooling water feeder
JPH05215886A (en) Emergency reactor core cooling system