JPH0283495A - Core cooling apparatus for emergency - Google Patents
Core cooling apparatus for emergencyInfo
- Publication number
- JPH0283495A JPH0283495A JP63235029A JP23502988A JPH0283495A JP H0283495 A JPH0283495 A JP H0283495A JP 63235029 A JP63235029 A JP 63235029A JP 23502988 A JP23502988 A JP 23502988A JP H0283495 A JPH0283495 A JP H0283495A
- Authority
- JP
- Japan
- Prior art keywords
- water storage
- pressure
- pool
- storage pool
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 227
- 239000000498 cooling water Substances 0.000 claims description 51
- 230000001629 suppression Effects 0.000 claims description 46
- 230000007423 decrease Effects 0.000 claims description 21
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 239000002826 coolant Substances 0.000 abstract description 10
- 238000009434 installation Methods 0.000 abstract description 10
- 230000006378 damage Effects 0.000 abstract 1
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 230000005484 gravity Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 230000002706 hydrostatic effect Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は原子炉の非常用炉心冷却装置に係り、特に、設
置率が高く、かつ、有効水頭が高い非常用炉心冷却装置
に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an emergency core cooling system for a nuclear reactor, and particularly to an emergency core cooling system that has a high installation rate and a high effective water head.
従来の技術は、特開昭−259995号記載のように、
蓄水プールを高耐圧容器とし、圧力容器と蓄水プールと
を均圧管で連結し、蒸気加圧と重力により蓄水を注入す
る構造となっていた。また、ニー・エヌ・ニス・トラン
ザクション、47 (1984)第292頁から第29
3頁に記載されているように。The conventional technology is as described in Japanese Patent Application Laid-Open No. 259995,
The water storage pool was a high-pressure vessel, the pressure vessel and the water storage pool were connected through pressure equalizing pipes, and the water was injected using steam pressurization and gravity. Also, N.N. Niss Transactions, 47 (1984), pp. 292-29.
As stated on page 3.
原子炉で発生した蒸気を凝縮する圧力抑制プールを原子
炉より十分高い位置に設置し、圧力抑制プールの水を重
力落下により注入する構造となっていた。The structure was such that a pressure suppression pool that condenses the steam generated by the reactor was installed at a sufficiently high level above the reactor, and water from the pressure suppression pool was injected by gravity.
上記従来技術は、設置率の向上や有効水頭を効果的に確
保する点については考慮がされておらず、高耐圧容器を
必要とするために設置率が低下するか、または有効水頭
を確保するために圧力抑制プールを原子炉より十分高い
位置にIIするため耐震性が低下する問題点があった。The above conventional technology does not consider improving the installation rate or effectively securing the effective head, and requires a high pressure vessel, which reduces the installation rate or makes it difficult to secure the effective head. Therefore, the pressure suppression pool was placed at a position sufficiently higher than the reactor, which caused the problem of reduced earthquake resistance.
本発明の目的は、格納容器壁夕有効利用することにより
設置率を向上させ、かつ、有効水頭が高いために低レベ
ル位置に設置可能な非常用炉心冷却装置を提供すること
にある。SUMMARY OF THE INVENTION An object of the present invention is to provide an emergency core cooling system that improves the installation rate by effectively utilizing the walls of the containment vessel, and that can be installed at a low level position due to its high effective head.
[II!gを解決するための手段〕
上記目的は、圧力抑制プールとは別置きの蓄水プールを
設置し、原子炉と蓄水プールの上部空間及び蓄水部との
間にそれぞれ流路及び弁を設置し、かつ、蓄水プールの
上部空間と圧力抑制プールの蓄水部とを均圧管で連通ず
ることにより達成される。[II! Measures to solve g] The above purpose is to install a water storage pool separate from the pressure suppression pool, and to install flow channels and valves between the reactor and the upper space of the water storage pool and the water storage section. This is achieved by installing the water storage pool and communicating the upper space of the water storage pool and the water storage part of the pressure suppression pool with a pressure equalization pipe.
以下、本発明の作用について説明する。配管等の破断に
よる原子炉の冷却材喪失事故時には、自動減圧系が作動
して原子炉で発生した蒸気が圧力抑制プールへ導かれる
。本発明では、蓄水プールの水を原子炉へ注入するとき
には1M子炉と蓄水プールの上部空間及び蓄水部との間
にそれぞれ設置した弁を開放する。これにより、原子炉
で発生した蒸気の一部は蓄水プールの上部空間へ流入し
、さらに均圧管を通って圧力抑制プールの蓄水部へ流入
して凝縮される。したがって、蓄水プールの上部空間の
圧力は、圧力抑制プールの上部空間の圧力より、圧力抑
制プールの蓄水部における均圧管の長さに相当する静水
頭、均圧管の出入り口における局所的な圧力損失、及び
均圧管における摩擦損失、の和だけ高くなる。この値は
通常の設計においては1気圧以下であり、格納容器壁の
一部を蓄水プール壁として利用することができるため。Hereinafter, the effects of the present invention will be explained. In the event of a loss of coolant in a nuclear reactor due to a rupture in a pipe, etc., an automatic depressurization system is activated and the steam generated in the reactor is directed to the pressure suppression pool. In the present invention, when water from the water storage pool is injected into the reactor, valves installed between the 1M slave reactor, the upper space of the water storage pool, and the water storage section are opened. As a result, a portion of the steam generated in the reactor flows into the upper space of the water storage pool, and further flows into the water storage portion of the pressure suppression pool through the pressure equalization pipe and is condensed. Therefore, the pressure in the upper space of the water storage pool is smaller than the pressure in the upper space of the pressure suppression pool by the hydrostatic head corresponding to the length of the pressure equalization pipe in the water storage part of the pressure suppression pool, and the local pressure at the entrance and exit of the pressure equalization pipe. The sum of the loss and the friction loss in the pressure equalizing pipe increases. This value is 1 atm or less in normal designs, and a part of the containment vessel wall can be used as a water storage pool wall.
設置率を向上させることができる。また1本発明におけ
る蓄水プールの上部空間の圧力は、蒸気を凝縮させるた
めに蓄水部の内部へ蒸気を導〈従来の装置と比較して、
蓄水プールの蓄水部における配管の長さに相当する静水
頭と配管の出口における吹き出し損失との和だけ高くな
る。これにより。The installation rate can be improved. In addition, the pressure in the upper space of the water storage pool in the present invention is such that the steam is guided into the water storage part in order to condense the steam.
The amount increases by the sum of the static water head corresponding to the length of the piping in the water storage portion of the water storage pool and the blowout loss at the outlet of the piping. Due to this.
冷却水を注入するたるの有効水頭が高くなり、蓄水プー
ルを低レベル位置に設置可能となる。The effective water head of the barrel into which cooling water is injected becomes higher, allowing the water storage pool to be installed at a lower level position.
以下、本発明の一実施例を第1図から第5図を用いて説
明する。圧力容器1内に装荷された炉心2はシュラウド
3で囲まれている。通常運転時には、炉心2で発生した
蒸気はドライヤ4で湿分を取り除かれた後、主蒸気管5
を介してタービン系統(図示せず)へ送られる。タービ
ン系統で凝縮した蒸気は、給水管6を介して圧力容器1
内へ戻る。炉心2にはシュラウド3内外の圧力差に起因
する自然循環によって冷却水が流入し、炉心2が冷却さ
れる。このような原子炉において、配管、例えば給水配
管6、の破断による冷却材喪失事故を想定すると、圧力
容器1内の冷却水が流出し水位が低下していく、水位が
ある位置、例えばシュラウド3の上端から下へ3m、よ
り低下すると自動減圧系の起動信号が出され、一定の時
間遅れ。An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. A reactor core 2 loaded in a pressure vessel 1 is surrounded by a shroud 3. During normal operation, the steam generated in the reactor core 2 is removed from moisture by the dryer 4, and then the main steam pipe 5
to a turbine system (not shown). The steam condensed in the turbine system is transferred to the pressure vessel 1 via the water supply pipe 6.
Go back inside. Cooling water flows into the reactor core 2 through natural circulation caused by the pressure difference between the inside and outside of the shroud 3, and the reactor core 2 is cooled. In such a nuclear reactor, assuming a loss of coolant accident due to a rupture of a pipe, for example, the water supply pipe 6, the cooling water in the pressure vessel 1 will flow out and the water level will drop. When the pressure drops below 3m from the top of the tank, a signal to start the automatic depressurization system is issued, and there is a certain time delay.
例えば120秒、の後に自動減圧系の弁1o及び弁11
が開放される。これにより、炉心2で発生した蒸気の一
部は弁10から配管20を通って圧力抑制プール21の
蓄水部へ流入して凝縮され、圧力容器1内の圧力は急速
に低下していく。また。For example, after 120 seconds, valve 1o and valve 11 of the automatic pressure reduction system
will be released. As a result, a part of the steam generated in the reactor core 2 flows from the valve 10 through the pipe 20 into the water storage section of the pressure suppression pool 21 and is condensed, and the pressure within the pressure vessel 1 rapidly decreases. Also.
炉心2で発生した蒸気の一部は弁11から配管30を通
って蓄水プール31の上部空間へ流入する。蓄水プール
31の上部空間へ流入した蒸気はさらに均圧管32を通
って圧力抑制プール21の蓄水部へ流入して凝縮される
。圧力容器1内の圧力が蓄圧容器40内の圧力より低下
すると、蓄圧容器40内の冷却水が配管41及び圧力容
器1からの逆流を防止する逆止弁42を通って圧力容器
1内へ流入し、水位を炉心2より上に保持する。A portion of the steam generated in the reactor core 2 flows from the valve 11 through the pipe 30 into the upper space of the water storage pool 31 . The steam that has flowed into the upper space of the water storage pool 31 further flows into the water storage section of the pressure suppression pool 21 through the pressure equalization pipe 32 and is condensed. When the pressure inside the pressure vessel 1 drops below the pressure inside the pressure vessel 40, the cooling water inside the pressure vessel 40 flows into the pressure vessel 1 through the piping 41 and the check valve 42 that prevents backflow from the pressure vessel 1. and maintain the water level above core 2.
さらに圧力容器1内の圧力が低下すると、蓄水プール3
1内の冷却水が重力により配管33及び圧力容器1から
の逆流を防止する逆止弁34を通って圧力容器1内へ流
入し、水位を炉心2より上に保持する。このときの流動
状態を第2図に示す。When the pressure inside the pressure vessel 1 further decreases, the water storage pool 3
The cooling water in the pressure vessel 1 flows by gravity into the pressure vessel 1 through the piping 33 and the check valve 34 that prevents backflow from the pressure vessel 1, and maintains the water level above the reactor core 2. The flow state at this time is shown in FIG.
本実施例における蓄水プール31の上部空間の圧力は、
圧力抑制プール21の上部空間の圧力より、圧力抑制プ
ール21の蓄水部における均圧管32の長さに相当する
静水頭、均圧管32の出入り口における局所的な圧力損
失、及び均圧管32における摩擦損失、の和だけ高くな
る。本実施例ではこの値は1気圧以下であり、格納容器
7の壁の一部を蓄水プール31の壁として利用できる。The pressure in the upper space of the water storage pool 31 in this embodiment is as follows:
From the pressure in the upper space of the pressure suppression pool 21, the static water head corresponding to the length of the pressure equalization pipe 32 in the water storage section of the pressure suppression pool 21, the local pressure loss at the entrance and exit of the pressure equalization pipe 32, and the friction in the pressure equalization pipe 32. The sum of losses increases. In this embodiment, this value is 1 atmosphere or less, and a part of the wall of the containment vessel 7 can be used as the wall of the water storage pool 31.
第3図に第1図のA−A断面図を示す。蓄水プール31
は格納容器7の壁を利用してコンパクトに配置されてお
り設置率が向上している。なお、格納容器7の内部に放
出された蒸気を導くベント管50の上部には、人間また
は機材の落下を防止するための網が設置されている。。FIG. 3 shows a sectional view taken along the line AA in FIG. 1. Water storage pool 31
are arranged compactly using the walls of the containment vessel 7, improving the installation rate. Note that a net is installed above the vent pipe 50 that guides the steam released into the containment vessel 7 to prevent people or equipment from falling. .
代表的な冷却材喪失事故、例えば給水配管6の小破断、
における圧力容器1内の圧力及び圧力容器1への注水流
量の時間変化を第4図に示す。本実施例における蓄水プ
ール31の上部空間の圧力は、蒸気を凝縮させるために
蓄水部の内部へ蒸気を導〈従来の装置と比較して、蓄水
プール31の蓄水部における配管の長さに相当する静水
頭と配管の出口における吹き出し損失との和だけ高くな
る。これにより、本実施例では冷却水を注水するための
有効水頭が高くなり、蓄水プール31を低レベル位置に
設置しても十分な注水流量を得ることができる。なお、
本実施例では配管33の径は0.1m としている。Typical coolant loss accidents, such as small breaks in water supply piping 6,
FIG. 4 shows temporal changes in the pressure inside the pressure vessel 1 and the flow rate of water injected into the pressure vessel 1. The pressure in the upper space of the water storage pool 31 in this embodiment is such that the steam is guided into the water storage part in order to condense the steam. It increases by the sum of the hydrostatic head corresponding to the length and the blowout loss at the outlet of the pipe. As a result, in this embodiment, the effective water head for injecting cooling water becomes high, and even if the water storage pool 31 is installed at a low level position, a sufficient water injection flow rate can be obtained. In addition,
In this embodiment, the diameter of the pipe 33 is 0.1 m.
また、本実施例では蓄水プール31が低レベル位置にあ
るため耐震性が良い。なお、均圧管32の上部は、蒸気
の流入をスムーズにし、かつ、水面の変動による冷却水
の巻き込みを防止するため、第5図に示すように末広が
りの構造とすることが望ましい。Furthermore, in this embodiment, the water storage pool 31 is located at a low level, so earthquake resistance is good. It is preferable that the upper part of the pressure equalizing pipe 32 has a structure that widens towards the end, as shown in FIG. 5, in order to smooth the inflow of steam and prevent the entrainment of cooling water due to fluctuations in the water level.
本実施例によれば、格納容器壁を有効利用することがで
きるため設置率が向上し、かつ、有効水頭が高いために
低レベル位置に設置可能で耐震性が向上する効果がある
。According to this embodiment, the containment vessel wall can be used effectively, so the installation rate is improved, and since the effective water head is high, it can be installed at a low level position, which has the effect of improving earthquake resistance.
本発明の他の実施例を第6図により説明する。Another embodiment of the present invention will be described with reference to FIG.
第1図で示した実施例との相違点は、蓄水プール31を
圧力抑制プール21と離してその上部に設置している点
である。また、蓄水プール31は従来あまり利用されて
いなかった格納容器7の肩の部分に、格納容器7の壁を
利用してコンパクトに設置されている。さらに、蓄水プ
ール31の内部には格納容器7の壁を保護する熱遮蔽板
60が設けられている。なお、蓄水プール31の下部に
は補強材61が設けられており、耐震性を向上させてい
る。このような原子炉において、配管、例えば給水配管
6、の破断による冷却材喪失事故を想定すると、圧力容
器1内の冷却水が流出し水位が低下していく。水位があ
る位置1例えばシュラウド3上端から下へ3m、より低
下すると自動減圧系の起動信号が出され、一定の時間遅
れ、例えば120秒、の後に自動減圧系の弁10及び弁
11が開放される。これにより、炉心2で発生した蒸気
の一部は弁10から配管20を通って圧力抑制プール2
1の蓄水部へ流入して凝縮され、圧力容器1内の圧力は
急速に低下していく。また、炉心2で発生した蒸気の一
部は弁11から配管30を通って蓄水プール31の上部
空間へ流入する。このとき、熱遮蔽板60が設けられて
いるため流入した蒸気が直接格納容器7の壁にぶつかる
ことはない。蓄水プール31の上部空間へ流入した蒸気
はさらに均圧管32を通って圧力抑制プール21の蓄水
部へ流入して凝縮される。圧力容器1内の圧力が蓄圧容
器40内の圧力より低下すると、蓄圧容器40内の冷却
水が配管41及び圧力容器1からの逆流を防止する逆止
弁42を通って圧力容器1内へ流入し、水位を炉心2よ
り上に保持する。The difference from the embodiment shown in FIG. 1 is that the water storage pool 31 is placed above the pressure suppression pool 21 and separated from it. Furthermore, the water storage pool 31 is compactly installed at the shoulder portion of the containment vessel 7, which has not been used much in the past, by utilizing the walls of the containment vessel 7. Furthermore, a heat shield plate 60 is provided inside the water storage pool 31 to protect the wall of the containment vessel 7 . Note that a reinforcing material 61 is provided at the bottom of the water storage pool 31 to improve earthquake resistance. In such a nuclear reactor, if a coolant loss accident is assumed due to a break in a pipe, for example, the water supply pipe 6, the cooling water in the pressure vessel 1 will flow out and the water level will drop. When the water level drops below a certain point 1, e.g. 3 m below the upper end of the shroud 3, an activation signal for the automatic depressurization system is issued, and after a certain time delay, e.g. 120 seconds, valves 10 and 11 of the automatic depressurization system are opened. Ru. As a result, a part of the steam generated in the reactor core 2 passes from the valve 10 through the piping 20 to the pressure suppression pool 2.
The water flows into the water storage section 1 and is condensed, and the pressure inside the pressure vessel 1 rapidly decreases. Further, a part of the steam generated in the reactor core 2 flows from the valve 11 through the pipe 30 into the upper space of the water storage pool 31 . At this time, since the heat shield plate 60 is provided, the inflowing steam does not directly hit the wall of the containment vessel 7. The steam that has flowed into the upper space of the water storage pool 31 further flows into the water storage section of the pressure suppression pool 21 through the pressure equalization pipe 32 and is condensed. When the pressure inside the pressure vessel 1 drops below the pressure inside the pressure vessel 40, the cooling water inside the pressure vessel 40 flows into the pressure vessel 1 through the piping 41 and the check valve 42 that prevents backflow from the pressure vessel 1. and maintain the water level above core 2.
さらに圧力容器1内の圧力が低下すると5蓄水プール3
1内の冷却水が重力により配管33及び圧力容器1から
の逆流を防止する逆止弁34を通って圧力容器1内へ流
入し、水位を炉心2より上に保持する。本実施例では蓄
水プール31と炉心2との高度差が大きいため有効水頭
が高く、配管33を細く、たとえば0.05m、として
も十分な注水流量を得ることができる。When the pressure inside pressure vessel 1 further decreases, water storage pool 3
The cooling water in the pressure vessel 1 flows by gravity into the pressure vessel 1 through the piping 33 and the check valve 34 that prevents backflow from the pressure vessel 1, and maintains the water level above the reactor core 2. In this embodiment, since the height difference between the water storage pool 31 and the reactor core 2 is large, the effective water head is high, and even if the pipe 33 is thin, for example, 0.05 m, a sufficient water injection flow rate can be obtained.
本実施例によれば、格納容器壁の信頼性が高くなり、か
つ、有効水頭が高いために配管径を細くできる効果があ
る。According to this embodiment, the reliability of the containment vessel wall is increased, and the effective water head is high, so that the pipe diameter can be reduced.
本発明のさらに他の実施例を第7図と第8図により説明
する。第6図で示した実施例との相違点は圧力容器1と
蓄水プール31との間の配管30に弁70を、蓄水プー
ル31と圧力抑制プール21との間の配管32に圧力抑
制プール21からの逆流を防止する逆止弁71を設置し
ている点である。弁7oの制御方法を第8図により説明
する。Still another embodiment of the present invention will be described with reference to FIGS. 7 and 8. The difference from the embodiment shown in FIG. 6 is that a valve 70 is provided in the pipe 30 between the pressure vessel 1 and the water storage pool 31, and a pressure suppressor is provided in the pipe 32 between the water storage pool 31 and the pressure suppression pool 21. A check valve 71 is installed to prevent backflow from the pool 21. A method of controlling the valve 7o will be explained with reference to FIG.
蓄圧容器40の水位は、差圧計72の信号と圧力計73
の信号とから、演算器100により冷却水の密度補正を
行って求められ、その信号は主制御器103へ送られる
。さらに、圧力容器1の水位は、差圧計74の信号と圧
力計75の信号とから、演算器101により冷却水の密
度補正を行って求められ、その信号は主制御器103へ
送られる。The water level in the pressure storage container 40 is determined by the signal from the differential pressure gauge 72 and the pressure gauge 73.
The calculation unit 100 corrects the cooling water density based on the signal, and the signal is sent to the main controller 103. Further, the water level in the pressure vessel 1 is determined from the signal from the differential pressure gauge 74 and the signal from the pressure gauge 75 by correcting the density of the cooling water by the computing unit 101, and the signal is sent to the main controller 103.
主制御器103は、蓄圧容器40の水位がある設定値、
たとえば0.1m 、より低下し、かつ、圧力容器1の
水位がある設定値、たとえばシュラウド3の上端から下
へ5mの位置、より低下したときに弁70を開放する信
号を操作器102へ送る。The main controller 103 has a set value for the water level of the pressure accumulating container 40,
For example, 0.1 m, and when the water level in the pressure vessel 1 falls below a certain set value, for example, 5 m below the upper end of the shroud 3, a signal is sent to the operating device 102 to open the valve 70. .
このような原子炉において、配管、例えば給水配管6、
の破断による冷却材喪失事故を想定すると。In such a nuclear reactor, piping, such as water supply piping 6,
Assuming a coolant loss accident due to rupture.
圧力容器1内の冷却水が流出し水位が低下していく。水
位がある位置、例えばシュラウド3上端から下へ3m、
より低下すると自動減圧系の起動信号が出され、一定の
時間遅れ、例えば120秒、の後に自動減圧系の弁10
が開放される。これにより、炉心2で発生した蒸気の一
部は弁10から配管20を通って圧力抑制プール21の
蓄水部へ流入して凝縮され、圧力容器1内の圧力は急速
に低下していく。圧力容器1内の圧力が蓄圧容器40内
の圧力より低下すると、蓄圧容器40内の冷却水が配管
41及び圧力容器1からの逆流を防止する逆止弁42を
通って圧力容器1内へ流入し、水位を炉心2より上に保
持する。蓄圧容器40の冷却水がすべて圧力容111i
l内へ流入してしまうと。The cooling water in the pressure vessel 1 flows out and the water level decreases. Where the water level is, for example 3m below the top of shroud 3,
When the pressure drops further, an activation signal for the automatic pressure reduction system is issued, and after a certain time delay, for example 120 seconds, the automatic pressure reduction system valve 10 is activated.
will be released. As a result, a part of the steam generated in the reactor core 2 flows from the valve 10 through the pipe 20 into the water storage section of the pressure suppression pool 21 and is condensed, and the pressure within the pressure vessel 1 rapidly decreases. When the pressure inside the pressure vessel 1 drops below the pressure inside the pressure vessel 40, the cooling water inside the pressure vessel 40 flows into the pressure vessel 1 through the piping 41 and the check valve 42 that prevents backflow from the pressure vessel 1. and maintain the water level above core 2. All the cooling water in the pressure storage vessel 40 is in the pressure capacity 111i.
If it flows into l.
圧力容器1内の冷却水は炉心2における発熱により蒸気
し、水位が徐々に低下していく。圧力容器1内の水位が
シュラウド3の上端より下へ5mの位置より低下すると
、主制御器103から弁70を開放する信号が操作器1
02へ送られる。弁70が開放されると、炉心2で発生
した蒸気の一部は弁70から配管30を通って蓄水プー
ル31の上部空間へ流入する。蓄水プール31の上部空
間へ流入した蒸気はさらに均圧管32を通って圧力抑制
プール21の蓄水部へ流入して凝縮される。The cooling water in the pressure vessel 1 becomes steam due to heat generation in the reactor core 2, and the water level gradually decreases. When the water level in the pressure vessel 1 drops below a position 5 m below the upper end of the shroud 3, a signal to open the valve 70 is sent from the main controller 103 to the operator 1.
Sent to 02. When the valve 70 is opened, a portion of the steam generated in the reactor core 2 flows from the valve 70 through the pipe 30 into the upper space of the water storage pool 31. The steam that has flowed into the upper space of the water storage pool 31 further flows into the water storage section of the pressure suppression pool 21 through the pressure equalization pipe 32 and is condensed.
これにより、蓄水プール31の上部空間の圧力は圧力容
器1内の圧力とほぼ同じとなり、蓄水プール31内の冷
却水が重力により配管33及び圧力容器1からの逆流を
防止する逆止弁34を通って圧力容器1内へ流入し、圧
力容器1内の水位を炉心2より上に保持する。本実施例
では圧力容器1の圧力が低下してから弁70を開放する
ため、蒸気が高速度で流入する場合に発生する動荷重が
生じない。また、蓄圧容器40内の冷却水がなくなり、
かつ、圧力容器1内の水位が低下した後に蓄水ブール3
1から冷却水を注入するため、冷却水の注入時期が最適
化され、注水時間が長くなる。As a result, the pressure in the upper space of the water storage pool 31 becomes almost the same as the pressure inside the pressure vessel 1, and the check valve prevents the cooling water in the water storage pool 31 from flowing back from the piping 33 and the pressure vessel 1 due to gravity. 34 into the pressure vessel 1, and maintains the water level in the pressure vessel 1 above the core 2. In this embodiment, since the valve 70 is opened after the pressure in the pressure vessel 1 has decreased, dynamic loads that occur when steam flows in at a high speed are not generated. In addition, the cooling water in the pressure accumulating container 40 runs out,
And, after the water level in the pressure vessel 1 has decreased, the water storage boule 3
Since cooling water is injected from 1, the timing of cooling water injection is optimized and the water injection time becomes longer.
本実施例によれば、蓄水プールで動荷重が発生せず、か
つ、注水時間が長くなる効果がある。According to this embodiment, there is an effect that no dynamic load is generated in the water storage pool, and the water injection time is increased.
本発明のさらに他の実施例を第9図と第10図により説
明する。第10図は第9図のB−B断面図である。第1
図で示した実施例との相違点は、圧力抑制プール21と
蓄水プール31が同一レベルにあり、共に炉心2より上
部に設置さている点である。このような原子炉において
、配管、例えば給水配管6、の破断による冷却材喪失事
故を想定すると、圧力容器1内の冷却水が流出し水位が
低下していく。水位がある位置、例えばシュラウド3上
端から下へ3m、より低下するた自動減圧系の起動信号
が出され、一定の時間遅れ5例えば120秒、の後に自
動減圧系の弁10及び弁11が開放される。これにより
、炉心2で発生した蒸気の一部は弁10から配管2oを
通って圧力抑制プール21の蓄水部へ流入して凝縮され
、圧力容器1内の圧力は急速に低下していく。また、炉
心2で発生した蒸気の一部は弁11から配管30を通っ
て蓄水プール31の上部空間へ流入する。蓄水プール3
1の上部空間へ流入した蒸気はさらに均圧管32を通っ
て圧力抑制プール21の蓄水部へ流入して凝縮される。Still another embodiment of the present invention will be described with reference to FIGS. 9 and 10. FIG. 10 is a sectional view taken along line BB in FIG. 9. 1st
The difference from the embodiment shown in the figure is that the pressure suppression pool 21 and the water storage pool 31 are on the same level and are both installed above the reactor core 2. In such a nuclear reactor, if a coolant loss accident is assumed due to a break in a pipe, for example, the water supply pipe 6, the cooling water in the pressure vessel 1 will flow out and the water level will drop. When the water level drops further, for example, 3 m below the top of the shroud 3, an activation signal for the automatic pressure reduction system is issued, and after a certain time delay 5, for example, 120 seconds, valves 10 and 11 of the automatic pressure reduction system are opened. be done. As a result, a part of the steam generated in the core 2 flows from the valve 10 through the pipe 2o into the water storage section of the pressure suppression pool 21 and is condensed, and the pressure in the pressure vessel 1 rapidly decreases. Further, a part of the steam generated in the reactor core 2 flows from the valve 11 through the pipe 30 into the upper space of the water storage pool 31 . Water storage pool 3
The steam that has flowed into the upper space of 1 further flows into the water storage section of the pressure suppression pool 21 through the pressure equalization pipe 32 and is condensed.
圧力容器1内の圧力が低下すると、蓄水プール31内の
冷却水が重力により配管33及び圧力容器1からの逆流
を防止する逆止弁34を通って圧力容器1内へ流入し、
水位を炉心2より上に保持する。本実施例における蓄水
プール31の上部空間の圧力は、蒸気を凝縮させるため
に蓄水部の内部へ蒸気を導〈従来の装置と比較して、蓄
水プール31の蓄水部における配管の長さに相当する静
水頭の配管の出口における吹き出し損失との和だけ高く
なる。これにより、冷却水を注入するための有効水頭が
高くなり、従来例と比較して2倍以上の注水流量が得ら
れる。When the pressure inside the pressure vessel 1 decreases, the cooling water in the water storage pool 31 flows into the pressure vessel 1 due to gravity through the piping 33 and the check valve 34 that prevents backflow from the pressure vessel 1.
Maintain the water level above core 2. The pressure in the upper space of the water storage pool 31 in this embodiment is such that the steam is guided into the water storage part in order to condense the steam. It increases by the sum of the hydrostatic head corresponding to the length and the blowout loss at the outlet of the piping. As a result, the effective water head for injecting cooling water becomes higher, and a water injection flow rate that is more than twice that of the conventional example can be obtained.
したがって、従来例と同じ注水流量で良い場合には、配
管33の径を小さくするか、または蓄水プール31及び
圧力抑制プール21を低レベル位置に設置することがで
きる。このように、本発明は蓄水プール31と圧力抑制
プール21が同一レベルにある場合でも有効である。Therefore, if the same water injection flow rate as in the conventional example is sufficient, the diameter of the pipe 33 can be reduced or the water storage pool 31 and the pressure suppression pool 21 can be installed at a lower level position. In this way, the present invention is effective even when the water storage pool 31 and the pressure suppression pool 21 are on the same level.
本実施例によれば、有効水頭が高いために注水流量が増
大する効果がある。According to this embodiment, since the effective water head is high, there is an effect that the water injection flow rate is increased.
本発明のさらに他の実施例を第11図と第12図により
説明する。第7図で示した実施例との相違点は、蓄水プ
ール31の上部空間と圧力抑制プール21の上部空間と
の間に配管80及び弁81を設置した点である。弁81
の制御方法を第12図により説明する。蓄圧容器40の
水位は、差圧計72の信号と圧力計73の信号とから、
演算器100により冷却水の密度補正を行って求められ
、その信号は主制御器103へ送られる。圧力容器1の
水位は、差圧計74の信号と圧力計75の信号とから、
演算器101により冷却水の密度補正を行って求められ
、その信号は主制御器103へ送られる。さらに、蓄水
プール31の水位は、差圧計82の信号と圧力計83の
信号とから、演算器104により冷却水の密度補正を行
って求められ、その信号は主制御器103へ送られる。Still another embodiment of the present invention will be described with reference to FIGS. 11 and 12. The difference from the embodiment shown in FIG. 7 is that a pipe 80 and a valve 81 are installed between the upper space of the water storage pool 31 and the upper space of the pressure suppression pool 21. valve 81
The control method will be explained with reference to FIG. The water level in the pressure storage container 40 is determined from the signal from the differential pressure gauge 72 and the signal from the pressure gauge 73.
The calculation unit 100 corrects the density of the cooling water, and the signal is sent to the main controller 103. The water level in the pressure vessel 1 is determined from the signal from the differential pressure gauge 74 and the signal from the pressure gauge 75.
The calculation unit 101 corrects the density of the cooling water, and the signal is sent to the main controller 103. Furthermore, the water level of the water storage pool 31 is determined from the signal from the differential pressure gauge 82 and the signal from the pressure gauge 83 by correcting the density of the cooling water by the computing unit 104, and the signal is sent to the main controller 103.
主制御器103は、蓄圧容器40の水位がある設定値、
たとえば0.1m 、より低下し、かつ、圧力容器1の
水位がある設定値、たとえばシュラウド3の上端から下
へ5mの位置、より低下したときに弁70を開放する信
号を操作器102へ送る。さらに、蓄水プール31の水
位がある値、たとえば0.1m 、より低下した場合に
は、主制御器103は弁70を閉める信号を操作器10
2へ送り、弁81を開ける信号を操作器105へ送る。The main controller 103 has a set value for the water level of the pressure accumulating container 40,
For example, 0.1 m, and when the water level in the pressure vessel 1 falls below a certain set value, for example, 5 m below the upper end of the shroud 3, a signal is sent to the operating device 102 to open the valve 70. . Furthermore, if the water level in the water storage pool 31 drops by a certain value, for example 0.1 m, the main controller 103 sends a signal to the operator 10 to close the valve 70.
2 and sends a signal to open the valve 81 to the operating device 105.
このような原子炉において、配管、例えば給水配管6、
の破断による冷却材喪失事故を想定すると、圧力容器1
内の冷却水が流出し水位が低下していく。In such a nuclear reactor, piping, such as water supply piping 6,
Assuming a loss of coolant accident due to rupture of pressure vessel 1,
The cooling water inside will flow out and the water level will drop.
水位がある位置1例えばシュラウド3上端から下へ3m
、より低下すると自動減圧系の起動信号が出され、一定
時間遅れ、例えば120秒、の後に自動減圧系の弁10
が開放される。これにより、炉心2で発生した蒸気の一
部は弁10から配管20を通って圧力抑制プール21の
蓄水部へ流入して凝縮され、圧力容器1内の圧力は急速
に低下していく。圧力容器1内の圧力が蓄圧容器40内
の圧力より低下すると、蓄圧容器40内の冷却水が配管
41及び圧力容器1からの逆流を防止する逆止弁42を
通って圧力容器1内へ流入し、水位を炉心2より上に保
持する。蓄圧容器40の冷却水がすべて圧力容器1内へ
流入してしまうと、圧力容器1内の冷却水は炉心2にお
ける発熱により蒸発し、水位が徐々に低下していく。圧
力容器1内の水位がシュラウド3の上端より下へ5mの
位置より低下すると、主制御器103から弁70を開放
する信号が操作器102へ送られる。弁70が開放され
ると、炉心2で発生した蒸気の一部は弁70から配管3
0を通って蓄水プール31の上部空間へ流入する。蓄水
プール31の上部空間へ流入した蒸気はさらに均圧管3
2を通って圧力抑制プール21の蓄水部へ流入して凝縮
される。これにより、蓄水プール31の上部空間の圧力
は圧力容器1内の圧力とほぼ同じとなり、蓄水プール3
1内の冷却水が重力により配管33及び圧力容器1から
の逆流を防止する逆止弁34を通って圧力容器1内へ流
入し、圧力容器1内の水位を炉心2より上に保持する。Position where the water level is 1 For example, 3m below the top of shroud 3
, a start signal for the automatic pressure reduction system is issued, and after a certain time delay, for example 120 seconds, the automatic pressure reduction system valve 10 is activated.
will be released. As a result, a part of the steam generated in the reactor core 2 flows from the valve 10 through the pipe 20 into the water storage section of the pressure suppression pool 21 and is condensed, and the pressure within the pressure vessel 1 rapidly decreases. When the pressure inside the pressure vessel 1 drops below the pressure inside the pressure vessel 40, the cooling water inside the pressure vessel 40 flows into the pressure vessel 1 through the piping 41 and the check valve 42 that prevents backflow from the pressure vessel 1. and maintain the water level above core 2. When all the cooling water in the pressure accumulation vessel 40 flows into the pressure vessel 1, the cooling water in the pressure vessel 1 evaporates due to heat generation in the reactor core 2, and the water level gradually decreases. When the water level in the pressure vessel 1 falls below a position 5 m below the upper end of the shroud 3, a signal to open the valve 70 is sent from the main controller 103 to the operating device 102. When the valve 70 is opened, a portion of the steam generated in the reactor core 2 is transferred from the valve 70 to the piping 3.
0 and flows into the upper space of the water storage pool 31. The steam that has flowed into the upper space of the water storage pool 31 is further passed through the pressure equalization pipe 3.
2 and flows into the water storage section of the pressure suppression pool 21 where it is condensed. As a result, the pressure in the upper space of the water storage pool 31 becomes almost the same as the pressure inside the pressure vessel 1, and the water storage pool 3
The cooling water in the pressure vessel 1 flows by gravity into the pressure vessel 1 through the piping 33 and the check valve 34 that prevents backflow from the pressure vessel 1, and maintains the water level in the pressure vessel 1 above the core 2.
本実施例では圧力容器1の圧力が低下してから弁70を
開放するため、蒸気が流入することによる動荷重が発生
しない。また、蓄圧容器40内の冷却水がなくなり、か
つ、圧力容器1内の水位が低下した後に蓄水プール31
から冷却水を注入するため、冷却水の注入時期が最適化
され注水時間が長くなる。蓄水プール31の冷却水がす
べて注入された後は、図示していないが残留熱除去系の
ポンプを用いて圧力抑制プール21の冷却水を圧力容器
1内に注入するか、または、ポンプを用いて蓄圧容器4
oへ冷却水を補給することにより、圧力容器1内の水位
を炉心2より上部に保持する。蓄水プール31の冷却水
がすべて圧力容器1内へ流入してしまうと、主制御器1
03からの信号により弁70が閉じられ、弁81が開放
される。圧力抑制プール21の上部空間には初期に格納
容器7の内部に貯えられていた非凝縮性ガスが集まって
いる。蓄水プール31内の温度が放熱により低下してく
ると圧力が低下し、圧力抑制プール21の上部空間の非
凝縮性ガスが配管80を通って蓄水プールへ流入してく
る。これにより、本実施例では非凝縮性ガスの分圧は約
40%低下し、蒸気分圧との和である圧力抑制プール2
1の上部空間の圧力は約30%低下する。In this embodiment, since the valve 70 is opened after the pressure in the pressure vessel 1 has decreased, no dynamic load is generated due to the inflow of steam. In addition, after the cooling water in the pressure storage container 40 runs out and the water level in the pressure container 1 decreases, the water storage pool 31
Since cooling water is injected from the ground, the timing of cooling water injection is optimized and the water injection time becomes longer. After all the cooling water in the water storage pool 31 is injected, the cooling water in the pressure suppression pool 21 is injected into the pressure vessel 1 using a residual heat removal system pump (not shown), or the pump is turned off. Using pressure accumulator 4
The water level in the pressure vessel 1 is maintained above the reactor core 2 by supplying cooling water to the reactor core 2. If all the cooling water in the water storage pool 31 flows into the pressure vessel 1, the main controller 1
The signal from 03 closes valve 70 and opens valve 81. The non-condensable gas initially stored inside the containment vessel 7 is collected in the upper space of the pressure suppression pool 21 . When the temperature inside the water storage pool 31 decreases due to heat radiation, the pressure decreases, and non-condensable gas in the upper space of the pressure suppression pool 21 flows into the water storage pool through the pipe 80. As a result, in this example, the partial pressure of the non-condensable gas decreases by about 40%, and the pressure suppression pool 2, which is the sum of the partial pressure of the steam, decreases by about 40%.
The pressure in the headspace of 1 is reduced by about 30%.
したがって、格納容器7の内圧が約30%低下する。Therefore, the internal pressure of the containment vessel 7 decreases by about 30%.
このように、本実施例によれば長期的な格納容器の内圧
が低下する効果がある。In this way, this embodiment has the effect of reducing the long-term internal pressure of the containment vessel.
本発明のさらに他の実施例を第13図と第14図により
説明する。第11図で示した実施例との相違点は、配管
80を用いて蓄水プール31の蓄水部と圧力抑制プール
21の蓄水部とを連通している点と、格納容器壁7の外
側に外周プール92を設置している点である。本実施例
における弁7o及び弁81の制御方法を第14図を用い
て説明する。蓄圧容器40の水位は、差圧計72の信号
と圧力計73の信号とから、演算器100により冷却水
の密度補正を行って求められ、その信号は主制御器10
3へ送られる。圧力容器1の水位は、差圧計74の信号
と圧力計75の信号とから、演算器101により冷却水
の密度補正を行って求められ、その信号は主制御器10
3へ送られる。Still another embodiment of the present invention will be described with reference to FIGS. 13 and 14. The difference from the embodiment shown in FIG. The point is that a peripheral pool 92 is installed on the outside. A method of controlling the valve 7o and the valve 81 in this embodiment will be explained using FIG. 14. The water level in the pressure storage container 40 is determined from the signal from the differential pressure gauge 72 and the signal from the pressure gauge 73 by correcting the density of the cooling water using the computing unit 100, and the signal is sent to the main controller 10.
Sent to 3. The water level in the pressure vessel 1 is determined from the signal from the differential pressure gauge 74 and the signal from the pressure gauge 75 by correcting the density of the cooling water using the computing unit 101, and the signal is sent to the main controller 10.
Sent to 3.
さらに、蓄水プール31の水位は、差圧計82の信号と
圧力計83の信号とから、演算器104により冷却水の
密度補正を行って求められ、その信号は主制御器103
へ送られる。主制御器103は、蓄圧容器40の水位が
ある設定値、たとえば0.1m 、より低下し、かつ、
圧力容器1の水位がある設定値、たとえばシュラウド3
の上端から下へ5mの位置、より低下したときに弁70
を開放する信号aを操作器102へ送る。さらに、蓄水
プール31の水位がある値、たとえば0.1m、より低
下した場合には、主制御器103は弁70を強制的に閉
める信号すを操作器102へ送り。Furthermore, the water level of the water storage pool 31 is determined by correcting the density of the cooling water using the computing unit 104 from the signal of the differential pressure gauge 82 and the signal of the pressure gauge 83, and the signal is sent to the main controller 103.
sent to. The main controller 103 determines that the water level in the pressure accumulator 40 is lower than a certain set value, for example 0.1 m, and
A certain set point for the water level in pressure vessel 1, e.g. shroud 3
5m below the top, when the valve is lower than 70
A signal a is sent to the operating device 102 to open the . Further, when the water level in the water storage pool 31 drops below a certain value, for example 0.1 m, the main controller 103 sends a signal to the operating device 102 to forcibly close the valve 70.
弁81を開ける信号を操作器105へ送る。このとき、
信号すの優先度は信号aの優先度より高くなっている6
つぎに、蓄水プールの水位が低い状態からある設定値、
たとえば3m、より上昇すると、主制御器103は弁7
0の開放を許容する信号を操作器102へ送り、弁81
を閉める信号を操作器105へ送る。このような原子炉
において。A signal to open the valve 81 is sent to the operating device 105. At this time,
The priority of signal S is higher than the priority of signal a6.
Next, from a state where the water level of the water storage pool is low, a certain set value,
For example, when ascending higher than 3 m, the main controller 103
0 is sent to the operating device 102, and the valve 81 is opened.
A signal to close the door is sent to the operating device 105. In such a reactor.
配管、例えば給水配管6、の破断による冷却材喪失事故
を想定すると、圧力容器1内の冷却水が流出し水位が低
下していく。水位がある位置、例えばシュラウド3上端
から下へ3m、より低下すると自動減圧系の起呼信号が
出され、一定時間遅れ、例えば120秒、の後に自動減
圧系の弁10が開放される。これにより、炉心2で発生
した蒸気の一部は弁10から配管20を通って圧力抑制
プール21の蓄水部へ流入して凝縮され、圧力容器1内
の圧力は急速に低下していく。圧力容器1内の圧力が蓄
圧容器40内の圧力より低下すると、蓄圧容器40内の
冷却水が配管41及び圧力容器1からの逆流を防止する
逆止弁42を通って圧力容器1内へ流入し、水位を炉心
2より上に保持する。Assuming a loss of coolant accident due to a break in a pipe, for example, the water supply pipe 6, the coolant in the pressure vessel 1 will flow out and the water level will drop. When the water level drops below a certain point, for example 3 m below the upper end of the shroud 3, a call signal for the automatic pressure reduction system is issued, and after a certain time delay, for example 120 seconds, the valve 10 of the automatic pressure reduction system is opened. As a result, a part of the steam generated in the reactor core 2 flows from the valve 10 through the pipe 20 into the water storage section of the pressure suppression pool 21 and is condensed, and the pressure within the pressure vessel 1 rapidly decreases. When the pressure inside the pressure vessel 1 drops below the pressure inside the pressure vessel 40, the cooling water inside the pressure vessel 40 flows into the pressure vessel 1 through the piping 41 and the check valve 42 that prevents backflow from the pressure vessel 1. and maintain the water level above core 2.
蓄圧容器40の冷却水がすべて圧力容器1内へ流入して
しまうと、圧力容器1内の冷却水は炉心2における発熱
により蒸発し、水位が徐々に低下していく。圧力容器1
内の水位がシュラウド3の上端より下へ5mの位置より
低下すると、主制御器103から弁70を開放する信号
が操作器102へ送られる。弁70が開放されると、炉
心2で発生した蒸気の一部は弁70から配管3oを通っ
て蓄水プール31の上部空間へ流入する。蓄水プール3
1の上部空間へ流入した蒸気はさらに均圧管32を通っ
て圧力抑制プール21の蓄水部へ流入して凝縮される。When all the cooling water in the pressure accumulation vessel 40 flows into the pressure vessel 1, the cooling water in the pressure vessel 1 evaporates due to heat generation in the reactor core 2, and the water level gradually decreases. pressure vessel 1
When the water level within the shroud 3 drops below a position 5 m below the upper end of the shroud 3, a signal to open the valve 70 is sent from the main controller 103 to the operating device 102. When the valve 70 is opened, a portion of the steam generated in the core 2 flows from the valve 70 into the upper space of the water storage pool 31 through the pipe 3o. Water storage pool 3
The steam that has flowed into the upper space of 1 further flows into the water storage section of the pressure suppression pool 21 through the pressure equalization pipe 32 and is condensed.
これにより、蓄水プール31の上部空間の圧力は圧力容
器1内の圧力とほぼ同じとなり、蓄水プール31内の冷
却水が重力により配管33及び圧力容器1からの逆流を
防止する逆止弁34を通って圧力容器1内へ流入し、圧
力容器1内の水位を炉心2より上に保持する。蓄水プー
ル31内の冷却水がすべて圧力容器1内に流入すると、
主制御器103からの信号により弁70が閉じられ、弁
81が開放される0本実施例では、蓄水プール31の壁
の一部は鋼製の格納容器7の壁を利用しており、さらに
、格納容器7の壁の外側には外周プール92が設置され
ている。このため、蓄水プール31の内部の蒸気は格納
容器7の壁を通した放熱により急速に冷やされ、圧力は
急速に大気圧以下となる。一方、圧力抑制プール21の
上部空間の圧力は非凝縮性ガスの分圧と蒸気分圧との和
となっているが、本実施例ではこの値は2.5 から3
気圧である。配管80の長さは9mとなっているので圧
力抑制プール21の冷却水は圧力差により配管80を上
昇し蓄水プール31へ流入する。蓄水プール31の水位
が3mより上昇すると、主制御器103からの信号によ
り弁81が閉じられ、弁70の開放を許容する信号が操
作器102へ送られる。このとき、圧力容器1の水位が
シュラウド上端から下へ5mの位置より低いと弁70が
開放され、蓄水プール31の冷却水は再び圧力容器1へ
流入し、圧力容器1の水位を炉心2より上部に保持する
。このように、本実施例では圧力差に基づくポンプ作用
により、継続的に蓄水プール31の冷却水を圧力容器1
へ流入させることができるため、圧力容器1の水位を炉
心2の上部に長期間保持することができる。このため、
たとえば残留熱除去系のポンプを削除することが可能と
なる。なお、本実施例では蓄水プール31を冷却するの
に外周プール92を用いたが、別の方法、たとえばヒー
トパイプを用いても良いことはもちろんである。As a result, the pressure in the upper space of the water storage pool 31 becomes almost the same as the pressure inside the pressure vessel 1, and the check valve prevents the cooling water in the water storage pool 31 from flowing back from the piping 33 and the pressure vessel 1 due to gravity. 34 into the pressure vessel 1, and maintains the water level in the pressure vessel 1 above the core 2. When all the cooling water in the water storage pool 31 flows into the pressure vessel 1,
The valve 70 is closed and the valve 81 is opened by a signal from the main controller 103. In this embodiment, a part of the wall of the water storage pool 31 is made of the wall of the steel containment vessel 7, Furthermore, an outer peripheral pool 92 is installed outside the wall of the containment vessel 7. Therefore, the steam inside the water storage pool 31 is rapidly cooled by heat radiation through the walls of the containment vessel 7, and the pressure rapidly decreases to below atmospheric pressure. On the other hand, the pressure in the upper space of the pressure suppression pool 21 is the sum of the partial pressure of non-condensable gas and the partial pressure of steam, and in this embodiment, this value is between 2.5 and 3.
It is atmospheric pressure. Since the length of the piping 80 is 9 m, the cooling water in the pressure suppression pool 21 rises in the piping 80 due to the pressure difference and flows into the water storage pool 31. When the water level in the water storage pool 31 rises above 3 m, the valve 81 is closed by a signal from the main controller 103, and a signal allowing the opening of the valve 70 is sent to the operating device 102. At this time, when the water level in the pressure vessel 1 is lower than a position 5 m below the upper end of the shroud, the valve 70 is opened, and the cooling water in the water storage pool 31 flows into the pressure vessel 1 again, lowering the water level in the pressure vessel 1 to the core 2. Hold it higher. In this way, in this embodiment, the cooling water of the water storage pool 31 is continuously pumped into the pressure vessel by the pump action based on the pressure difference.
The water level in the pressure vessel 1 can be maintained above the core 2 for a long period of time. For this reason,
For example, it becomes possible to eliminate the residual heat removal system pump. In this embodiment, the outer circumferential pool 92 is used to cool the water storage pool 31, but it goes without saying that another method, such as a heat pipe, may be used.
本実施例によれば、長期間冷却水を注入できるため、ポ
ンプ等の動的機器を削除できる効果がある。According to this embodiment, since cooling water can be injected for a long period of time, it is possible to eliminate dynamic equipment such as a pump.
いずれの請求項の発明であっても、格納容器壁を有効利
用できるため設置率が向上し、また、有効水頭が高いた
め蓄水プールを低レベル位置に設置できる効果がある。In any of the claimed inventions, the installation rate is improved because the walls of the containment vessel can be used effectively, and the water storage pool can be installed at a low level position because the effective water head is high.
第1図は本発明の一実施例を示す縦断面図、第2図は本
発明の作動状態を示す縦断面図、第3図は第1図のA−
A矢視横断面図、第4図は本発明の効果を示すグラフ図
、第5図は第1図の実施例の部分詳細図、第6図は本発
明の他の実施例を示す縦断面図、第7図は本発明のさら
に他の実施例を示す縦断面図、第8図は第7図の実施例
の制御方法を示す図、第9図は本発明のさらに他の実施
例を示す縦断面図、第10図は第9図の実施例の部分断
面図、第11図は本発明のさらに他の実施例を示す縦断
面図、第12図は第11図の実施例の制御方法を示す図
、第13図は本発明のさらに他の実施例を示す縦断面図
、第14図は第13図の実施例の制御方法を示す図であ
る。
1・・・圧力容器、2・・・炉心、3・・・シュラウド
、4・・・ドライヤ、5・・・主蒸気管、6・・・給水
管、7・・・格納容器、10.11・・・自動減圧系の
弁、21・・・圧力抑制プール、31・・・蓄水プール
、32・・・均圧管、34・・・逆止弁、40・・・蓄
圧容器、42・・・逆止弁、50・・・ベント管、60
・・・熱遮蔽板、70・・・弁、71・・・逆止弁、7
2・・・差圧計、73・・・圧力計、74・・・差圧計
、75・・・圧力計、81・・・弁、82・・・差圧計
、83・・・圧力計、100・・・演算器、101・・
演算器、102・・・操作器、103・・・主演算器、
104・・・演算器、105・・・操作器。FIG. 1 is a longitudinal cross-sectional view showing one embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view showing the operating state of the present invention, and FIG.
4 is a graph diagram showing the effects of the present invention, FIG. 5 is a partial detailed view of the embodiment shown in FIG. 1, and FIG. 6 is a longitudinal section showing another embodiment of the present invention. 7 is a vertical sectional view showing still another embodiment of the present invention, FIG. 8 is a diagram showing a control method of the embodiment of FIG. 7, and FIG. 9 is a diagram showing still another embodiment of the present invention. 10 is a partial sectional view of the embodiment of FIG. 9, FIG. 11 is a longitudinal sectional view of still another embodiment of the present invention, and FIG. 12 is a control of the embodiment of FIG. 11. FIG. 13 is a longitudinal sectional view showing still another embodiment of the present invention, and FIG. 14 is a diagram showing a control method for the embodiment of FIG. 13. 1... Pressure vessel, 2... Core, 3... Shroud, 4... Dryer, 5... Main steam pipe, 6... Water supply pipe, 7... Containment vessel, 10.11 ... Valve of automatic pressure reduction system, 21 ... Pressure suppression pool, 31 ... Water storage pool, 32 ... Pressure equalization pipe, 34 ... Check valve, 40 ... Pressure accumulation container, 42 ...・Check valve, 50...Vent pipe, 60
... Heat shielding plate, 70 ... Valve, 71 ... Check valve, 7
2...Differential pressure gauge, 73...Pressure gauge, 74...Differential pressure gauge, 75...Pressure gauge, 81...Valve, 82...Differential pressure gauge, 83...Pressure gauge, 100... ...Arithmetic unit, 101...
Arithmetic unit, 102... Operating device, 103... Main computing unit,
104...Arithmetic unit, 105...Operator.
Claims (1)
蒸気を凝縮する圧力抑制プールとからなる原子炉の非常
用炉心冷却装置において、圧力抑制プールとは別置きの
蓄水プールを設置し、原子炉と蓄水プールの上部空間及
び蓄水部との間にそれぞれ流路及び弁を設置し、かつ、
蓄水プールの上部空間と圧力抑制プールの蓄水部とを均
圧管で連通したことを特徴とする非常用炉心冷却装置。 2、特許請求の範囲第1項記載の非常用炉心冷却装置に
おいて、蓄水プール壁の一部は原子炉圧力容器を取り囲
む格納容器壁であることを特徴とする非常用炉心冷却装
置。 3、特許請求の範囲第1項記載の非常用炉心冷却装置に
おいて、蓄水プールは圧力抑制プールの上部に置かれて
いることを特徴とする非常用炉心冷却装置。 4、特許請求の範囲第1項記載の非常用炉心冷却装置に
おいて、原子炉と蓄水プールの蓄水部との間の弁は原子
炉からの逆流を防止する逆止弁であることを特徴とする
非常用炉心冷却装置。 5、特許請求の範囲第1項記載の非常用炉心冷却装置に
おいて、原子炉と蓄水プールの上部空間との間の弁は原
子炉水位低下後、一定の時間遅れをもつて自動的に開放
する弁であることを特徴とする非常用炉心冷却装置。 6、特許請求の範囲第1項記載の非常用炉心冷却装置に
おいて、均圧管に圧力抑制プールからの逆流を防止する
逆止弁を設け、かつ、原子炉と蓄水プールの上部空間と
の間の弁を原子炉への注水流量が低下し、原子炉水位が
ある一定値より低下したときに開放することを特徴とす
る非常用炉心冷却装置。 7、特許請求の範囲第1項記載の非常用炉心冷却装置に
おいて、均圧管の上部の末広がりの形状をしたことを特
徴とする非常用炉心冷却装置。 8、特許請求の範囲第1項記載の非常用炉心冷却装置に
おいて、蓄水プールの内部に格納容器壁を保護する熱遮
蔽板を設置したことを特徴とする非常用炉心冷却装置。 9、特許請求の範囲第6項記載の非常用炉心冷却装置に
おいて、蓄水プールの上部空間と圧力抑制プールの上部
空間との間に流路及び弁を設置し、蓄水プールの水位が
低下したときに蓄水プールの上部空間と原子炉との間の
弁を閉め、蓄水プールの上部空間と圧力抑制プールの上
部空間との間の弁を開けることを特徴とする非常用炉心
冷却装置。 10、特許請求の範囲第6項記載の非常用炉心冷却装置
において、蓄水プールの蓄水部と圧力抑制プールの蓄水
部との間に流路及び弁を設置し、蓄水プールの水位が低
下したときに蓄水プールの上部空間と原子炉との間の弁
を閉めて蓄水プールの蓄水部と圧力抑制プールの蓄水部
との間の弁を開け、蓄水プールの水位が回復したときに
蓄水プールの蓄水部と圧力抑制プールの蓄水部との間の
弁を閉めて蓄水プールの上部空間と原子炉との間の弁の
開放を許容することを特徴とする非常用炉心冷却装置。[Claims] 1. In an emergency core cooling system for a nuclear reactor, which comprises a device for injecting cooling water into the reactor and a pressure suppression pool for condensing steam generated in the reactor, the system is provided separately from the pressure suppression pool. A water storage pool is installed, and flow passages and valves are installed between the reactor and the upper space of the water storage pool and the water storage section, and,
An emergency core cooling system characterized in that the upper space of a water storage pool and the water storage part of a pressure suppression pool are communicated through a pressure equalizing pipe. 2. The emergency core cooling system according to claim 1, wherein a part of the water storage pool wall is a containment vessel wall surrounding the reactor pressure vessel. 3. The emergency core cooling system according to claim 1, wherein the water storage pool is placed above the pressure suppression pool. 4. The emergency core cooling system according to claim 1, characterized in that the valve between the nuclear reactor and the water storage part of the water storage pool is a check valve that prevents backflow from the reactor. Emergency core cooling system. 5. In the emergency core cooling system according to claim 1, the valve between the reactor and the upper space of the water storage pool is automatically opened after a certain time delay after the reactor water level has decreased. An emergency core cooling system characterized by being a valve that 6. In the emergency core cooling system according to claim 1, the pressure equalizing pipe is provided with a check valve for preventing backflow from the pressure suppression pool, and the space between the reactor and the upper space of the water storage pool is provided. An emergency core cooling system characterized in that the valve is opened when the flow rate of water injected into the reactor decreases and the reactor water level falls below a certain value. 7. An emergency core cooling system according to claim 1, characterized in that the pressure equalizing tube has an upper part that widens toward the end. 8. The emergency core cooling system according to claim 1, characterized in that a heat shield plate for protecting the containment vessel wall is installed inside the water storage pool. 9. In the emergency core cooling system according to claim 6, a flow path and a valve are installed between the upper space of the water storage pool and the upper space of the pressure suppression pool, so that the water level of the water storage pool is lowered. An emergency core cooling system characterized by closing the valve between the upper space of the water storage pool and the reactor and opening the valve between the upper space of the water storage pool and the upper space of the pressure suppression pool when . 10. In the emergency core cooling system according to claim 6, a flow path and a valve are installed between the water storage part of the water storage pool and the water storage part of the pressure suppression pool, and the water level of the water storage pool is When the water level drops, the valve between the upper space of the water storage pool and the reactor is closed, the valve between the water storage part of the water storage pool and the water storage part of the pressure suppression pool is opened, and the water level of the water storage pool is lowered. is characterized by closing the valve between the water storage part of the water storage pool and the water storage part of the pressure suppression pool when the water storage pool recovers, and allowing the valve between the upper space of the water storage pool and the reactor to open. Emergency core cooling system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63235029A JPH0762715B2 (en) | 1988-09-21 | 1988-09-21 | Emergency core cooling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63235029A JPH0762715B2 (en) | 1988-09-21 | 1988-09-21 | Emergency core cooling system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0283495A true JPH0283495A (en) | 1990-03-23 |
JPH0762715B2 JPH0762715B2 (en) | 1995-07-05 |
Family
ID=16980026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63235029A Expired - Fee Related JPH0762715B2 (en) | 1988-09-21 | 1988-09-21 | Emergency core cooling system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0762715B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04125495A (en) * | 1990-09-17 | 1992-04-24 | Hitachi Ltd | Nuclear reactor facility |
JP2014059317A (en) * | 2007-11-15 | 2014-04-03 | State Of Oregon Acting By And Through The State Board Of Higher Educ Ation On Behalf Of Oregon S:The | Nuclear reactor immersion containment vessel |
JP2015031684A (en) * | 2013-08-07 | 2015-02-16 | 株式会社東芝 | Nuclear power plant |
US11551823B2 (en) * | 2017-11-13 | 2023-01-10 | Korea Atomic Energy Research Institute | Radioactive material reduction facility and nuclear power plant having the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62237395A (en) * | 1986-04-09 | 1987-10-17 | 株式会社東芝 | Emergency core cooling device |
-
1988
- 1988-09-21 JP JP63235029A patent/JPH0762715B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62237395A (en) * | 1986-04-09 | 1987-10-17 | 株式会社東芝 | Emergency core cooling device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04125495A (en) * | 1990-09-17 | 1992-04-24 | Hitachi Ltd | Nuclear reactor facility |
JP2014059317A (en) * | 2007-11-15 | 2014-04-03 | State Of Oregon Acting By And Through The State Board Of Higher Educ Ation On Behalf Of Oregon S:The | Nuclear reactor immersion containment vessel |
JP2015031684A (en) * | 2013-08-07 | 2015-02-16 | 株式会社東芝 | Nuclear power plant |
US11551823B2 (en) * | 2017-11-13 | 2023-01-10 | Korea Atomic Energy Research Institute | Radioactive material reduction facility and nuclear power plant having the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0762715B2 (en) | 1995-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5272737A (en) | Nuclear reactor installation | |
KR100813939B1 (en) | Passive type emergency core cooling system for an integral reactor with a safeguard vessel | |
JP4908561B2 (en) | Reactor containment vessel and nuclear power plant using the same | |
JP3507547B2 (en) | Pressure suppression containment system | |
JPH085772A (en) | Reactor containment | |
JPH0283495A (en) | Core cooling apparatus for emergency | |
JP2856865B2 (en) | Core cooling equipment for nuclear power plants | |
US5499278A (en) | Water inventory management in condenser pool of boiling water reactor | |
US4576782A (en) | Nuclear reactor loss of coolant protection system | |
JP2934341B2 (en) | Reactor containment cooling system | |
KR100266506B1 (en) | Reactor cavity flooding system | |
JP2823984B2 (en) | Containment vessel cooling system | |
JPH04109197A (en) | Reactor core decay heat removing device for pressurized water reactor | |
JPH05323084A (en) | Reactor containment | |
JPH05215886A (en) | Emergency reactor core cooling system | |
ITMI951567A1 (en) | DEPRESSURIZATION SYSTEM FOR PLANTS OPERATING WITH PRESSURE STEAM | |
JP2918353B2 (en) | Reactor containment vessel | |
US5126101A (en) | Apparatus for cleaning up reactor coolant and method of controlling the same | |
JP2992076B2 (en) | Emergency core water injection system | |
JPH0432797A (en) | Nuclear reactor cooling device for emergency | |
JPS5919891A (en) | Feedwater device of control rod drive mechanism | |
JPH0660947B2 (en) | Suppressor for water level rise of moderator in control rod guide tube | |
JPH05209981A (en) | Pressure tube reactor | |
JPH03100496A (en) | Nuclear reactor having emergency cooling water replenishing equipment | |
JPH0264499A (en) | Cooling apparatus of nuclear reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080705 Year of fee payment: 13 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080705 Year of fee payment: 13 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080705 Year of fee payment: 13 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080705 Year of fee payment: 13 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080705 Year of fee payment: 13 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |