JPH0762715B2 - Emergency core cooling system - Google Patents

Emergency core cooling system

Info

Publication number
JPH0762715B2
JPH0762715B2 JP63235029A JP23502988A JPH0762715B2 JP H0762715 B2 JPH0762715 B2 JP H0762715B2 JP 63235029 A JP63235029 A JP 63235029A JP 23502988 A JP23502988 A JP 23502988A JP H0762715 B2 JPH0762715 B2 JP H0762715B2
Authority
JP
Japan
Prior art keywords
water storage
pressure
pool
valve
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63235029A
Other languages
Japanese (ja)
Other versions
JPH0283495A (en
Inventor
洋明 鈴木
道雄 村瀬
利治 平塚
照文 河崎
政隆 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63235029A priority Critical patent/JPH0762715B2/en
Publication of JPH0283495A publication Critical patent/JPH0283495A/en
Publication of JPH0762715B2 publication Critical patent/JPH0762715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子炉の非常用炉心冷却装置に係り、特に、設
置率が高く、かつ、有効水頭が高い非常用炉心冷却装置
に関する。
TECHNICAL FIELD The present invention relates to an emergency core cooling device for a nuclear reactor, and more particularly to an emergency core cooling device having a high installation rate and a high effective head.

〔従来の技術〕[Conventional technology]

従来の技術は、特開昭‐259995号記載のように、蓄水プ
ールを高耐圧容器とし、圧力容器と蓄水プールとを均圧
管で連結し、蒸気加圧と重力により蓄水を注入する構造
となつていた。また、エー・エヌ・エス・トランザクシ
ヨン、47(1984)第292頁から第293頁に記載されている
ように、原子炉で発生した蒸気を凝縮する圧力抑制プー
ルを原子炉より十分高い位置に設置し、圧力抑制プール
の水を重力落下により注入する構造となつていた。
In the conventional technique, as described in JP-A-259995, the water storage pool is a high pressure resistant container, the pressure container and the water storage pool are connected by a pressure equalizing pipe, and water is injected by steam pressurization and gravity. It was structured. In addition, as described in A.N.S. Transactions, 47 (1984), pages 292 to 293, a pressure suppression pool for condensing steam generated in the reactor is placed at a position sufficiently higher than the reactor. It was installed and constructed so that the water in the pressure suppression pool could be injected by gravity falling.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来技術は、設置率の向上や有効水頭を効果的に確
保する点については考慮がされておらず、高耐圧容器を
必要とするために設置率が低下するか、または有効水頭
を確保するために圧力抑制プールを原子炉より十分高い
位置に設置するため耐震性が低下する問題点があつた。
The above-mentioned conventional technology does not consider the point of improving the installation rate and effectively securing the effective head, and the installation rate is lowered or the effective head is secured because a high pressure resistant container is required. Therefore, the pressure suppression pool is installed at a position sufficiently higher than the reactor, which causes a problem that the seismic resistance decreases.

本発明の目的は、格納容器壁を有効利用することにより
設置率を向上させ、かつ、有効水頭が高いために低レベ
ル位置に設置可能な非常用炉心冷却装置を提供すること
にある。
An object of the present invention is to provide an emergency core cooling device which can be installed at a low level position because the installation rate is improved by effectively utilizing the containment vessel wall and the effective head is high.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的は、原子炉へ冷却水を注入する装置と原子炉で
発生した蒸気を凝縮する圧力抑制プールとからなる原子
炉の非常用炉心冷却装置において、圧力抑制プールとは
別置きの蓄水プールを設置し、原子炉と蓄水プールの上
部空間及び蓄水部との間にそれぞれ流路及び弁を設置
し、かつ、蓄水プールの上部空間と圧力抑制プールの蓄
水部とを均圧管で連通してあり、蓄水プール壁の一部は
原子炉圧力容器を取り囲む格納容器壁であることを特徴
とする非常用炉心冷却装置により達成される。
The above-mentioned object is an emergency core cooling device for a reactor consisting of a device for injecting cooling water into the reactor and a pressure suppression pool for condensing steam generated in the reactor, and a water storage pool separate from the pressure suppression pool. Is installed, and a flow path and a valve are installed between the reactor and the upper space of the water storage pool and the water storage unit, and the upper space of the water storage pool and the water storage unit of the pressure suppression pool are pressure equalizing pipes. This is achieved by an emergency core cooling device characterized in that a part of the water storage pool wall is a containment vessel wall surrounding the reactor pressure vessel.

〔作用〕[Action]

以下、本発明の作用について説明する。配管等の破断に
よる原子炉の冷却材喪失事故時には、自動減圧系が作動
して原子炉で発生した蒸気が圧力抑制プールへ導かれ
る。本発明では、蓄水プールの水を原子炉へ注入すると
きには、原子炉と蓄水プールの上部空間及び蓄水部との
間にそれぞれ設置した弁を開放する。これにより、原子
炉で発生した蒸気の一部は蓄水プールの上部空間へ流入
し、さらに均圧管を通つて圧力抑制プールの蓄水部へ流
入して凝縮される。したがつて、蓄水プールの上部空間
の圧力は、圧力抑制プールの上部空間の圧力より、圧力
抑制プールの蓄水部における均圧管の長さに相当する静
水頭、均圧管の出入り口における局所的な圧力損失、及
び均圧管における摩擦損失、の和だけ高くなる。この値
は通常の設計においては1気圧以下であり、格納容器壁
の一部を蓄水プール壁として利用することができるた
め、設置率を向上させることができる。また、本発明に
おける蓄水プールの上部空間の圧力は、蒸気を凝縮させ
るために蓄水部の内部へ蒸気を導く従来の装置と比較し
て、蓄水プールの蓄水部における配管の長さに相当する
静水頭と配管の出口における吹き出し損失との和だけ高
くなる。これにより、冷却水を注入するたるの有効水頭
が高くなり、蓄水プールを低レベル位置に設置可能と
り、そして、その設置位置は原子炉の格納容器壁を共用
する配置にて設置率を向上する作用効果が得られる。
The operation of the present invention will be described below. In the event of loss of reactor coolant due to breakage of piping etc., the automatic depressurization system operates and the steam generated in the reactor is led to the pressure suppression pool. In the present invention, when the water in the water storage pool is injected into the reactor, the valves installed between the reactor and the upper space of the water storage pool and the water storage unit are opened. As a result, a part of the steam generated in the reactor flows into the upper space of the water storage pool, and further flows through the pressure equalizing pipe into the water storage section of the pressure suppression pool to be condensed. Therefore, the pressure in the upper space of the water storage pool is higher than the pressure in the upper space of the pressure suppression pool, and is equivalent to the length of the pressure equalization pipe in the water storage part of the pressure suppression pool, and the local pressure at the inlet and outlet of the pressure equalization pipe. The total pressure loss and the friction loss in the pressure equalizing tube. This value is 1 atm or less in a normal design, and a part of the containment vessel wall can be used as a water storage pool wall, so that the installation rate can be improved. Further, the pressure of the upper space of the water storage pool in the present invention is the length of the pipe in the water storage portion of the water storage pool as compared with the conventional device that guides the steam into the water storage portion in order to condense the steam. The sum of the static head equivalent to the above and the blowout loss at the outlet of the pipe becomes higher. As a result, the effective head of the cooling water is increased and the water storage pool can be installed at a low level position, and the installation position improves the installation rate by sharing the containment vessel wall of the reactor. The effect of doing is obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図から第5図を用いて説
明する。圧力容器1内に装荷された炉心2はシユラウド
3で囲まれている。通常運転時には、炉心2で発生した
蒸気はドライヤ4で湿分を取り除かれた後、主蒸気管5
を介してタービン系統(図示せず)へ送られる。タービ
ン系統で凝縮した蒸気は、給水管6を介して圧力容器1
内へ戻る。炉心2にはシユラウド3内外の圧力差に起因
する自然循環によつて冷却水が流入し、炉心2が冷却さ
れる。このような原子炉において、配管、例えば給水配
管6、の破断による冷却材喪失事故を想定すると、圧力
容器1内の冷却水が流出し水位が低下していく。水位が
ある位置、例えばシユラウド3の上端から下へ3m、より
低下すると自動減圧系の起動信号が出され、一定の時間
遅れ、例えば120秒、の後に自動減圧系の弁10及び弁11
が開放される。これにより、炉心2で発生した蒸気の一
部は弁10から配管20を通つて圧力抑制プール21の蓄水部
へ流入して凝縮され、圧力容器1内の圧力は急速に低下
していく。また、炉心2で発生した蒸気の一部は弁11か
ら配管30を通つて蓄水プール31の上部空間へ流入する。
蓄水プール31の上部空間へ流入した蒸気はさらに均圧管
32を通つて圧力抑制プール21の蓄水部へ流入して凝縮さ
れる。圧力容器1内の圧力が蓄圧容器40内の圧力より低
下すると、蓄圧容器40内の冷却水が配管41及び圧力容器
1からの逆流を防止する逆止弁42を通つて圧力容器1内
へ流入し、水位を炉心2より上に保持する。さらに圧力
容器1内の圧力が低下すると、蓄水プール31内の冷却水
が重力により配管33及び圧力容器1からの逆流を防止す
る逆止弁34を通つて圧力容器1内へ流入し、水位を炉心
2より上に保持する。このときの流動状態を第2図に示
す。本実施例における蓄水プール31の上部空間の圧力
は、圧力抑制プール21の上部空間の圧力より、圧力抑制
プール21の蓄水部における均圧管32の長さに相当する静
水頭、均圧管32の出入り口における局所的な圧力損失、
及び均圧管32における摩擦損失、の和だけ高くなる。本
実施例ではこの値は1気圧以下であり、格納容器7の壁
の一部を蓄水プール31の壁として利用できる。第3図に
第1図のA-A断面図を示す。蓄水プール31は格納容器7
の壁を利用してコンパクトに配置されており設置率が向
上している。なお、格納容器7の内部に放出された蒸気
を導くベント管50の上部には、人間または機材の落下を
防止するための網が設置されている。代表的な冷却材喪
失事故、例えば給水配管6の小破断、における圧力容器
1内の圧力及び圧力容器1への注水流量の時間変化を第
4図に示す。本実施例における蓄水プール31の上部空間
の圧力は、蒸気を凝縮させるために蓄水部の内部へ蒸気
を導く従来の装置と比較して、蓄水プール31の蓄水部に
おける配管の長さに相当する静水頭と配管の出口におけ
る吹き出し損失との和だけ高くなる。これにより、本実
施例では冷却水を注水するための有効水頭が高くなり、
蓄水プール31を低レベル位置に設置しても十分な注水流
量を得ることができる。なお、本実施例では配管33の径
は0.1mとしている。また、本実施例では蓄水プール31が
低レベル位置にあるため耐震性が良い。なお、均圧管32
の上部は、蒸気の流入をスムーズにし、かつ、水面の変
動による冷却水の巻き込みを防止するため、第5図に示
すように上端に向かって末広がりの構造とすることが望
ましい。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. The core 2 loaded in the pressure vessel 1 is surrounded by a shell 3. During normal operation, the steam generated in the core 2 is dehumidified by the dryer 4, and then the main steam pipe 5
Through a turbine system (not shown). The steam condensed in the turbine system is supplied to the pressure vessel 1 via the water supply pipe 6.
Return to the inside. Cooling water flows into the core 2 by natural circulation caused by the pressure difference between the inside and outside of the shroud 3, and the core 2 is cooled. In such a nuclear reactor, assuming a coolant loss accident due to breakage of piping, for example, the water supply piping 6, the cooling water in the pressure vessel 1 flows out and the water level decreases. When the water level is lower than the upper end of the shroud 3 by 3 m, for example, an automatic decompression system start signal is issued and after a certain time delay, for example 120 seconds, the automatic decompression system valve 10 and valve 11
Is released. As a result, a part of the steam generated in the core 2 flows from the valve 10 through the pipe 20 into the water storage portion of the pressure suppression pool 21 and is condensed, so that the pressure in the pressure vessel 1 rapidly decreases. Further, a part of the steam generated in the core 2 flows from the valve 11 through the pipe 30 into the upper space of the water storage pool 31.
The steam flowing into the upper space of the water storage pool 31 is further equalized
Through 32, it flows into the water storage section of the pressure suppression pool 21 and is condensed. When the pressure in the pressure vessel 1 becomes lower than the pressure in the pressure vessel 40, the cooling water in the pressure vessel 40 flows into the pressure vessel 1 through the pipe 41 and the check valve 42 for preventing the backflow from the pressure vessel 1. Then, the water level is maintained above the core 2. When the pressure in the pressure vessel 1 further decreases, the cooling water in the water storage pool 31 flows into the pressure vessel 1 through the check valve 34 that prevents the reverse flow from the pipe 33 and the pressure vessel 1 due to gravity, and the water level Are held above the core 2. The flow state at this time is shown in FIG. The pressure of the upper space of the water storage pool 31 in the present embodiment is higher than the pressure of the upper space of the pressure suppression pool 21, and the hydrostatic head corresponding to the length of the pressure equalization pipe 32 in the water storage portion of the pressure suppression pool 21, the pressure equalization pipe 32. Local pressure loss at the doorway of
And the friction loss in the pressure equalizing pipe 32, the higher the sum. In this embodiment, this value is 1 atm or less, and a part of the wall of the storage container 7 can be used as the wall of the water storage pool 31. FIG. 3 shows a sectional view taken along the line AA in FIG. The water storage pool 31 is the storage container 7
It is placed compactly by using the wall of, and the installation rate is improving. A mesh for preventing a person or equipment from falling is installed above the vent pipe 50 that guides the vapor discharged into the containment vessel 7. FIG. 4 shows changes over time in the pressure in the pressure vessel 1 and the flow rate of water injected into the pressure vessel 1 in a typical coolant loss accident, for example, a small breakage of the water supply pipe 6. The pressure in the upper space of the water storage pool 31 in the present embodiment is longer than that of a conventional device that guides steam into the water storage unit to condense the steam. The sum of the static head and the loss at the outlet of the pipe increases. Thereby, in this embodiment, the effective head for injecting the cooling water becomes high,
Even if the water storage pool 31 is installed at a low level position, a sufficient water injection flow rate can be obtained. The diameter of the pipe 33 is 0.1 m in this embodiment. Further, in this embodiment, since the water storage pool 31 is at the low level position, the earthquake resistance is good. The equalizing pipe 32
In order to make the inflow of steam smooth and to prevent the entrainment of the cooling water due to the fluctuation of the water surface, it is desirable that the upper part of the above has a structure that widens toward the upper end as shown in FIG.

本実施例によれば、格納容器壁を有効利用することがで
きるため設置率が向上し、かつ、有効水頭が高いために
低レベル位置に設置可能で耐震性が向上する効果があ
る。
According to the present embodiment, since the wall of the storage container can be effectively used, the installation rate is improved, and since the effective head is high, it can be installed at a low level position and the earthquake resistance is improved.

本発明の他の実施例を第6図により説明する。第1図で
示した実施例との相違点は、蓄水プール31を圧力制御プ
ール21と離してその上部に設置している点である。ま
た、蓄水プール31は従来あまり利用されていなかつた格
納容器7の肩の部分に、格納容器7の壁を利用してコン
パクトに設置されている。さらに、蓄水プール31の内部
には格納容器7の壁を保護する熱遮蔽板60が設けられて
いる。なお、蓄水プール31の下部には補強材61が設けら
れており、耐震性を向上させている。このような原子炉
において、配管、例えば給水配管6、の破断による冷却
材喪失事故を想定すると、圧力容器1内の冷却水が流出
し水位が低下していく。水位がある位置、例えばシユラ
ウド3上端から下へ3m、より低下すると自動減圧系の起
動信号が出され、一定の時間遅れ、例えば120秒、の後
に自動減圧系の弁10及び弁11が開放される。これによ
り、炉心2で発生した蒸気の一部は弁10から配管20を通
つて圧力抑制プール21の蓄水部へ流入して凝縮され、圧
力容器1内の圧力は急速に低下していく。また、炉心2
で発生した蒸気の一部は弁11から配管30を通つて蓄水プ
ール31の上部空間へ流入する。このとき、熱遮蔽板60が
設けられているため流入した蒸気が直接格納容器7の壁
にぶつかることはない。蓄水プール31の上部空間へ流入
した蒸気はさらに均圧管32を通つて圧力抑制プール21の
蓄水部へ流入して凝縮される。圧力容器1内の圧力が蓄
圧容器40内の圧力より低下すると、蓄圧容器40内の冷却
水が配管41及び圧力容器1からの逆流を防止する逆止弁
42を通つて圧力容器1内へ流入し、水位を炉心2より上
に保持する。さらに圧力容器1内の圧力が低下すると、
蓄水プール31内の冷却水が重力により配管33及び圧力容
器1からの逆流を防止する逆止弁34を通つて圧力容器1
内へ流入し、水位を炉心2より上に保持する。本実施例
では蓄水プール31と炉心2との高度差が大きいため有効
水頭が高く、配管33を細く、たとえば0.05m、としても
十分な注水流量を得ることができる。
Another embodiment of the present invention will be described with reference to FIG. The difference from the embodiment shown in FIG. 1 is that the water storage pool 31 is installed above the pressure control pool 21. Further, the water storage pool 31 is compactly installed by utilizing the wall of the storage container 7 on the shoulder portion of the storage container 7 which has not been used so far. Further, inside the water storage pool 31, a heat shield plate 60 that protects the wall of the storage container 7 is provided. A reinforcement member 61 is provided below the water storage pool 31 to improve earthquake resistance. In such a nuclear reactor, assuming a coolant loss accident due to breakage of piping, for example, the water supply piping 6, the cooling water in the pressure vessel 1 flows out and the water level decreases. When the water level is lower than the upper end of the shroud 3 for 3m, the automatic decompression system start signal is issued, and after a certain time delay, for example 120 seconds, the automatic decompression system valves 10 and 11 are opened. It As a result, a part of the steam generated in the core 2 flows from the valve 10 through the pipe 20 into the water storage portion of the pressure suppression pool 21 and is condensed, so that the pressure in the pressure vessel 1 rapidly decreases. Also, core 2
Part of the steam generated in 1 flows into the upper space of the water storage pool 31 from the valve 11 through the pipe 30. At this time, since the heat shield plate 60 is provided, the inflowing steam does not directly hit the wall of the storage container 7. The steam flowing into the upper space of the water storage pool 31 further passes through the pressure equalizing pipe 32 and flows into the water storage portion of the pressure suppression pool 21 to be condensed. When the pressure in the pressure container 1 becomes lower than the pressure in the pressure accumulator container 40, the check valve for preventing the cooling water in the pressure accumulator container 40 from flowing back from the pipe 41 and the pressure container 1
It flows into the pressure vessel 1 through 42 and keeps the water level above the core 2. When the pressure inside the pressure vessel 1 further decreases,
The pressure vessel 1 passes through the check valve 34 that prevents the backflow of the cooling water in the water storage pool 31 from the piping 33 and the pressure vessel 1 due to gravity.
Flows inward and keeps the water level above the core 2. In this embodiment, since the height difference between the water storage pool 31 and the core 2 is large, the effective head is high, and the pipe 33 is thin, for example, 0.05 m, but a sufficient water injection flow rate can be obtained.

本実施例によれば、格納容器壁の信頼性が高くなり、か
つ、有効水頭が高いために配管径を細くできる効果があ
る。
According to this embodiment, there is an effect that the reliability of the containment vessel wall becomes high and the effective head is high, so that the pipe diameter can be made thin.

本発明のさらに他の実施例を第7図と第8図により説明
する。第6図で示した実施例との相違点は圧力容器1と
蓄水プール31との間の配管30に弁70を、蓄水プール31と
圧力抑制プール21との間の配管32に圧力抑制プール21か
らの逆流を防止する逆止弁71を設置している点である。
弁70の制御方法を第8図により説明する。蓄圧容器40の
水位は、差圧計72の信号と圧力計73の信号とから、演算
器100により冷却水の密度補正を行つて求められ、その
信号は主制御器103へ送られる。さらに、圧力容器1の
水位は、差圧計74の信号と圧力計75の信号とから、演算
器101により冷却水の密度補正を行つて求められ、その
信号は主制御器103へ送られる。主制御器103は、蓄圧容
器40の水位がある設定値、たとえば0.1m、より低下し、
かつ、圧力容器1の水位がある設定値、たとえばシユラ
ウド3の上端から下へ5mの位置、より低下したときに弁
70を開放する信号を操作器102へ送る。このような原子
炉において、配管、例えば給水配管6、の破断による冷
却材喪失事故を想定すると、圧力容器1内の冷却水が流
出し水位が低下していく。水位がある位置、例えばシユ
ラウド3上端から下へ3m、より低下すると自動減圧系の
起動信号が出され、一定の時間遅れ、例えば120秒、の
後に自動減圧系の弁10が開放される。これにより、炉心
2で発生した蒸気の一部は弁10から配管20を通つて圧力
抑制プール21の蓄水部へ流入して凝縮され、圧力容器1
内の圧力は急速に低下していく。圧力容器1内の圧力が
蓄圧容器40内の圧力より低下すると、蓄圧容器40内の冷
却水が配管41及び圧力容器1からの逆流を防止する逆止
弁42を通つて圧力容器1内へ流入し、水位を炉心2より
上に保持する。蓄圧容器40の冷却水がすべて圧力容器1
内へ流入してしまうと、圧力容器1内の冷却水は炉心2
における発熱により蒸気し、水位が徐々に低下してい
く。圧力容器1内の水位がシユラウド3の上端より下へ
5mの位置より低下すると、主制御器103から弁70を開放
する信号が操作器102へ送られる。弁70が開放される
と、炉心2で発生した蒸気の一部は弁70から配管30を通
つて蓄水プール31の上部空間へ流入する。蓄水プール31
の上部空間へ流入した蒸気はさらに均圧管32を通つて圧
力抑制プール21の蓄水部へ流入して凝縮される。これに
より、蓄水プール31の上部空間の圧力は圧力容器1内の
圧力とほぼ同じとなり、蓄水プール31内の冷却水が重力
により配管33及び圧力容器1からの逆流を防止する逆止
弁34を通つて圧力容器1内へ流入し、圧力容器1内の水
位を炉心2より上に保持する。本実施例では圧力容器1
の圧力が低下してから弁70を開放するため、蒸気が高速
度で流入する場合に発生する重荷重が生じない。また、
蓄圧容器40内の冷却水がなくなり、かつ、圧力容器1内
の水位が低下した後に蓄水プール31から冷却水を注入す
るため、冷却水の注入時期が最適化され、注水時間が長
くなる。
Still another embodiment of the present invention will be described with reference to FIGS. 7 and 8. The difference from the embodiment shown in FIG. 6 is that a valve 70 is installed in the pipe 30 between the pressure vessel 1 and the water storage pool 31, and a pressure is installed in the pipe 32 between the water storage pool 31 and the pressure suppression pool 21. The point is that a check valve 71 is installed to prevent backflow from the pool 21.
The control method of the valve 70 will be described with reference to FIG. The water level of the pressure accumulator 40 is calculated from the signal from the differential pressure gauge 72 and the signal from the pressure gauge 73 by the density correction of the cooling water by the calculator 100, and the signal is sent to the main controller 103. Further, the water level of the pressure vessel 1 is obtained by correcting the density of the cooling water by the arithmetic unit 101 from the signal of the differential pressure gauge 74 and the signal of the pressure gauge 75, and the signal is sent to the main controller 103. The main controller 103, the water level of the accumulator 40 is a set value, for example, 0.1 m, lower,
Also, when the water level of the pressure vessel 1 has a certain set value, for example, 5 m below the upper end of the shroud 3
A signal for opening 70 is sent to the operation device 102. In such a nuclear reactor, assuming a coolant loss accident due to breakage of piping, for example, the water supply piping 6, the cooling water in the pressure vessel 1 flows out and the water level decreases. When the water level drops below a certain position, for example, 3 m below the upper end of the shroud 3, an automatic depressurization system start signal is issued, and after a certain time delay, for example, 120 seconds, the automatic depressurization system valve 10 is opened. As a result, a part of the steam generated in the core 2 flows from the valve 10 through the pipe 20 into the water storage section of the pressure suppression pool 21 and is condensed, so that the pressure vessel 1
The pressure inside is decreasing rapidly. When the pressure in the pressure vessel 1 becomes lower than the pressure in the pressure vessel 40, the cooling water in the pressure vessel 40 flows into the pressure vessel 1 through the pipe 41 and the check valve 42 for preventing the backflow from the pressure vessel 1. Then, the water level is maintained above the core 2. The cooling water in the accumulator 40 is all pressure container 1
If it flows into the core, the cooling water in the pressure vessel 1 will
Steam is generated due to heat generation in the water, and the water level gradually decreases. The water level in the pressure vessel 1 goes below the upper end of the shell 3.
When the position falls below the position of 5 m, a signal for opening the valve 70 is sent from the main controller 103 to the operating unit 102. When the valve 70 is opened, a part of the steam generated in the core 2 flows from the valve 70 through the pipe 30 into the upper space of the water storage pool 31. Water storage pool 31
The steam that has flowed into the upper space of the above further flows through the pressure equalizing pipe 32 into the water storage portion of the pressure suppression pool 21 and is condensed. As a result, the pressure in the upper space of the water storage pool 31 becomes almost the same as the pressure in the pressure vessel 1, and the check valve that prevents the cooling water in the water storage pool 31 from flowing back from the pipe 33 and the pressure vessel 1 due to gravity. It flows through the pressure vessel 1 through 34 and keeps the water level in the pressure vessel 1 above the core 2. In this embodiment, the pressure vessel 1
Since the valve 70 is opened after the pressure of is decreased, the heavy load generated when the steam flows in at a high speed is not generated. Also,
Since the cooling water in the pressure accumulating container 40 is exhausted and the cooling water is injected from the water storage pool 31 after the water level in the pressure container 1 is lowered, the injection timing of the cooling water is optimized and the water injection time is lengthened.

本実施例によれば、蓄水プールで動荷重が発生せず、か
つ、注水時間が長くなる効果がある。
According to the present embodiment, there is an effect that no dynamic load is generated in the water storage pool and the water injection time becomes long.

本発明のさらに他の実施例を第9図と第10図により説明
する。第10図は第9図のB-B断面図である。第1図で示
した実施例との相違点は、圧力抑制プール21と蓄水プー
ル31が同一レベルにあり、共に炉心2より上部に設置さ
ている点である。このような原子炉において、配管、例
えば給水配管6、の破断による冷却材喪失事故を想定す
ると、圧力容器1内の冷却水が流出し水位が低下してい
く。水位がある位置、例えばシユラウド3上端から下へ
3m、より低下するた自動減圧系の起動信号が出され、一
定の時間遅れ、例えば120秒、の後に自動減圧系の弁10
及び弁11が開放される。これにより、炉心2で発生した
蒸気の一部は弁10から配管20を通つて圧力抑制プール21
の蓄水部へ流入して凝縮され、圧力容器1内の圧力は急
速に低下していく。また、炉心2で発生した蒸気の一部
は弁11から配管30を通つて蓄水プール31の上部空間へ流
入する。蓄水プール31の上部空間へ流入した蒸気はさら
に均圧管32を通つて圧力抑制プール21の蓄水部へ流入し
て凝縮される。圧力容器1内の圧力が低下すると、蓄水
プール31内の冷却水が重力により配管33及び圧力容器1
からの逆流を防止する逆止弁34を通つて圧力容器1内へ
流入し、水位を炉心2より上に保持する。本実施例にお
ける蓄水プール31の上部空間の圧力は、蒸気を凝縮させ
るために蓄水部の内部へ蒸気を導く従来の装置と比較し
て、蓄水プール31の蓄水部における配管の長さに相当す
る静水頭の配管の出口における吹き出し損失との和だけ
高くなる。これにより、冷却水を注入するための有効水
頭が高くなり、従来例と比較して2倍以上の注水流量が
得られる。したがつて、従来例と同じ注水流量で良い場
合には、配管33の径を小さくするか、または蓄水プール
31及び圧力抑制プール21を低レベル位置に設置すること
ができる。このように、本発明は蓄水プール31と圧力抑
制プール21が同一レベルにある場合でも有効である。
Still another embodiment of the present invention will be described with reference to FIGS. 9 and 10. FIG. 10 is a sectional view taken along line BB in FIG. The difference from the embodiment shown in FIG. 1 is that the pressure suppression pool 21 and the water storage pool 31 are at the same level, and both are installed above the reactor core 2. In such a nuclear reactor, assuming a coolant loss accident due to breakage of piping, for example, the water supply piping 6, the cooling water in the pressure vessel 1 flows out and the water level decreases. Position where the water level is, for example, from the top of Shroud 3 to the bottom
The automatic depressurization system start signal is output for 3 m, which is lower, and after a certain time delay, for example, 120 seconds, the automatic depressurization system valve 10
And the valve 11 is opened. As a result, part of the steam generated in the core 2 passes from the valve 10 through the pipe 20 and the pressure suppression pool 21.
And then condensed into the water storage part, and the pressure in the pressure vessel 1 rapidly decreases. Further, a part of the steam generated in the core 2 flows from the valve 11 through the pipe 30 into the upper space of the water storage pool 31. The steam flowing into the upper space of the water storage pool 31 further passes through the pressure equalizing pipe 32 and flows into the water storage portion of the pressure suppression pool 21 to be condensed. When the pressure in the pressure vessel 1 decreases, the cooling water in the water storage pool 31 gravity causes the piping 33 and the pressure vessel 1 to flow.
It flows into the pressure vessel 1 through the check valve 34 that prevents the backflow from the inside of the pressure vessel 1 and keeps the water level above the core 2. The pressure in the upper space of the water storage pool 31 in the present embodiment is longer than that of a conventional device that guides steam into the water storage unit to condense the steam. It becomes higher by the sum of the blowout loss at the outlet of the hydrostatic head pipe. As a result, the effective head of water for injecting the cooling water is increased, and a pouring flow rate twice or more that of the conventional example can be obtained. Therefore, if the same water injection flow rate as in the conventional example is sufficient, reduce the diameter of the pipe 33 or use the water storage pool.
31 and the pressure suppression pool 21 can be installed at a low level position. As described above, the present invention is effective even when the water storage pool 31 and the pressure suppression pool 21 are at the same level.

本実施例によれば、有効水頭が高いために注水流量が増
大する効果がある。
According to this embodiment, since the effective head is high, the flow rate of water injection is increased.

本発明のさらに他の実施例を第11図と第12図により説明
する。第7図で示した実施例との相違点は、蓄水プール
31の上部空間と圧力抑制プール21の上部空間との間に配
管80及び81を設置した点である。弁81の制御方法を第12
図により説明する。蓄圧容器40の水位は、差圧計72の信
号と圧力計73の信号とから、演算器100により冷却水の
密度補正を行つて求められ、その信号は主制御器103へ
送られる。圧力容器1の水位は、差圧計74の信号と圧力
計75の信号とから、演算器101により冷却水の密度補正
を行つて求められ、その信号は主制御器103へ送られ
る。さらに、蓄水プール31の水位は、差圧計82の信号と
圧力計83の信号とから、演算器104により冷却水の密度
補正を行つて求められ、その信号は主制御器103へ送ら
れる。主制御器103は、蓄圧容器40の水位がある設定
値、たとえば0.1m、より低下し、かつ、圧力容器1の水
位がある設定値、たとえばシユラウド3の上端から下へ
5mの位置、より低下したときに弁70を開放する信号を操
作器102へ送る。さらに、蓄水プール31の水位がある
値、たとえば0.1m、より低下した場合には、主制御器10
3は弁70を閉める信号を操作器102へ送り、弁81を開ける
信号を操作器105へ送る。このような原子炉において、
配管、例えば給水配管6、の破断による冷却材喪失事故
を想定すると、圧力容器1内の冷却水が流出し水位が低
下していく。水位がある位置、例えばシユラウド3上端
から下へ3m、より低下すると自動減圧系の起動信号が出
され、一定時間遅れ、例えば120秒、の後に自動減圧系
の弁10が開放される。これにより、炉心2で発生した蒸
気の一部は弁10から配管20を通つて圧力抑制プール21の
蓄水部へ流入して凝縮され、圧力容器1内の圧力は急速
に低下していく。圧力容器1内の圧力が蓄圧容器40内の
圧力より低下すると、蓄圧容器40内の冷却水が配管41及
び圧力容器1からの逆流を防止する逆止弁42を通つて圧
力容器1内へ流入し、水位を炉心2より上に保持する。
蓄圧容器40の冷却水がすべて圧力容器1内へ流入してし
まうと、圧力容器1内の冷却水は炉心2における発熱に
より蒸発し、水位が徐々に低下していく。圧力容器1内
の水位がシユラウド3の上端より下へ5mの位置より低下
すると、主制御器103から弁70を開放する信号が操作器1
02へ送られる。弁70が開放されると、炉心2で発生した
蒸気の一部は弁70から配管30を通つて蓄水プール31の上
部空間へ流入する。蓄水プール31の上部空間へ流入した
蒸気はさらに均圧管32を通つて圧力抑制プール21の蓄水
部へ流入して凝縮される。これにより、蓄水プール31の
上部空間の圧力は圧力容器1内の圧力とほぼ同じとな
り、蓄水プール31内の冷却水が重力により配管33及び圧
力容器1からの逆流を防止する逆止弁34を通つて圧力容
器1内へ流入し、圧力容器1内の水位を炉心2より上に
保持する。本実施例では圧力容器1の圧力が低下してか
ら弁70を開放するため、蒸気が流入することによる動荷
重が発生しない。また、蓄圧容器40内の冷却水がなくな
り、かつ、圧力容器1内の水位が低下した後に蓄水プー
ル31から冷却水を注入するため、冷却水の注入時期が最
適化され注水時間が長くなる。蓄水プール31の冷却水が
すべて注入された後は、図示していないが残留熱除去系
のポンプを用いて圧力抑制プール21の冷却水を圧力容器
1内に注入するか、または、ポンプを用いて蓄圧容器40
へ冷却水を補給することにより、圧力容器1内の水位を
炉心2より上部に保持する。蓄水プール31の冷却水がす
べて圧力容器1内へ流入してしまうと、主制御器103か
らの信号により弁70が閉じられ、弁81が開放される。圧
力抑制プール21の上部空間には初期に格納容器7の内部
に貯えられていた非凝縮性ガスが集まつている。蓄水プ
ール31内の温度が放熱により低下してくると圧力が低下
し、圧力抑制プール21の上部空間の非凝縮性ガスが配管
80を通つて蓄水プールへ流入してくる。これにより、本
実施例では非凝縮性ガスの分圧は約40%低下し、蒸気分
圧との和である圧力抑制プール21の上部空間の圧力は約
30%低下する。したがつて、格納容器7の内圧が約30%
低下する。
Still another embodiment of the present invention will be described with reference to FIGS. 11 and 12. The difference from the embodiment shown in FIG. 7 is that the water storage pool
This is the point where pipes 80 and 81 are installed between the upper space of 31 and the upper space of the pressure suppression pool 21. The control method of valve 81 is the 12th
It will be described with reference to the drawings. The water level of the pressure accumulator 40 is calculated from the signal from the differential pressure gauge 72 and the signal from the pressure gauge 73 by the density correction of the cooling water by the calculator 100, and the signal is sent to the main controller 103. The water level of the pressure vessel 1 is obtained by correcting the density of the cooling water by the arithmetic unit 101 from the signal of the differential pressure gauge 74 and the signal of the pressure gauge 75, and the signal is sent to the main controller 103. Further, the water level of the water storage pool 31 is obtained by correcting the density of the cooling water by the calculator 104 from the signal of the differential pressure gauge 82 and the signal of the pressure gauge 83, and the signal is sent to the main controller 103. The main controller 103 sets the water level of the pressure accumulator 40 to a set value lower than, for example, 0.1 m, and the water level of the pressure container 1 to a set value lower than the upper end of the shroud 3 for example.
A signal for opening the valve 70 when it is lowered to the position of 5 m is sent to the operation device 102. Furthermore, if the water level in the water storage pool 31 falls below a certain value, for example 0.1 m, the main controller 10
3 sends a signal for closing the valve 70 to the operating unit 102 and a signal for opening the valve 81 to the operating unit 105. In such a reactor,
Assuming a coolant loss accident due to breakage of the pipe, for example, the water supply pipe 6, the cooling water in the pressure vessel 1 will flow out and the water level will drop. When the water level falls below a certain position, for example, 3 m below the upper end of the shroud 3, an automatic depressurizing system start signal is issued, and after a certain time delay, for example, 120 seconds, the automatic depressurizing system valve 10 is opened. As a result, a part of the steam generated in the core 2 flows from the valve 10 through the pipe 20 into the water storage portion of the pressure suppression pool 21 and is condensed, so that the pressure in the pressure vessel 1 rapidly decreases. When the pressure in the pressure vessel 1 becomes lower than the pressure in the pressure vessel 40, the cooling water in the pressure vessel 40 flows into the pressure vessel 1 through the pipe 41 and the check valve 42 for preventing the backflow from the pressure vessel 1. Then, the water level is maintained above the core 2.
When all the cooling water in the pressure accumulator 40 has flowed into the pressure vessel 1, the cooling water in the pressure vessel 1 evaporates due to heat generation in the core 2, and the water level gradually decreases. When the water level in the pressure vessel 1 drops below the position of 5 m below the upper end of the shroud 3, a signal to open the valve 70 from the main controller 103 is sent to the actuator 1
Sent to 02. When the valve 70 is opened, a part of the steam generated in the core 2 flows from the valve 70 through the pipe 30 into the upper space of the water storage pool 31. The steam flowing into the upper space of the water storage pool 31 further passes through the pressure equalizing pipe 32 and flows into the water storage portion of the pressure suppression pool 21 to be condensed. As a result, the pressure in the upper space of the water storage pool 31 becomes almost the same as the pressure in the pressure vessel 1, and the check valve that prevents the cooling water in the water storage pool 31 from flowing back from the pipe 33 and the pressure vessel 1 due to gravity. It flows through the pressure vessel 1 through 34 and keeps the water level in the pressure vessel 1 above the core 2. In this embodiment, since the valve 70 is opened after the pressure of the pressure vessel 1 has dropped, a dynamic load due to the inflow of steam is not generated. Further, since the cooling water in the pressure accumulator 40 is exhausted and the cooling water is injected from the water storage pool 31 after the water level in the pressure container 1 is lowered, the injection timing of the cooling water is optimized and the water injection time is lengthened. . After all the cooling water of the water storage pool 31 has been injected, the cooling water of the pressure suppression pool 21 is injected into the pressure vessel 1 using a pump of a residual heat removal system (not shown), or the pump is Using accumulator 40
The water level in the pressure vessel 1 is maintained above the core 2 by supplying cooling water to the core. When all the cooling water of the water storage pool 31 flows into the pressure vessel 1, the valve 70 is closed and the valve 81 is opened by the signal from the main controller 103. In the upper space of the pressure suppression pool 21, the non-condensable gas initially stored in the containment vessel 7 is collected. When the temperature in the water storage pool 31 decreases due to heat dissipation, the pressure decreases, and the non-condensable gas in the upper space of the pressure suppression pool 21 is piped.
It flows into the water storage pool through 80. As a result, in this embodiment, the partial pressure of the non-condensable gas is reduced by about 40%, and the pressure in the upper space of the pressure suppression pool 21, which is the sum of the partial vapor pressure and the vapor partial pressure, is about 40%.
30% lower. Therefore, the internal pressure of the containment vessel 7 is about 30%.
descend.

このように、本実施例によれば長期的な格納容器の内圧
が低下する効果がある。
As described above, according to this embodiment, there is an effect that the internal pressure of the storage container is lowered for a long term.

本発明のさらに他の実施例を第13図と第14図により説明
する。第11図で示した実施例との相違点は、配管80を用
いて蓄水プール31の蓄水部と圧力抑制プール21の蓄水部
とを連通している点と、格納容器壁7の外側に外周プー
ル92を設置している点である。本実施例における弁70及
び弁81の制御方法を第14図を用いて説明する。蓄圧容器
40の水位は、差圧計72の信号と圧力計73の信号とから、
演算器100により冷却水の密度補正を行つて求められ、
その信号は主制御器103へ送られる。圧力容器1の水位
は、差圧計74の信号と圧力計75の信号とから、演算器10
1により冷却水の密度補正を行つて求められ、その信号
は主制御器103へ送られる。さらに、蓄水プール31の水
位は、差圧計82の信号と圧力計83の信号とから、演算器
104により冷却水の密度補正を行つて求められ、その信
号は主制御器103へ送られる。主制御器103は、蓄圧容器
40の水位がある設定値、たとえば0.1m、より低下し、か
つ、圧力容器1の水位がある設定値、たとえばシユラウ
ド3の上端から下へ5mの位置、より低下したときに弁70
を開放する信号aを操作器102へ送る。さらに、蓄水プ
ール31の水位がある値、たとえば0.1m、より低下した場
合には、主制御器103は弁70を強制的に閉める信号bを
操作器102へ送り、弁81を開ける信号を操作器105へ送
る。このとき、信号bの優先度は信号aの優先度より高
くなつている。つぎに、蓄水プールの水位が低い状態か
らある設定値、たとえば3m、より上昇すると、主制御器
103は弁70の開放を許容する信号を操作器102へ送り、弁
81を閉める信号を操作器105へ送る。このような原子炉
において、配管、例えば給水配管6、の破断による冷却
材喪失事故を想定すると、圧力容器1内の冷却水が流出
し水位が低下していく。水位がある位置、例えばシユラ
ウド3上端から下へ3m、より低下すると自動減圧系の起
号信号が出され、一定時間遅れ、例えば120秒、の後に
自動減圧系の弁10が開放される。これにより、炉心2で
発生した蒸気の一部は弁10から配管20を通つて圧力抑制
プール21の蓄水部へ流入して凝縮され、圧力容器1内の
圧力は急速に低下していく。圧力容器1内の圧力が蓄圧
容器40内の圧力より低下すると、蓄圧容器40内の冷却水
が配管41及び圧力容器1からの逆流を防止する逆止弁42
を通つて圧力容器1内へ流入し、水位を炉心2より上に
保持する。蓄圧容器40の冷却水がすべて圧力容器1内へ
流入してしまうと、圧力容器1内の冷却水は炉心2にお
ける発熱により蒸発し、水位が徐々に低下していく。圧
力容器1内の水位がシユラウド3の上端より下へ5mの位
置より低下すると、主制御器103から弁70を開放する信
号が操作器102へ送られる。弁70が開放されると、炉心
2で発生した蒸気の一部は弁70から配管30を通つて蓄水
プール31の上部空間へ流入する。蓄水プール31の上部空
間へ流入した蒸気はさらに均圧管32を通つて圧力抑制プ
ール21の蓄水部へ流入して凝縮される。これにより、蓄
水プール31の上部空間の圧力は圧力容器1内の圧力とほ
ぼ同じとなり、蓄水プール31内の冷却水が重力により配
管33及び圧力容器1からの逆流を防止する逆止弁34を通
つて圧力容器1内へ流入し、圧力容器1内の水位を炉心
2より上に保持する。蓄水プール31内の冷却水がすべて
圧力容器1内に流入すると、主制御器103からの信号に
より弁70が閉じられ、弁81が開放される。本実施例で
は、蓄水プール31の壁の一部は鋼製の格納容器7の壁を
利用しており、さらに、格納容器7の壁の外側には外周
プール92が設置されている。このため、蓄水プール31の
内部の蒸気は格納容器7の壁を通した放熱により急速に
冷やされ、圧力は急速に大気圧以下となる。一方、圧力
抑制プール21の上部空間の圧力は非凝縮性ガスの分圧と
蒸気分圧との和となっているが、本実施例ではこの値は
2.5から3気圧である。配管80の長さは9mとなっている
ので圧力抑制プール21の冷却水は圧力差により配管80を
上昇し蓄水プール31へ流入する。蓄水プール31の水位が
3mより上昇すると、主制御器103からの信号により弁81
が閉じられ、弁70の開放を許容する信号が操作器102へ
送られる。このとき、圧力容器1の水位がシユラウド上
端から下へ5mの位置より低いと弁70が開放され、蓄水プ
ール31の冷却水は再び圧力容器1へ流入し、圧力容器1
の水位を炉心2より上部に保持する。このように、本実
施例では圧力差に基づくポンプ作用により、継続的に蓄
水プール31の冷却水を圧力容器1へ流入させることがで
きるため、圧力容器1の水位を炉心2の上部に長期間保
持することができる。このため、たとえば残留熱除去系
のポンプを削除することが可能となる。なお、本実施例
では蓄水プール31を冷却するのに外周プール92を用いた
が、別の方法、たとえばヒートパイプを用いても良いこ
とはもちろんである。
Still another embodiment of the present invention will be described with reference to FIGS. 13 and 14. The difference from the embodiment shown in FIG. 11 is that the water storage part of the water storage pool 31 and the water storage part of the pressure suppression pool 21 are communicated with each other by using a pipe 80, and The outer pool 92 is installed on the outside. A method of controlling the valves 70 and 81 in this embodiment will be described with reference to FIG. Accumulator
40 water level, from the signal of the differential pressure gauge 72 and the signal of the pressure gauge 73,
Calculated by correcting the density of the cooling water by the calculator 100,
The signal is sent to the main controller 103. The water level of the pressure vessel 1 is calculated from the signal of the differential pressure gauge 74 and the signal of the pressure gauge 75 by the calculator 10
The density of the cooling water is corrected by 1 to obtain the signal, and the signal is sent to the main controller 103. Further, the water level of the water storage pool 31 is calculated from the signal of the differential pressure gauge 82 and the signal of the pressure gauge 83 by a calculator.
The density of the cooling water is corrected by 104 to obtain the signal, and the signal is sent to the main controller 103. The main controller 103 is a pressure accumulator
When the water level of 40 is lower than a certain set value, for example, 0.1 m, and the water level of the pressure vessel 1 is lower than a certain set value, for example, the position of 5 m below the upper end of the shroud 3, the valve 70 is lowered.
Is sent to the operating device 102. Further, when the water level in the water storage pool 31 falls below a certain value, for example, 0.1 m, the main controller 103 sends a signal b for forcibly closing the valve 70 to the operating device 102 and a signal for opening the valve 81. Send to operation device 105. At this time, the priority of the signal b is higher than that of the signal a. Next, when the water level of the water storage pool is low, if it rises above a certain set value, for example 3 m, the main controller
103 sends a signal to the actuator 102 to allow the valve 70 to open,
A signal for closing 81 is sent to the operation unit 105. In such a nuclear reactor, assuming a coolant loss accident due to breakage of piping, for example, the water supply piping 6, the cooling water in the pressure vessel 1 flows out and the water level decreases. When the water level falls below a certain position, for example, 3 m below the upper end of the shroud 3, a signal for the automatic pressure reducing system is issued, and after a certain time delay, for example, 120 seconds, the valve 10 of the automatic pressure reducing system is opened. As a result, a part of the steam generated in the core 2 flows from the valve 10 through the pipe 20 into the water storage portion of the pressure suppression pool 21 and is condensed, so that the pressure in the pressure vessel 1 rapidly decreases. When the pressure inside the pressure container 1 becomes lower than the pressure inside the pressure accumulating container 40, the check valve 42 that prevents the cooling water inside the pressure accumulating container 40 from flowing back from the pipe 41 and the pressure container 1.
To flow into the pressure vessel 1 and maintain the water level above the core 2. When all the cooling water in the pressure accumulator 40 has flowed into the pressure vessel 1, the cooling water in the pressure vessel 1 evaporates due to heat generation in the core 2, and the water level gradually decreases. When the water level in the pressure vessel 1 drops below the position of 5 m below the upper end of the shroud 3, the main controller 103 sends a signal to the operating unit 102 to open the valve 70. When the valve 70 is opened, a part of the steam generated in the core 2 flows from the valve 70 through the pipe 30 into the upper space of the water storage pool 31. The steam flowing into the upper space of the water storage pool 31 further passes through the pressure equalizing pipe 32 and flows into the water storage portion of the pressure suppression pool 21 to be condensed. As a result, the pressure in the upper space of the water storage pool 31 becomes almost the same as the pressure in the pressure vessel 1, and the check valve that prevents the cooling water in the water storage pool 31 from flowing back from the pipe 33 and the pressure vessel 1 due to gravity. It flows through the pressure vessel 1 through 34 and keeps the water level in the pressure vessel 1 above the core 2. When all the cooling water in the water storage pool 31 flows into the pressure vessel 1, the valve 70 is closed and the valve 81 is opened by the signal from the main controller 103. In this embodiment, a part of the wall of the water storage pool 31 uses the wall of the steel containment vessel 7, and the outer peripheral pool 92 is installed outside the wall of the containment vessel 7. For this reason, the steam inside the water storage pool 31 is rapidly cooled by heat radiation through the wall of the storage container 7, and the pressure rapidly drops below atmospheric pressure. On the other hand, the pressure in the upper space of the pressure suppression pool 21 is the sum of the partial pressure of the non-condensable gas and the vapor partial pressure.
2.5 to 3 atmospheres. Since the length of the pipe 80 is 9 m, the cooling water in the pressure suppression pool 21 rises in the pipe 80 due to the pressure difference and flows into the water storage pool 31. The water level of the water storage pool 31
When it rises above 3 m, the signal from the main controller 103 causes the valve 81
Is closed and a signal is sent to the actuator 102 allowing the valve 70 to open. At this time, when the water level of the pressure vessel 1 is lower than the position 5 m below the upper end of the shroud, the valve 70 is opened, and the cooling water in the water storage pool 31 flows into the pressure vessel 1 again and the pressure vessel 1
The water level is maintained above the core 2. As described above, in this embodiment, the cooling water of the water storage pool 31 can be continuously flown into the pressure vessel 1 by the pumping action based on the pressure difference, so that the water level of the pressure vessel 1 is extended to the upper portion of the core 2. Can be held for a period of time. Therefore, for example, the pump of the residual heat removing system can be deleted. Although the outer peripheral pool 92 is used to cool the water storage pool 31 in the present embodiment, it goes without saying that another method, for example, a heat pipe may be used.

本実施例によれば、長期間冷却水を注入できるため、ポ
ンプ等の動的機器を削除できる効果がある。
According to this embodiment, since cooling water can be injected for a long period of time, there is an effect that dynamic equipment such as a pump can be deleted.

〔発明の効果〕〔The invention's effect〕

いずれの請求項の発明であつても、格納容器壁を有効利
用できるため設置率が向上し、また、有効水頭が高いた
め蓄水プールを低レベル位置に設置できる効果がある。
In any of the inventions, the wall of the storage container can be effectively used, so that the installation rate is improved, and since the effective head is high, the water storage pool can be installed at the low level position.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す縦断面図、第2図は本
発明の作動状態を示す縦断面図、第3図は第1図のA-A
矢視横断面図、第4図は本発明の効果を示すグラフ図、
第5図は第1図の実施例の部分詳細図、第6図は本発明
の他の実施例を示す縦断面図、第7図は本発明のさらに
他の実施例を示す縦断面図、第8図は第7図の実施例の
制御方法を示す図、第9図は本発明のさらに他の実施例
を示す縦断面図、第10図は第9図の実施例の部分断面
図、第11図は本発明のさらに他の実施例を示す縦断面
図、第12図は第11図の実施例の制御方法を示す図、第13
図は本発明のさらに他の実施例を示す縦断面図、第14図
は第13図の実施例の制御方法を示す図である。 1……圧力容器、2……炉心、3……シユラウド、4…
…ドライヤ、5……主蒸気管、6……給水管、7……格
納容器、10,11……自動減圧系の弁、21……圧力抑制プ
ール、31……蓄水プール、32……均圧管、34……逆止
弁、40……蓄圧容器、42……逆止弁、50……ベント管、
60……熱遮蔽板、70……弁、71……逆止弁、72……差圧
計、73……圧力計、74……差圧計、75……圧力計、81…
…弁、82……差圧計、83……圧力計、100……演算器、1
01……演算器、102……操作器、103……主演算器、104
……演算器、105……操作器。
FIG. 1 is a vertical sectional view showing an embodiment of the present invention, FIG. 2 is a vertical sectional view showing an operating state of the present invention, and FIG. 3 is an AA of FIG.
FIG. 4 is a transverse cross-sectional view taken along the arrow, and FIG. 4 is a graph showing the effect of the present invention.
FIG. 5 is a partial detailed view of the embodiment shown in FIG. 1, FIG. 6 is a vertical sectional view showing another embodiment of the present invention, and FIG. 7 is a vertical sectional view showing still another embodiment of the present invention. FIG. 8 is a diagram showing a control method of the embodiment of FIG. 7, FIG. 9 is a vertical sectional view showing still another embodiment of the present invention, and FIG. 10 is a partial sectional view of the embodiment of FIG. 11 is a longitudinal sectional view showing still another embodiment of the present invention, FIG. 12 is a view showing a control method of the embodiment of FIG. 11, and FIG.
FIG. 14 is a vertical sectional view showing still another embodiment of the present invention, and FIG. 14 is a view showing a control method of the embodiment of FIG. 1 ... Pressure vessel, 2 ... Reactor core, 3 ... Shroud, 4 ...
… Dryer, 5 …… Main steam pipe, 6 …… Water supply pipe, 7 …… Container, 10,11 …… Automatic decompression system valve, 21 …… Pressure suppression pool, 31 …… Water storage pool, 32 …… Pressure equalizing pipe, 34 …… Check valve, 40 …… Accumulator, 42 …… Check valve, 50 …… Vent pipe,
60 ... Heat shield plate, 70 ... Valve, 71 ... Check valve, 72 ... Differential pressure gauge, 73 ... Pressure gauge, 74 ... Differential pressure gauge, 75 ... Pressure gauge, 81 ...
… Valve, 82 …… Differential pressure gauge, 83 …… Pressure gauge, 100 …… Computer, 1
01 …… Calculator, 102 …… Operator, 103 …… Main calculator, 104
…… Calculator, 105 …… Operator.

フロントページの続き (72)発明者 河崎 照文 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 日高 政隆 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (56)参考文献 特開 昭62−237395(JP,A)Front page continuation (72) Terumi Kawasaki, Inventor, 1168 Moriyama-cho, Hitachi, Hitachi, Ibaraki Energy Research Institute, Ltd. (72) Masataka Hidaka, 1168, Moriyama-cho, Hitachi, Ibaraki, Hitachi, Ltd.Energy In the laboratory (56) Reference JP-A-62-237395 (JP, A)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】原子炉へ冷却水を注入する装置と原子炉で
発生した蒸気を凝縮する圧力抑制プールとからなる原子
炉の非常用炉心冷却装置において、圧力抑制プールとは
別置きの蓄水プールを設置し、原子炉と蓄水プールの上
部空間及び蓄水部との間にそれぞれ流路及び弁を設置
し、かつ、蓄水プールの上部空間と圧力抑制プールの蓄
水部とを均圧管で連通してあり、蓄水プール壁の一部は
原子炉圧力容器を取り囲む格納容器壁であることを特徴
とする非常用炉心冷却装置。
1. An emergency core cooling device for a nuclear reactor comprising a device for injecting cooling water into a reactor and a pressure suppression pool for condensing steam generated in the reactor, and water storage separate from the pressure suppression pool. A pool is installed, a flow path and a valve are installed between the reactor and the upper space of the water storage pool and the water storage section, respectively, and the upper space of the water storage pool and the water storage section of the pressure suppression pool are leveled. An emergency core cooling device, which is connected by pressure pipes, and a part of the water storage pool wall is a containment vessel wall surrounding the reactor pressure vessel.
【請求項2】特許請求の範囲第1項記載の非常用炉心冷
却装置において、蓄水プールは圧力抑制プールの上部に
置かれていることを特徴とする非常用炉心冷却装置。
2. The emergency core cooling system according to claim 1, wherein the water storage pool is placed above the pressure suppression pool.
【請求項3】特許請求の範囲第1項記載の非常用炉心冷
却装置において、原子炉と蓄水プールの上部空間との間
の弁は原子炉水位低下後、一定の時間遅れをもつて自動
的に開放する弁であることを特徴とする非常用炉心冷却
装置。
3. The emergency core cooling system according to claim 1, wherein the valve between the reactor and the upper space of the water storage pool is automatically operated with a certain time delay after the reactor water level is lowered. Emergency core cooling device characterized in that it is a valve that opens dynamically.
【請求項4】特許請求の範囲第1項記載の非常用炉心冷
却装置において、均圧管に圧力抑制プールからの逆流を
防止する逆止弁を設け、かつ、原子炉と蓄水プールの上
部空間との間の弁を原子炉への注水流量が低下し、原子
炉水位がある一定値より低下したときに開放することを
特徴とする非常用炉心冷却装置。
4. The emergency core cooling device according to claim 1, wherein the pressure equalizing pipe is provided with a check valve for preventing backflow from the pressure suppression pool, and the upper space of the reactor and the water storage pool. An emergency core cooling device characterized in that a valve between and is opened when the flow rate of water injected into the reactor decreases and the reactor water level falls below a certain value.
【請求項5】特許請求の範囲第1項記載の非常用炉心冷
却装置において、均圧管の上部を上部にゆくに従い広が
る形状にしたことを特徴とする非常用炉心冷却装置。
5. The emergency core cooling apparatus according to claim 1, wherein the pressure equalizing tube has a shape in which the upper portion of the pressure equalizing tube widens toward the upper portion.
【請求項6】特許請求の範囲第1項記載の非常用炉心冷
却装置において、格納容器内部に設けられた蓄水プール
の内部に格納容器壁を保護する熱遮蔽板を設置したこと
を特徴とする非常用炉心冷却装置。
6. The emergency core cooling device according to claim 1, wherein a heat shield plate for protecting the wall of the containment vessel is installed inside a water storage pool provided inside the containment vessel. Emergency core cooling system.
【請求項7】特許請求の範囲第4項記載の非常用炉心冷
却装置において、蓄水プールの上部空間と圧力抑制プー
ルの上部空間との間に流路及び弁を設置し、蓄水プール
の水位が低下したときに蓄水プールの上部空間と原子炉
との間の弁を閉め、蓄水プールの上部空間と圧力抑制プ
ールの上部空間との間の弁を開けることを特徴とする非
常用炉心冷却装置。
7. The emergency core cooling device according to claim 4, wherein a flow path and a valve are installed between the upper space of the water storage pool and the upper space of the pressure suppression pool, An emergency characterized by closing the valve between the upper space of the water storage pool and the reactor when the water level drops and opening the valve between the upper space of the water storage pool and the upper space of the pressure suppression pool. Core cooling device.
【請求項8】特許請求の範囲第4項記載の非常用炉心冷
却装置において、蓄水プールの蓄水部と圧力抑制プール
の蓄水部との間に流路及び弁を設置し、蓄水プールの水
位が低下したときに蓄水プールの上部空間と原子炉との
間の弁を閉めて蓄水プールの蓄水部と圧力抑制プールの
蓄水部との間の弁を開け、蓄水プールの水位が回復した
ときに蓄水プールの蓄水部と圧力抑制プールの蓄水部と
の間の弁を閉めて蓄水プールの上部空間と原子炉との間
の弁の開放を許容することを特徴とする非常用炉心冷却
装置。
8. The emergency core cooling system according to claim 4, wherein a flow path and a valve are installed between the water storage section of the water storage pool and the water storage section of the pressure suppression pool to store water. When the water level in the pool drops, close the valve between the upper space of the water storage pool and the reactor and open the valve between the water storage part of the water storage pool and the water storage part of the pressure suppression pool to store water. When the water level of the pool is restored, the valve between the water storage part of the water storage pool and the water storage part of the pressure suppression pool is closed to allow opening of the valve between the head space of the water storage pool and the reactor. An emergency core cooling device characterized by the above.
JP63235029A 1988-09-21 1988-09-21 Emergency core cooling system Expired - Fee Related JPH0762715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63235029A JPH0762715B2 (en) 1988-09-21 1988-09-21 Emergency core cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63235029A JPH0762715B2 (en) 1988-09-21 1988-09-21 Emergency core cooling system

Publications (2)

Publication Number Publication Date
JPH0283495A JPH0283495A (en) 1990-03-23
JPH0762715B2 true JPH0762715B2 (en) 1995-07-05

Family

ID=16980026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63235029A Expired - Fee Related JPH0762715B2 (en) 1988-09-21 1988-09-21 Emergency core cooling system

Country Status (1)

Country Link
JP (1) JPH0762715B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2507694B2 (en) * 1990-09-17 1996-06-12 株式会社日立製作所 Nuclear reactor equipment
US8687759B2 (en) * 2007-11-15 2014-04-01 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Internal dry containment vessel for a nuclear reactor
JP2015031684A (en) * 2013-08-07 2015-02-16 株式会社東芝 Nuclear power plant
KR101999737B1 (en) * 2017-11-13 2019-07-12 한국원자력연구원 Radioactive material reduction facility and nuclear power plant having the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237395A (en) * 1986-04-09 1987-10-17 株式会社東芝 Emergency core cooling device

Also Published As

Publication number Publication date
JPH0283495A (en) 1990-03-23

Similar Documents

Publication Publication Date Title
US5272737A (en) Nuclear reactor installation
JP2642763B2 (en) Reactor system
CN104299655A (en) A method of cooling a nuclear reactor
EP0531086A1 (en) Reactor core isolation cooling system
JPH07253492A (en) Boiling water nuclear reactor having active/passive composite safety system
CN104143361B (en) Passive containment spray system
WO1990001207A1 (en) Nuclear water reactor passive emergency cooling system
KR100813939B1 (en) Passive type emergency core cooling system for an integral reactor with a safeguard vessel
KR101250479B1 (en) Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and Method for heat transfer-function improvement using thereof
JP3159820B2 (en) Reactor containment equipment
JPH0684994B2 (en) Emergency core cooling system
CN109273109A (en) A kind of fusant containment gaseous-waste holdup system
US5295169A (en) Reactor containment facilities
JP3507547B2 (en) Pressure suppression containment system
JPH0762715B2 (en) Emergency core cooling system
JPH085772A (en) Reactor containment
JPH05180974A (en) Reactor, reactor cooling system and reactor power plant and its operational method
JP2934341B2 (en) Reactor containment cooling system
JP2001228280A (en) Reactor
JP2903819B2 (en) Reactor containment pressure suppression equipment
JP3149553B2 (en) Reactor equipment
JPH08334584A (en) System and method for control of water inventory of condenser pool in boiling water reactor
JPH05323084A (en) Reactor containment
JP2000019285A (en) Reactor heat removal system
JP3028842B2 (en) Reactor containment vessel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 13

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees