JPH0589919A - Low resistance current lead and low resistance current lead unit - Google Patents

Low resistance current lead and low resistance current lead unit

Info

Publication number
JPH0589919A
JPH0589919A JP27475691A JP27475691A JPH0589919A JP H0589919 A JPH0589919 A JP H0589919A JP 27475691 A JP27475691 A JP 27475691A JP 27475691 A JP27475691 A JP 27475691A JP H0589919 A JPH0589919 A JP H0589919A
Authority
JP
Japan
Prior art keywords
silver
current lead
low resistance
resistance current
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27475691A
Other languages
Japanese (ja)
Inventor
Seiji Hayashi
征治 林
Ichiro Shigaki
一郎 志垣
Kazuyuki Shibuya
和幸 渋谷
Toshio Egi
俊雄 江木
Rikuro Ogawa
陸郎 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27475691A priority Critical patent/JPH0589919A/en
Publication of JPH0589919A publication Critical patent/JPH0589919A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To restrain the entry of heat into an extremely low temperature part by using silver or silver alloy for longitudinally bonding at least two current leads, which are made of oxide superconductors, and heating and melting it under a pressurized oxygen atmosphere so that the current lead is freely bendable. CONSTITUTION:By utilizing the property of silver that when heated under an oxygen pressure atmosphere it has a lower melting point than that of an oxide superconductor, many superconductors, if short, are longitudinally connected together with silver used as bond. In this way, of current leads of optional length can be obtained with reasonable curvature as a whole because silver is more flexible than the superconductor to allow external force in bending- direction to be absorbed at the bonded parts. Silver is used exactly only as bond and the main part of the lead is therefore made of a low heat conductivity conductor to block heat conduction at the conductor part and prevent the entry of heat. Concretely a lead 1 is made up with units 2a- and bonded parts 3a- provided with electrifying area enlarged portions 4a-.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体を主た
る構成素材とする電流リード材及び電流リードユニット
に関し、殊に通電有効面積が広くて大電流の通電が可能
であり、且つ長さを自由に変えることのできる低抵抗電
流リード及びその様な電流リードを簡単に製造し得る様
に工夫された低抵抗電流リードユニットに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current lead material and a current lead unit whose main constituent material is an oxide superconductor, and in particular, has a wide effective current-carrying area and is capable of carrying a large current and has a length. The present invention relates to a low resistance current lead unit that can be freely changed, and a low resistance current lead unit devised so that such a current lead can be easily manufactured.

【0002】[0002]

【従来の技術】超電導技術の発展は最近目覚ましいもの
があり、強磁場マグネットや大電流容量導電体等を利用
した応用分野も著しく拡大してきている。
2. Description of the Related Art The development of superconducting technology has been remarkable recently, and the fields of application utilizing strong magnetic field magnets, large-current-capacity conductors, etc. have been remarkably expanding.

【0003】ところで超電導材料を利用するに当たって
は、超電導遷移温度(Tc)を確保するため、金属系超
電導材料では液体ヘリウムレベルまで、また酸化物系超
電導材料でも少なくとも液体窒素レベルの極低温状態に
まで冷却する必要があり、実用化に当たっては室温状態
の電源部から極低温状態に保たれた超電導部材への電流
リードが必要となる。
When using a superconducting material, in order to secure a superconducting transition temperature (Tc), a metallic superconducting material is brought to a liquid helium level, and an oxide superconducting material is brought to a cryogenic state of at least a liquid nitrogen level. It needs to be cooled, and for practical use, a current lead from the power supply unit at room temperature to the superconducting member kept at a cryogenic temperature is required.

【0004】そして該電流リードを通して超電導部材へ
大電流を効率よく供給しなければならないので、従来は
主として良導電材料である銅棒等の金属材が使用されて
きた。しかしながら銅棒等の良導電材料といえども大電
流を流すとジュール熱が発生するので、銅棒等はかなり
太径のものとせざるを得ず、たとえば1000A の電流を供
給するには直径6mm程度の銅棒リードが必要になる。し
かし銅棒等は熱伝導度も大きいので、この様な太径のも
のを使用すると外部から極低温部への熱侵入量も大きく
なり、冷媒である液体ヘリウムや液体窒素の蒸発量が増
大するという大きな欠点が生じてくる。
Since a large current must be efficiently supplied to the superconducting member through the current lead, conventionally, a metal material such as a copper rod which is a good conductive material has been mainly used. However, even with good conductive materials such as copper rods, Joule heat is generated when a large current is applied. Therefore, copper rods and the like have to be made quite thick. For example, to supply a current of 1000 A, a diameter of about 6 mm is required. Requires copper rod lead. However, since copper rods and the like also have high thermal conductivity, the use of such a large diameter wire also increases the amount of heat invasion from the outside to the cryogenic part, increasing the evaporation amount of liquid helium and liquid nitrogen. That is a big drawback.

【0005】そこでこうした問題を軽減するための手段
として、酸化物超電導体を電流リードとして利用する方
法が提案された。即ち酸化物超電導体は、近年における
Tcの上昇によって100 〜130Kといった温度域でも超電
導特性を示すものが開発されており、且つ超電導状態で
は熱伝導度も小さくなるという特性があるので、銅棒リ
ード等に指摘される前述の様な問題点も解消される。
Therefore, as a means for alleviating these problems, a method of using an oxide superconductor as a current lead has been proposed. In other words, oxide superconductors have been developed that exhibit superconducting properties even in the temperature range of 100 to 130K due to the increase of Tc in recent years, and the thermal conductivity in the superconducting state is also small. The above-mentioned problems pointed out by the above are also solved.

【0006】[0006]

【発明が解決しようとする課題】電流リードとして実用
可能な酸化物系超電導体としては、燒結タイプの酸化
物超電導体、単結晶質の酸化物超電導体、及びテー
プ状の酸化物と銀を積み合わせた複合体等が知られてい
る。しかしの燒結タイプのものは、非常に脆弱である
ため長尺のものが得られ難く、しかも常電導状態に移転
したときに焼損し易いという欠点があり、またの単結
晶質のものは、単結晶形成技術及び装置の制約により長
尺のものが得られ難く、またの場合と同様に常電導状
態移転時の焼損が激しく、且つ熱サイクルを受けること
により力学的強度と電導性が急速に低下するという欠点
がある。更にの複合タイプのものは、銀テープとの複
合により脆性が改善されており、長尺物の成形が容易で
あるという利点はあるが、複合された銀シースを通して
多量の熱侵入が起こるので、酸化物系超電導体を活用す
ることとした当初の目的が著しく減殺される。
As an oxide superconductor that can be practically used as a current lead, a sintered oxide superconductor, a single crystalline oxide superconductor, and a tape-shaped oxide and silver are stacked. Combined complexes and the like are known. However, the sintered type has a drawback that it is difficult to obtain a long type because it is very fragile, and moreover, it is easily burned when it is transferred to the normal conducting state. It is difficult to obtain long ones due to crystal formation technology and equipment restrictions. Also, as in the case above, there is severe burnout at the time of transition to the normal conduction state, and mechanical strength and electrical conductivity decrease rapidly due to thermal cycles. There is a drawback that Further, the composite type has an advantage that brittleness is improved by combining with a silver tape and a long product can be easily molded, but since a large amount of heat penetration occurs through the composite silver sheath, The original purpose of utilizing oxide superconductors is significantly diminished.

【0007】本発明は上記の様な問題点に着目してなさ
れたものであって、その目的は、極低温状態で優れた導
電性を示すと共に、熱侵入量が少なく、且つ任意の長さ
のものを容易に得ることができ、しかも焼損等を受けた
場合は容易に補修し得る様な低抵抗電流リード、及び該
電流リードの製造に適した構造の電流リードユニットを
提供しようとするものである。
The present invention has been made by paying attention to the problems as described above, and its purpose is to exhibit excellent conductivity in an extremely low temperature state, a small amount of heat penetration, and an arbitrary length. The present invention aims to provide a low resistance current lead that can be easily obtained, and can be easily repaired when it is damaged by fire, and a current lead unit having a structure suitable for manufacturing the current lead. Is.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る低抵抗電流リードの構成は、酸化
物超電導体よりなる2つの電流リードユニットを、銀ま
たは銀合金を介して長手方向に接合してなるところに要
旨を有するものであり、銀または銀合金による接合部
は、銀または銀合金を加圧酸素雰囲気下で加熱溶融して
接合することによって、酸化物超電導体の導電特性を低
下させることなく確実な接合状態を受けることができ
る。また該接合部の外面側に銀または銀合金製の通電面
積拡大部を形成しておけば、該接合部の通電性が高めら
れて通電ロスを少なくすることができる。酸化物超電導
体としては、超電導特性を示す全ての酸化物を利用でき
るが、これらの中でもたとえばBi2Sr2CaCu2Ox 相(Bi−
2212相)等の単結晶質からなるものは、優れた超電導特
性を示すものとして賞用される。また電流リードユニッ
トとして、酸化物超電導体よりなる棒状物の両端に、嵌
合面を備えた銀または銀合金製結合部を予め一体的に形
成しておけば、該ユニットを使用することによって任意
の長さの電流リードを簡単に製造したり、あるいは焼損
等を受けた電流リード部分を簡単に補修することができ
るので好ましい。
The structure of the low resistance current lead according to the present invention, which has been able to solve the above-mentioned problems, has two current lead units made of an oxide superconductor which are longitudinally arranged via silver or a silver alloy. The joint part made of silver or a silver alloy is formed by heating and melting the silver or silver alloy in a pressurized oxygen atmosphere to join the oxide superconductor. It is possible to receive a reliable joining state without deteriorating the characteristics. Further, if an energized area enlarged portion made of silver or a silver alloy is formed on the outer surface side of the joint portion, the energization property of the joint portion is enhanced and the energization loss can be reduced. As the oxide superconductor, all oxides exhibiting superconducting properties can be used. Among them, for example, Bi 2 Sr 2 CaCu 2 O x phase (Bi−
2212 phase) and other single crystalline materials are prized for showing excellent superconducting properties. Further, as a current lead unit, if silver or silver alloy joint portions having fitting surfaces are integrally formed in advance at both ends of a rod-shaped object made of an oxide superconductor, the unit can be optionally used. This is preferable because it is possible to easily manufacture a current lead having a length of, or to easily repair a current lead portion that has been damaged by burning or the like.

【0009】[0009]

【作用及び実施例】酸化物超電導体は優れた超電導特性
を有しており、これが電流リード材として優れたもので
あることも先に述べた通りである。しかしながら酸化物
超電導体は非常に脆弱であるため長尺のものが得られ難
く、殊にB1−2212相等の単結晶質の酸化物超電導体はそ
れ自身長尺物の成形が困難であるため、電流リード材と
しての適性を欠く。
FUNCTION AND EXAMPLES Oxide superconductors have excellent superconducting properties, and as described above, they are excellent as current lead materials. However oxide superconductor hardly be obtained as long for a very fragile, especially B 1 -2,212 for single crystalline oxide superconductor of equality is difficult to mold its own long product , Lacks suitability as a current lead material.

【0010】そこで本発明者らは、酸化物超電導体を主
体とし且つ長さを任意に調整し得る様な低抵抗電流リー
ドの開発を期して研究を進めた。その結果、短尺の酸化
物超電導体であっても、これを良導電体である銀または
銀合金(以下、銀で代表する)を介して接合すれば、組
合せ数を変えることによって任意の長さのものが得ら
れ、しかも当該接合部を構成する銀は可撓性を有してお
り、曲げ方向の外力がかかったときは当該接合部で歪が
吸収されるため、長尺物とした場合でも可撓性が著しく
改善され、湾曲自在性を持たせ得ることが確認された。
Therefore, the present inventors proceeded with the research in anticipation of the development of a low resistance current lead which is mainly composed of an oxide superconductor and whose length can be arbitrarily adjusted. As a result, even if a short length oxide superconductor is joined through silver or a silver alloy (hereinafter represented by silver) that is a good conductor, the length can be changed by changing the number of combinations. In addition, the silver constituting the joint is flexible, and strain is absorbed by the joint when an external force in the bending direction is applied. However, it was confirmed that the flexibility was remarkably improved, and that flexibility could be imparted.

【0011】しかも本発明者らが別途確認したところに
よると、銀の融点は加熱雰囲気中の酸素分圧によって著
しく変わり、該酸素分圧を高めることにより、酸化物超
電導体よりもかなり低温で溶融させることができる。即
ち図1は、加熱雰囲気中の酸素分圧(PO2)と銀の融点の
関係を示したグラフであり、通常の大気雰囲気程度の酸
素分圧下における銀の融点は約950 ℃であって、殆どの
酸化物超電導体の融点(900 ℃程度以上)よりも高温で
あり、銀を溶融状態にして完全な接合状態を得ようとす
ると酸化物超電導体も溶融し、特に単結晶質の酸化物超
電導体の場合は当該接合部が非晶質となって超電導特性
が著しく損なわれる。
Further, according to another confirmation by the present inventors, the melting point of silver significantly changes depending on the oxygen partial pressure in the heating atmosphere, and by increasing the oxygen partial pressure, the melting point is considerably lower than that of the oxide superconductor. Can be made That is, FIG. 1 is a graph showing the relationship between the partial pressure of oxygen (PO 2 ) in the heating atmosphere and the melting point of silver. The melting point of silver under the partial pressure of oxygen in a normal atmosphere is about 950 ° C. The temperature is higher than the melting point of most oxide superconductors (about 900 ° C or higher), and when trying to obtain a completely joined state by melting silver, the oxide superconductor also melts, especially single-crystal oxides. In the case of a superconductor, the junction becomes amorphous and the superconducting properties are significantly impaired.

【0012】ところが加熱雰囲気中の酸素分圧(PO
2 )を高めるにつれて銀の融点は急激に低下し、PO2
が10気圧になると銀の融点は約880℃に低下し、P
2 が100気圧になると銀の融点は約760℃にまで
低下する。これに対し通常の酸化物超電導体の融点は、
たとえば「JJAP.26(1990)、2729〜2
731」にも記載されている様に、酸素分圧が上昇する
につれて高くなる。従って、加圧酸素雰囲気下で酸化物
超電導体と銀を加熱すると、酸化物超電導体は溶融させ
ることなく銀のみを溶融させることができ、その結果、
銀を接合材として酸化物超電導体を広い接触面積で確実
に接合することができ、それにより接合部の通電抵抗は
最少限に低減して大電流の通電が可能となる。
However, the oxygen partial pressure (PO
The melting point of silver as enhancing 2) is rapidly lowered, PO 2
At 10 atm, the melting point of silver drops to about 880 ℃,
When O 2 reaches 100 atm, the melting point of silver drops to about 760 ° C. On the other hand, the melting point of an ordinary oxide superconductor is
For example, "JJAP.26 (1990), 2729-2.
731 ", it increases as the oxygen partial pressure increases. Therefore, when the oxide superconductor and silver are heated in a pressurized oxygen atmosphere, only the silver can be melted without melting the oxide superconductor, and as a result,
Oxide superconductors can be reliably bonded to each other with a large contact area by using silver as a bonding material, whereby the current-carrying resistance at the bonding portion can be reduced to a minimum and a large current can be carried.

【0013】この様に本発明は、加圧酸素雰囲気下の加
熱で融点が酸化物超電導体の融点よりも低くなる、とい
う銀の特性を利用したものであり、短尺の酸化物超電導
体であっても、銀を接合材としてこれらを長手方向に多
数接続することによって、必要に応じた任意の長さの電
流リードを得ることができる。しかも銀は酸化物超電導
体に比べて柔軟性を有しており、曲げ方向の外力を受け
た場合でも当該銀の接合部で外力を吸収するので、電流
リード全体としては適度の湾曲性を示す。更に接合部を
構成する銀自体は熱伝導度も高く、熱侵入の原因になる
ことが考えられるが、銀はあくまでも接合材として使用
されるだけであって電流リードの主体は低熱伝導度の酸
化物超電導体によって構成されており、熱の伝達は当該
酸化物超電導体の部分で阻止されるので、熱侵入を起こ
す恐れもない。
As described above, the present invention utilizes the characteristic of silver that the melting point becomes lower than the melting point of the oxide superconductor when heated in a pressurized oxygen atmosphere, and is a short oxide superconductor. However, by connecting a large number of these in the longitudinal direction using silver as a bonding material, it is possible to obtain a current lead having an arbitrary length as necessary. Moreover, silver is more flexible than oxide superconductors, and even when subjected to an external force in the bending direction, the external force is absorbed at the joint of the silver, so the current lead as a whole exhibits appropriate curvature. .. Furthermore, the silver itself forming the joint has a high thermal conductivity, which may cause heat intrusion. However, silver is only used as a joining material, and the main component of the current lead is oxidation with low thermal conductivity. Since it is composed of a physical superconductor and heat transfer is blocked at the oxide superconductor portion, there is no risk of heat intrusion.

【0014】ところで接合部を構成する銀は、金属の中
でも最も導電性の高いものの1つであるが、酸化物超電
導体に比べると極低温条件下での導電性が低く、そのた
め銀接合部における通電抵抗がやや大きくなって通電ロ
スを生じることがある。しかしこうした通電ロスは、た
とえば図2の電流リード(要部断面説明図)に示す如
く、酸化物超電導体よりなる電流リードユニット2a,
2b,…と銀による接合部3a,3b,…の外面側に銀
(または銀合金)製の通電面積拡大部4a,4b,…を
形成し、該接合部の通電量を高めることによって、銀接
合部に生じる通電ロスを抑えることができる。
By the way, the silver constituting the joint is one of the highest in conductivity among metals, but it has a lower conductivity under cryogenic conditions than an oxide superconductor, and therefore silver in the silver joint. The energization resistance may increase slightly and energization loss may occur. However, such energization loss is caused by the current lead unit 2a made of an oxide superconductor, as shown in the current lead of FIG.
.. and silver joints 3a, 3b, .. .. are formed on the outer surface side of silver (or silver alloy) energized area enlarged portions 4a, 4b ,. It is possible to suppress the energization loss generated at the joint.

【0015】尚、上記銀製通電面積拡大部は、あくまで
も接合部の通電量を増大するために設けられるものであ
るから、接合部の全周に亘って設けなければならない訳
ではなく、要は相互に接合される電流リードユニット間
に連結されるものであれば、帯状に2箇所もしくは3箇
所以上に形成したものであってもかまわない。また該銀
製の通電面積拡大部を接合する際にも、前記と同様の趣
旨で、該通電面積拡大用の銀製部材を加圧酸素雰囲気下
に加熱して溶融接合することが望まれる。
Since the silver energization area enlarging portion is provided only to increase the energization amount of the joint, it does not have to be provided over the entire circumference of the joint, and the essential point is mutual. It may be formed in two or three or more strips as long as it is connected between the current lead units joined to each other. Also, when joining the silver energized area enlarging portion, it is desired to heat and join the energized area enlarging silver member in a pressurized oxygen atmosphere for the same purpose as above.

【0016】図3は本発明に係る電流リードの他の実施
例を示したものであり、銀製接合部3a,3b,…を介
して接合された複数の電流リードユニット2a,2bよ
りなる電流リード1の外周面を有機質皮膜5によって被
覆し、熱サイクルを受けたときのリード本体の劣化抑制
を図っている。ここで使用される有機質皮膜としてはた
とえば低温用エポキシ樹脂(品名「スタイキャスト」)
やポリエステル樹脂等が例示される。
FIG. 3 shows another embodiment of the current lead according to the present invention. The current lead is composed of a plurality of current lead units 2a, 2b joined through silver joints 3a, 3b, .... The outer peripheral surface of No. 1 is covered with an organic film 5 to suppress deterioration of the lead body when subjected to a thermal cycle. The organic film used here is, for example, low temperature epoxy resin (product name "Stycast")
Examples include polyester resins and the like.

【0017】また図4は本発明の更に他の実施例を示し
たものであり、断面積の異なる複数の電流リードユニッ
ト2a,2b,…を銀製接合部3a,3b,…を介して
接合した構造のものを示している。即ち本発明の電流リ
ードは、前述の如く主として極低温度と低温ないし常温
の電源部とを電気的に接続するために設けられるもので
あり、酸化物超電導体の通電性は温度が高くなるにつれ
て低下してくる傾向がある。そこで図4に示す如くリー
ドユニットの断面積を高温側になるほど大きくしてやれ
ば、高温側の通電量を高めることができ、極低温部への
大電流の供給を一段と円滑に行なうことができる。
FIG. 4 shows still another embodiment of the present invention, in which a plurality of current lead units 2a, 2b, ... Having different cross-sectional areas are joined via silver joints 3a, 3b ,. The structure is shown. That is, the current lead of the present invention is provided mainly for electrically connecting the extremely low temperature and the low temperature or normal temperature power source portion as described above, and the conductivity of the oxide superconductor increases as the temperature increases. It tends to decrease. Therefore, if the cross-sectional area of the lead unit is increased toward the high temperature side as shown in FIG. 4, the energization amount on the high temperature side can be increased, and a large current can be more smoothly supplied to the cryogenic portion.

【0018】更に図5は電流リードユニットの好ましい
構造を例示する断面説明図であり、酸化物超電導体から
なるリードユニット2の両端に、相互に嵌合する構造の
銀製結合部6a,6bが一体的に形成されている。この
様な構成としておけば、図5に破線で示す如く当該結合
部6a,6bによって複数のリードユニット2a,2
b,…を嵌合接続した状態で加圧酸素雰囲気に装入して
加熱し、該結合部を溶融させることによって確実な溶融
接合状態を得ることができ、接合作業が著しく簡素化さ
れるので有利である。尚結合部6a,6bの形状、構造
は図示したものに限定される訳ではなく、任意の形状・
構造とすることができる。
Further, FIG. 5 is a cross-sectional explanatory view illustrating a preferred structure of the current lead unit, in which both ends of the lead unit 2 made of an oxide superconductor are integrally formed with silver coupling portions 6a and 6b having a structure of fitting with each other. Have been formed in the same way. With such a configuration, as shown by the broken line in FIG. 5, a plurality of lead units 2a, 2 are formed by the connecting portions 6a, 6b.
Since b, ... Are fitted and connected in a pressurized oxygen atmosphere and heated to melt the joint portion, a reliable melted joint state can be obtained, and the jointing work is remarkably simplified. It is advantageous. The shapes and structures of the connecting portions 6a and 6b are not limited to those shown in the figures, and any shape
It can be a structure.

【0019】[0019]

【発明の効果】本発明は以上の様に構成されており、そ
の効果を要約すると次の通りである。 (1) 銀を接合材として酸化物超電導体同士を溶融接合し
たものであり、優れた導電性を有しているので大電流の
通電が可能であり、たとえば直径5mmのリードを使用し
た場合、77Kで500A以上の通電が行なえる。 (2) 熱伝導度の小さい酸化物超電導体を主たる構成材と
するものであるから、極低温度への熱侵入も最少限に抑
えられる。 (3) リードユニットの組合せ数を変えることによって任
意の長さの電流リードを得ることができる。 (4) 接合部が軟質の銀によって構成されているので、長
尺物であっても優れた可撓性を示し、自由に曲げること
ができ、また長手方向に生じる熱伸縮に伴なう応力も当
該接合部で吸収される。 (5) 部分的に焼損を起こした場合でも、その部分だけを
切除して他のリードユニットと交換して簡単に補修する
ことができる。 (6) リード表面を有機質皮膜で被覆することにより、熱
サイクルに対する抵抗力を高めることができる。 (7) 両端に銀製結合部の形成されたリードユニットを使
用すれば、これらを組合わせた溶融接合作業を一段と簡
単に行なうことができる。
The present invention is configured as described above, and the effects thereof are summarized as follows. (1) Oxide superconductors are melt-bonded to each other using silver as a bonding material, and they have excellent conductivity and can carry a large current. For example, when using a lead with a diameter of 5 mm, It is possible to energize more than 500A at 77K. (2) Since an oxide superconductor having a low thermal conductivity is the main constituent material, heat intrusion to extremely low temperatures can be suppressed to a minimum. (3) A current lead of arbitrary length can be obtained by changing the number of combinations of lead units. (4) Since the joint is made of soft silver, it exhibits excellent flexibility even for long products, can be bent freely, and has stress due to thermal expansion and contraction in the longitudinal direction. Is also absorbed at the joint. (5) Even if partial burnout occurs, only that part can be cut out and replaced with another lead unit for easy repair. (6) By coating the surface of the lead with an organic film, the resistance to heat cycles can be increased. (7) If a lead unit having silver joints formed at both ends is used, a fusion-bonding operation combining these can be performed further easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】加熱雰囲気中の酸素分圧(PO2 )と銀の融点
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the oxygen partial pressure (PO 2 ) in a heating atmosphere and the melting point of silver.

【図2】本発明に係る電流リードを例示する要部断面説
明図である。
FIG. 2 is a cross-sectional explanatory view of main parts illustrating a current lead according to the present invention.

【図3】本発明に係る他の電流リードを例示する要部断
面説明図である。
FIG. 3 is a cross-sectional explanatory view of a main part illustrating another current lead according to the present invention.

【図4】本発明に係る更に他の電流リードを例示する要
部断面説明図である。
FIG. 4 is a cross-sectional explanatory view of main parts illustrating still another current lead according to the present invention.

【図5】本発明に係る電流リードユニットを例示する断
面説明図である。
FIG. 5 is a cross-sectional explanatory view illustrating a current lead unit according to the present invention.

【符号の説明】[Explanation of symbols]

1 電流リード 2,2a,2b,2c 電流リードユニット 3a,3b,3c 銀製接合部 4a,4b,4c 通電面積拡大部 5 有機質皮膜 6a,6b 銀製結合部 1 Current Leads 2, 2a, 2b, 2c Current Lead Units 3a, 3b, 3c Silver Joints 4a, 4b, 4c Current Enlarged Area 5 Organic Films 6a, 6b Silver Joints

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体よりなる少なくとも2つ
の電流リードユニットを、銀または銀合金を介して長手
方向に接合したものであることを特徴とする低抵抗電流
リード。
1. A low resistance current lead characterized in that at least two current lead units made of an oxide superconductor are joined in the longitudinal direction via silver or a silver alloy.
【請求項2】 銀または銀合金を、加圧酸素雰囲気下に
加熱溶融させて電流リードユニット同士を接合したもの
である請求項1記載の低抵抗電流リード。
2. The low resistance current lead according to claim 1, wherein the current lead units are joined by heating and melting silver or a silver alloy in a pressurized oxygen atmosphere.
【請求項3】 酸化物超電導体が単結晶質である請求項
1または2記載の低抵抗電流リード。
3. The low resistance current lead according to claim 1, wherein the oxide superconductor is single crystalline.
【請求項4】 銀または銀合金よりなる接合部の外面側
に、銀または銀合金製の通電面積拡大部を形成したもの
である請求項1〜3のいずれか記載の低抵抗電流リー
ド。
4. The low resistance current lead according to claim 1, wherein an energized area enlarged portion made of silver or a silver alloy is formed on the outer surface side of the joint portion made of silver or a silver alloy.
【請求項5】 銀または銀合金製の通電面積拡大部が、
銀または銀合金を加圧酸素雰囲気下に加熱溶融して接合
部外面側に形成されたものである請求項4記載の低抵抗
電流リード。
5. The energized area expanding portion made of silver or a silver alloy,
5. The low resistance current lead according to claim 4, which is formed on the outer surface side of the joint by heating and melting silver or a silver alloy in a pressurized oxygen atmosphere.
【請求項6】 外周面が有機皮膜で被覆されたものであ
る請求項1〜5のいずれかに記載の低抵抗電流リード。
6. The low resistance current lead according to claim 1, wherein the outer peripheral surface is coated with an organic film.
【請求項7】 酸化物超電導体よりなる電流リードユニ
ットの両端に、嵌合面を備えた銀または銀合金製結合部
を形成してなることを特徴とする低抵抗電流リードユニ
ット。
7. A low resistance current lead unit comprising a current lead unit made of an oxide superconductor, and silver or silver alloy joint portions having mating surfaces formed on both ends thereof.
JP27475691A 1991-09-25 1991-09-25 Low resistance current lead and low resistance current lead unit Withdrawn JPH0589919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27475691A JPH0589919A (en) 1991-09-25 1991-09-25 Low resistance current lead and low resistance current lead unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27475691A JPH0589919A (en) 1991-09-25 1991-09-25 Low resistance current lead and low resistance current lead unit

Publications (1)

Publication Number Publication Date
JPH0589919A true JPH0589919A (en) 1993-04-09

Family

ID=17546146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27475691A Withdrawn JPH0589919A (en) 1991-09-25 1991-09-25 Low resistance current lead and low resistance current lead unit

Country Status (1)

Country Link
JP (1) JPH0589919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107393652A (en) * 2017-06-01 2017-11-24 上海超导科技股份有限公司 A kind of yttrium system superconducting tape with sealing joint in low-resistance and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107393652A (en) * 2017-06-01 2017-11-24 上海超导科技股份有限公司 A kind of yttrium system superconducting tape with sealing joint in low-resistance and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100669214B1 (en) Superconducting articles and superconducting coils
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP5005582B2 (en) Superconducting current lead manufacturing method
CN108140961B (en) Connector for superconducting conductors and use of a connector
JPH11144938A (en) Current lead device and refrigerator-cooled superconducting magnet
CN1604417B (en) Jointing structure and jointing method for superconducting cable
JP2012256744A (en) Superconductive coil
JP4402928B2 (en) Oxide superconductor conducting element
JPH0589919A (en) Low resistance current lead and low resistance current lead unit
JP3018534B2 (en) High temperature superconducting coil
JP6913570B2 (en) Superconducting tape wire, superconducting current lead using this superconducting tape wire, permanent current switch and superconducting coil
JP5037193B2 (en) Oxide superconducting conductor conducting element
JP2549705B2 (en) How to connect oxide superconducting conductors
JP6871117B2 (en) High-temperature superconducting coil device and high-temperature superconducting magnet device
AU724690B2 (en) High temperature superconducting cable and process for manufacturing the same
JP4728847B2 (en) Oxide superconductor conducting element
JP5037146B2 (en) Oxide superconductor energization element and manufacturing method thereof
JPH03156809A (en) Application of oxide superconductive conductor
CN115547571A (en) Flexible HTS current lead
JPH07135034A (en) Connecting method for superconducting wire
JPH0787138B2 (en) Superconducting coil device
JP7438533B2 (en) Ultra-low resistance connection method between high-temperature oxide superconducting wire and metallic superconducting wire
JP2770247B2 (en) Method for producing superconducting composite with electrode
JPH04269471A (en) Joint part of superconducting wire
JPH04188706A (en) Superconducting coil

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203