JP4728847B2 - Oxide superconductor conducting element - Google Patents

Oxide superconductor conducting element Download PDF

Info

Publication number
JP4728847B2
JP4728847B2 JP2006069613A JP2006069613A JP4728847B2 JP 4728847 B2 JP4728847 B2 JP 4728847B2 JP 2006069613 A JP2006069613 A JP 2006069613A JP 2006069613 A JP2006069613 A JP 2006069613A JP 4728847 B2 JP4728847 B2 JP 4728847B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
electrode terminal
taper
tip
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006069613A
Other languages
Japanese (ja)
Other versions
JP2007250269A (en
Inventor
英一 手嶋
芳生 平野
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006069613A priority Critical patent/JP4728847B2/en
Publication of JP2007250269A publication Critical patent/JP2007250269A/en
Application granted granted Critical
Publication of JP4728847B2 publication Critical patent/JP4728847B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は酸化物超電導体通電素子に関し、例えば、電流リードや限流器、永久電流スイッチ等に使用する酸化物超電導体を用いた通電素子に用いて好適な技術に関する。   The present invention relates to an oxide superconductor energization element, for example, a technique suitable for use in an energization element using an oxide superconductor used for a current lead, a current limiter, a permanent current switch, or the like.

酸化物超電導体を用いると、電気抵抗がゼロで大電流を流せるので、電流リードや限流器、永久電流スイッチ等の通電素子に用いられる。このような酸化物超電導体通電素子は、酸化物超電導体と、外部電源等に接続するための電極端子とから構成される。   If an oxide superconductor is used, a large current can flow with zero electrical resistance. Therefore, it is used for current-carrying elements such as current leads, current limiters, and permanent current switches. Such an oxide superconductor energization element is composed of an oxide superconductor and an electrode terminal for connection to an external power source or the like.

電極端子部材としては、大電流を流す通電素子であることから、電極端子でのジュール発熱を低くするために、電気的良導体である銅や銀、アルミニウム等が用いられる。また、酸化物超電導体は機械的強度が低いので、支持体で補強される場合もある。   Since the electrode terminal member is a current-carrying element that passes a large current, copper, silver, aluminum, or the like, which is a good electrical conductor, is used to reduce Joule heat generation at the electrode terminal. In addition, since the oxide superconductor has low mechanical strength, it may be reinforced with a support.

支持体に関しては、冷却時に酸化物超電導体に発生する熱応力を小さくするため、酸化物超電導体に対して熱膨張係数が近い材料を用いることを提案されているが、電極端子部材に関しては、電気的良導体でなければならないと言う制約があるため、酸化物超電導体に対して熱膨張係数が近い材料を用いることができなかった。そのため、電極端子との接合面付近の酸化物超電導体にクラック等が発生し易く、酸化物超電導体通電素子の臨界電流が低下するという問題があった。   Regarding the support, in order to reduce the thermal stress generated in the oxide superconductor during cooling, it has been proposed to use a material having a thermal expansion coefficient close to that of the oxide superconductor. Due to the restriction that it must be a good electrical conductor, a material having a thermal expansion coefficient close to that of an oxide superconductor could not be used. As a result, cracks and the like are likely to occur in the oxide superconductor near the joint surface with the electrode terminal, and there is a problem that the critical current of the oxide superconductor energization element is reduced.

そこで、この問題を解決する手段として、特許文献1では、電極端子を電気的良導体と該電気的良導体よりも熱膨張係数が小さい熱収縮調整体との複合体とした酸化物超伝導体通電電子が提案されている。   Therefore, as means for solving this problem, in Patent Document 1, an oxide superconductor energized electron in which an electrode terminal is a composite of a good electrical conductor and a thermal contraction adjusting body having a smaller thermal expansion coefficient than that of the good electrical conductor. Has been proposed.

特開2004−47259号公報JP 2004-47259 A

上述したように、電極端子を電気的良導体と該電気的良導体よりも熱膨張係数が小さい熱収縮調整体との複合体とすることで、酸化物超電導体と電極端子との熱膨張係数を近づけることができ、冷却時に酸化物超電導体に発生する熱応力を低減できる。その結果、酸化物超電導体通電素子の臨界電流が低下することを防止することができる。しかしながら、電極端子を電気的良導体と該電気的良導体よりも熱膨張係数が小さい熱収縮調整体との複合体とすることは、製作工程的に煩雑であり、製造費用がかさばるという問題点があった。   As described above, by making the electrode terminal a composite of an electrical good conductor and a thermal contraction adjuster having a smaller thermal expansion coefficient than that of the electrical good conductor, the thermal expansion coefficients of the oxide superconductor and the electrode terminal are made closer to each other. The thermal stress generated in the oxide superconductor during cooling can be reduced. As a result, it is possible to prevent the critical current of the oxide superconductor conducting element from decreasing. However, making the electrode terminal a composite of a good electrical conductor and a heat shrinkage adjustment body having a smaller coefficient of thermal expansion than the good electrical conductor has a problem in that the manufacturing process is complicated and the manufacturing cost is high. It was.

本発明は前述の問題点に鑑み、製作工程的に容易で、臨界電流の低下が小さい酸化物超電導体通電素子を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide an oxide superconductor energization element that is easy in manufacturing process and has a small decrease in critical current.

本発明の酸化物超伝導体通電素子は、酸化物超電導体と、前記酸化物超電導体の両端に電気的に接合した電極端子と、前記酸化物超電導体を補強する支持体とを有する酸化物超電導体通電素子であって前記電極端子の前記酸化物超電導体との接合側端部に、先端にかけて連続して細くなるテーパを設け、該テーパ部先端が電極端子部の先端であり、かつ、前記テーパ部先端の厚さがテーパ部がない場合の1/2以下であり、前記支持体が前記テーパ部と密着していることを特徴とする。
本発明の酸化物超伝導体通電素子の他の特徴とするところは、酸化物超電導体と、前記酸化物超電導体の両端に電気的に接合した電極端子と、前記酸化物超電導体を補強する支持体とを有する酸化物超電導体通電素子であって前記電極端子の前記酸化物超電導体との接合側端部に段状構造を設け、該段状構造部先端の厚さが段状構造部がない場合の1/2以下であり、前記支持体が前記段状構造部と密着していることである。
本発明の酸化物超伝導体通電素子のその他の特徴とするところは、酸化物超電導体と、前記酸化物超電導体の両端に電気的に接合した電極端子と、前記酸化物超電導体を補強する支持体とを有する酸化物超電導体通電素子であって前記電極端子の前記酸化物超電導体との接合側端部に溝又は窪みを設け、該溝又は窪みの深さが少なくとも1mmであり、前記支持体が前記溝部又は窪み部と密着していることである。
The oxide superconductor energization element of the present invention includes an oxide superconductor, electrode terminals electrically joined to both ends of the oxide superconductor, and a support that reinforces the oxide superconductor . A superconducting current-carrying element , wherein a taper that continuously narrows toward the tip is provided at a joint side end of the electrode terminal with the oxide superconductor, and the tip of the taper is the tip of the electrode terminal; and the thickness of the tapered tip is Ri der 1/2 or less in the absence of the tapered portion, wherein the support is characterized that you have close contact with the tapered portion.
Other features of the oxide superconductor energizing element of the present invention include an oxide superconductor, electrode terminals electrically joined to both ends of the oxide superconductor, and reinforcing the oxide superconductor. An oxide superconductor energizing element having a support , wherein the electrode terminal is provided with a stepped structure at a joint-side end with the oxide superconductor, and the thickness of the stepped structure portion tip is a stepped structure. der 1/2 or less in the absence of parts is, the support is a Rukoto in close contact with the stepped structure.
Other features of the oxide superconductor energization element of the present invention include an oxide superconductor, electrode terminals electrically joined to both ends of the oxide superconductor, and the oxide superconductor are reinforced. an oxide superconductor current element having a support, the electrode wherein a groove or indentation in the bonding end portions of the oxide superconductor of terminals, Ri least 1mm der depth of the groove or recess the support is a Rukoto in close contact with the groove or recess.

本発明によれば、製作工程的に容易で、冷却時に酸化物超電導体に作用する熱応力を小さくすることができ、臨界電流の低下が小さい酸化物超電導体通電素子を提供することができる。   According to the present invention, it is possible to provide an oxide superconductor energization element that is easy in manufacturing process, can reduce the thermal stress acting on the oxide superconductor during cooling, and has a small decrease in critical current.

以下に、本発明の実施の形態について図に沿って説明する。
図1は、酸化物超電導体通電素子の構造を示す断面参考図である。図1では、酸化物超電導体1の両端に、外部に接続するための電極端子2が半田等(図示せず)で電気的に接合されている。さらに、電極端子2の酸化物超電導体1との接合端部にはテーパ部が設けられている。
Embodiments of the present invention will be described below with reference to the drawings.
Figure 1 is a sectional reference view showing a structure of oxides superconductors energizing element. In FIG. 1, electrode terminals 2 for external connection are electrically joined to both ends of an oxide superconductor 1 with solder or the like (not shown). Further, a taper portion is provided at a joint end portion of the electrode terminal 2 with the oxide superconductor 1.

図2は、図1の構造のものに補強のための支持体3を設けた本発明例である。支持体3は、図示されていない接着剤やボルト等で固定される。一方、図8は、酸化物超電導体通電素子の従来例の構造を示す断面図である。図8では、酸化物超電導体1と電極端子2との接合面近傍の電極端子部にテーパ部がない。 FIG. 2 shows an example of the present invention in which a support 3 for reinforcement is provided in the structure of FIG. The support 3 is fixed with an adhesive, bolts or the like not shown. On the other hand, FIG. 8 is a sectional view showing the structure of a conventional example of an oxide superconductor energization element. In FIG. 8, the electrode terminal portion in the vicinity of the joint surface between the oxide superconductor 1 and the electrode terminal 2 has no taper portion.

図8と比較すると、図2の本発明の例では、酸化物超電導体1と接している電極端子2の外側にテーパ部が設けられており、このテーパ部は先端が細くなっていることが分かる。先端が細くなるテーパ部を設けることによって、酸化物超電導体1と電極端子2との熱膨張係数の違いのために、冷却時に酸化物超電導体1に作用する熱応力を小さくすることができる。酸化物超電導体1に作用する熱応力を小さくするには、テーパ部先端の厚さを小さくした方が好ましいが、テーパ部先端の厚さがテーパ部がない場合の1/2以下であればテーパ部を設けた効果を得ることができる。 Compared with FIG. 8, in the example of the present invention of FIG. 2, a taper portion is provided outside the electrode terminal 2 in contact with the oxide superconductor 1, and the taper portion has a thin tip. I understand. By providing a tapered portion with a thin tip, thermal stress acting on the oxide superconductor 1 during cooling can be reduced due to the difference in thermal expansion coefficient between the oxide superconductor 1 and the electrode terminal 2. In order to reduce the thermal stress acting on the oxide superconductor 1, it is preferable to reduce the thickness of the tip of the taper portion, but if the thickness of the tip of the taper portion is ½ or less of the case where there is no taper portion, The effect of providing the tapered portion can be obtained.

本発明のような構造にすることにより、電極端子2を電気的良導体と該電気的良導体よりも熱膨張係数が小さい熱収縮調整体との複合体とした場合と同様の効果を、製作工程的にも非常に簡便に得ることができる。   By adopting the structure as in the present invention, the same effect as that obtained when the electrode terminal 2 is a composite of a good electrical conductor and a thermal contraction adjusting body having a smaller thermal expansion coefficient than that of the good electrical conductor can be obtained in the production process. Can also be obtained very simply.

さらに、電極端子部にテーパ部を設けると電極端子部のジュール発熱が増大することが懸念されるが、テーパ部長さと接合部長さの比(=テーパ部長さ/接合部長さ)が1以下であれば、酸化物超電導体通電素子を流れる電流は、酸化物超電導体1と電極端子2との接合面近傍では酸化物超電導体1の方に流れ易くなるので、電極端子2でのジュール発熱に大きな変化はない。したがって、テーパ部長さと接合部長さの比は1以下が好ましい。また、テーパ部は先端を細くすることで熱応力を緩和するためのものであり、テーパ部と接合部と角度が大きければ先端を細くした効果は小さい。テーパ部と接合部と角度としては45度以下が好ましい。また、図1や図2の例では、テーパ部は直線的に細くなっているが、曲線的に細くなっていても同様の効果は得られる。   Further, if the electrode terminal portion is provided with a taper portion, there is a concern that Joule heat generation of the electrode terminal portion may increase. However, if the ratio of the taper portion length to the joint portion length (= taper portion length / joint portion length) is 1 or less. For example, the current flowing through the oxide superconductor energization element is likely to flow toward the oxide superconductor 1 in the vicinity of the junction surface between the oxide superconductor 1 and the electrode terminal 2, and is therefore large in Joule heat generation at the electrode terminal 2. There is no change. Accordingly, the ratio of the taper length to the joint length is preferably 1 or less. The taper portion is for reducing thermal stress by narrowing the tip, and if the angle between the taper portion and the joint is large, the effect of narrowing the tip is small. The angle between the tapered portion and the joint portion is preferably 45 degrees or less. Moreover, in the example of FIG.1 and FIG.2, although the taper part is thinning linearly, the same effect is acquired even if it becomes thin curvilinearly.

図3は、本発明の酸化物超電導体通電素子における別の実施例の構造概略図である。図3の例では、電極端子2の酸化物超電導体1との接合面近傍の構造が階段状になっている。接合面近傍の構造を階段状にすることで、テーパ構造の場合と同様に、電極端子2の接合面先端の断面積を小さくでき、その結果、冷却時に酸化物超電導体1に作用する熱応力を小さくできる。   FIG. 3 is a schematic structural diagram of another embodiment of the oxide superconductor energizing element of the present invention. In the example of FIG. 3, the structure in the vicinity of the joint surface of the electrode terminal 2 with the oxide superconductor 1 is stepped. By making the structure in the vicinity of the joint surface stepped, the cross-sectional area at the tip of the joint surface of the electrode terminal 2 can be reduced as in the case of the taper structure, and as a result, thermal stress acting on the oxide superconductor 1 during cooling. Can be reduced.

段状構造部先端の厚さは小さくした方が好ましいが、段状構造部先端の厚さが段状構造部がない場合の1/2以下であれば段状構造部を設けた効果を得ることができる。図3では、1段の段状構造の例を示したが、複数段の形状でも同様の効果は得られる。電極端子部に段状構造部を設けると電極端子部のジュール発熱が増大することが懸念されるが、ジュール発熱増大を抑制するためには、段状構造部長さと接合部長さの比は1以下が好ましい。   Although it is preferable to reduce the thickness of the tip of the stepped structure portion, the effect of providing the stepped structure portion is obtained if the thickness of the tip of the stepped structure portion is ½ or less of the case where there is no stepped structure portion. be able to. In FIG. 3, an example of a one-stage step structure is shown, but the same effect can be obtained with a plurality of stages. If the electrode terminal portion is provided with the stepped structure portion, there is a concern that the Joule heat generation of the electrode terminal portion increases, but in order to suppress the Joule heat generation, the ratio of the stepped structure portion length to the joint length is 1 or less. Is preferred.

本発明のような構造にすることにより、電極端子2を電気的良導体と該電気的良導体よりも熱膨張係数が小さい熱収縮調整体との複合体とした場合と同様の効果を、製作工程的にも非常に簡便に得ることができる。さらに、段状構造とテーパ構造を組み合わせることも可能で、同様の効果を得ることができる。   By adopting the structure as in the present invention, the same effect as that obtained when the electrode terminal 2 is a composite of a good electrical conductor and a thermal contraction adjusting body having a smaller thermal expansion coefficient than that of the good electrical conductor can be obtained in the production process. Can also be obtained very simply. Furthermore, a stepped structure and a taper structure can be combined, and the same effect can be obtained.

図4〜図6は、本発明の酸化物超電導体通電素子における別の実施例の構造概略図である。図4〜図6の例では、電極端子2の酸化物超電導体1との接合面近傍に溝(または窪み)4が設けられている。図2、図3の例では、電極端子2の酸化物超電導体1との接合面近傍の構造をテーパ状や階段状にすることで、電極端子2の接合面先端の断面積を小さくすることで冷却時に酸化物超電導体1に作用する熱応力を小さくしたが、図4〜図6のように、電極端子2の酸化物超電導体1との接合面近傍に溝(または窪み)4を設けることによっても同様の効果は得ることができる。 4 to 6 are structural schematic diagrams of other examples of the oxide superconductor energizing element of the present invention. 4 to 6, a groove (or a depression) 4 is provided in the vicinity of the joint surface between the electrode terminal 2 and the oxide superconductor 1. In the example of FIGS. 2 and 3, the cross-sectional area at the tip of the joint surface of the electrode terminal 2 is reduced by making the structure in the vicinity of the joint surface of the electrode terminal 2 with the oxide superconductor 1 tapered or stepped. Although the thermal stress acting on the oxide superconductor 1 during cooling is reduced, a groove (or recess) 4 is provided in the vicinity of the joint surface of the electrode terminal 2 with the oxide superconductor 1 as shown in FIGS. The same effect can be obtained.

本構造の場合、溝(または窪み)4の機械的な変形により熱応力が緩和される。さらに、電極端子2に設けられた溝(または窪み)4は、酸化物超電導体通電素子を補強する支持体を固定する際の接着剤の密着強度を高める効果もある。接着剤の密着強度が高まると、支持体が熱歪みを抑制する働きが十分機能するので、熱応力に対する耐性がさらに高まる。   In the case of this structure, thermal stress is relieved by mechanical deformation of the groove (or recess) 4. Furthermore, the groove (or recess) 4 provided in the electrode terminal 2 has an effect of increasing the adhesive strength of the adhesive when fixing the support that reinforces the oxide superconductor conducting element. When the adhesive strength of the adhesive is increased, the support sufficiently functions to suppress thermal strain, so that the resistance to thermal stress is further increased.

溝と窪みを比較すると、1個当たりの応力を緩和する効果は溝の方が大きいが、窪みの場合には図7(a)の平面図、及び図7(b)の断面図に示すように多数個配列的に設けることが可能であり、トータル的には同様の効果になる。溝(または窪み)の断面形状については、図4のような四角形状、図5のような三角形状、図6のような半球状のものが工程的に容易で好ましいが、同様な効果が得られるのであれば、特に実施例に限定されるものではない。   When comparing the groove and the depression, the effect of relieving the stress per piece is larger in the groove, but in the case of the depression, as shown in the plan view of FIG. 7A and the cross-sectional view of FIG. A large number can be provided in an array, and the same effect can be obtained in total. As for the cross-sectional shape of the groove (or recess), a rectangular shape as shown in FIG. 4, a triangular shape as shown in FIG. 5, and a hemispherical shape as shown in FIG. If it is possible, it will not be limited to an Example.

溝(または窪み)4は、図4のように電極端子2の酸化物超電導体1に接触している面、図5のように酸化物超電導体1との接合面に平行な電極端子2の面に設けることが好ましい。あるいは、図6のように両方の面に設けてもよい。また、電極端子2の酸化物超電導体1との接合面近傍にテーパ構造や段状構造を設けた場合には、テーパ構造や段状構造部に溝(または窪み)を設けてもよい。   The groove (or depression) 4 is formed on the surface of the electrode terminal 2 that is in contact with the oxide superconductor 1 as shown in FIG. 4 and the electrode terminal 2 parallel to the joint surface with the oxide superconductor 1 as shown in FIG. It is preferable to provide on the surface. Or you may provide in both surfaces like FIG. Further, when a tapered structure or a stepped structure is provided in the vicinity of the joint surface of the electrode terminal 2 with the oxide superconductor 1, a groove (or a depression) may be provided in the tapered structure or the stepped structure portion.

本発明に用いる酸化物超電導体は、酸化物超電導体であれば特に材料系を制限するものではなく、RE−Ba−Cu−O(REはY又は希土類元素から選ばれた少なくとも1つの元素)系酸化物超電導体、Bi系酸化物超電導バルク体等でもよい。酸化物超電導バルク体の中でも、溶融法で製造された単結晶状のREBa2CuOx相(123相)中にRE2BaCuO5相(211相)が微細分散した酸化物超電導バルク体は、臨界電流密度が高いのでより好ましい。 The oxide superconductor used in the present invention is not particularly limited as long as it is an oxide superconductor, and RE-Ba-Cu-O (RE is at least one element selected from Y or rare earth elements). A system oxide superconductor, a Bi system oxide superconductor bulk body, etc. may be sufficient. Among oxide superconducting bulk bodies, an oxide superconducting bulk body in which a RE 2 BaCuO 5 phase (211 phase) is finely dispersed in a single-crystal REBa 2 CuO x phase (123 phase) produced by a melting method is critical. It is more preferable because of high current density.

(実施例1)
溶融法で作製した直径46mm、厚さ15mmで、25mol%の211相が123相中に微細分散したDy−Ba−Cu−O系酸化物超電導体から長さ40mm、幅3mm、厚さ1mmの棒状の試料を切り出し、銅製の電極端子2と半田接続し、ガラス繊維強化プラスチックス(GFRP)で補強した、図2のような構造の酸化物超電導体通電素子を作製した。
(Example 1)
A Dy-Ba-Cu-O-based oxide superconductor having a diameter of 46 mm, a thickness of 15 mm, and a 25 mol% 211 phase finely dispersed in the 123 phase, produced by a melting method, has a length of 40 mm, a width of 3 mm, and a thickness of 1 mm. A rod-shaped sample was cut out, soldered to the copper electrode terminal 2, and reinforced with glass fiber reinforced plastics (GFRP) to produce an oxide superconductor energization element having a structure as shown in FIG.

酸化物超電導体1を挿入する電極端子中央部の溝の長手方向長さ(深さ)は5mm、テーパ部長さを4mmとした。酸化物超電導体1との接合面での電極端子2の厚さは、テーパがない位置で片側4mm、テーパ部先端の厚さは片側0.5mmとした。   The longitudinal length (depth) of the groove at the center of the electrode terminal into which the oxide superconductor 1 is inserted was 5 mm, and the taper length was 4 mm. The thickness of the electrode terminal 2 at the joint surface with the oxide superconductor 1 was 4 mm on one side at a position where there was no taper, and the thickness of the tip of the tapered portion was 0.5 mm on one side.

比較のため、同じ材料を用いて、図8のようなテーパ部のない構造の酸化物超電導体通電素子を作製した。それぞれ10本ずつ作製し、液体窒素温度での臨界電流を比較した。テーパがない場合の臨界電流の平均値は520Aであったが、テーパ部がある場合の臨界電流の平均値は615Aであった。本実験により、本発明の構造の酸化物超電導体通電素子では、臨界電流が約20%改善することが確認できた。   For comparison, an oxide superconductor energization element having a structure without a taper portion as shown in FIG. 8 was produced using the same material. Ten of each were prepared and the critical current at the liquid nitrogen temperature was compared. The average value of the critical current without the taper was 520A, but the average value of the critical current with the taper portion was 615A. From this experiment, it was confirmed that the critical current was improved by about 20% in the oxide superconductor conducting element having the structure of the present invention.

(実施例2)
溶融法で作製した直径46mm、厚さ15mmで、20mol%の211相が123相中に微細分散したGd−Ba−Cu−O系酸化物超電導体から長さ40mm、幅5mm、厚さ1mmの棒状の試料を切り出し、銅製の電極端子2と半田接続し、GFRPで補強した、図3のような構造の酸化物超電導体通電素子を作製した。
(Example 2)
A Gd—Ba—Cu—O-based oxide superconductor having a diameter of 46 mm, a thickness of 15 mm, and a 20 mol% 211 phase finely dispersed in the 123 phase, having a length of 40 mm, a width of 5 mm, and a thickness of 1 mm. A rod-shaped sample was cut out, soldered to the copper electrode terminal 2, and reinforced with GFRP to produce an oxide superconductor energization element having a structure as shown in FIG.

酸化物超電導体1を挿入する電極端子中央部の溝の長手方向長さ(深さ)は6mm、段状構造を1段とし、断面積が小さい部分の長さを3mmとした。酸化物超電導体1との接合面での電極端子2の厚さは厚い部分で片側5mm、段状構造部先端の厚さは片側1mmとした。   The longitudinal length (depth) of the groove at the center of the electrode terminal into which the oxide superconductor 1 is inserted is 6 mm, the stepped structure is one step, and the length of the portion having a small cross-sectional area is 3 mm. The thickness of the electrode terminal 2 at the joint surface with the oxide superconductor 1 is 5 mm on one side at the thick part, and the thickness at the tip of the stepped structure portion is 1 mm on one side.

比較のため、同じ材料を用いて、図8のような段状構造部のない構造の酸化物超電導体通電素子を作製した。それぞれ10本ずつ作製し、液体窒素温度での臨界電流を比較した。段状構造がない場合の臨界電流の平均値は980Aであったが、段状構造がある場合の臨界電流の平均値は1200Aであった。本実験により、本発明の構造の酸化物超電導体通電素子では、臨界電流が約20%改善することが確認できた。   For comparison, an oxide superconductor energization element having a structure without a stepped structure as shown in FIG. 8 was produced using the same material. Ten of each were prepared and the critical current at the liquid nitrogen temperature was compared. The average value of the critical current without the stepped structure was 980 A, but the average value of the critical current with the stepped structure was 1200 A. From this experiment, it was confirmed that the critical current was improved by about 20% in the oxide superconductor conducting element having the structure of the present invention.

(実施例3)
溶融法で作製した直径60mm、厚さ20mmで、REサイトの成分比がGd:Dy=0.5:0.5で、30mol%の211相が123相中に微細分散した、(Gd−Dy)−Ba−Cu−O系酸化物超電導体から長さ50mm、幅4mm、厚さ2mmの棒状の試料を切り出し、錫メッキした銅製の電極端子2と半田接続し、GFRPで補強した、図4のような構造の酸化物超電導体通電素子を作製した。
(Example 3)
The component ratio of the RE site was Gd: Dy = 0.5: 0.5 with a diameter of 60 mm and a thickness of 20 mm produced by the melting method, and 30 mol% of the 211 phase was finely dispersed in the 123 phase (Gd-Dy ) A bar-shaped sample having a length of 50 mm, a width of 4 mm, and a thickness of 2 mm was cut out from a -Ba-Cu-O-based oxide superconductor, soldered to a tin-plated copper electrode terminal 2, and reinforced with GFRP. An oxide superconductor energization element having the structure as described above was produced.

酸化物超電導体1を挿入する電極端子中央部の溝の長手方向長さ(深さ)は4mm、電極端子中央部の溝の上下に設けた応力緩和用の溝4の長手方向長さ(深さ)は1mm、溝4の幅も1mmとした。   The longitudinal length (depth) of the groove at the center of the electrode terminal into which the oxide superconductor 1 is inserted is 4 mm, and the longitudinal length (depth) of the groove 4 for stress relaxation provided above and below the groove at the center of the electrode terminal. ) Was 1 mm, and the width of the groove 4 was also 1 mm.

比較のため、同じ材料を用いて、図8のような溝のない構造の酸化物超電導体通電素子を作製した。それぞれ10本ずつ作製し、液体窒素温度での臨界電流を比較した。溝がない場合の臨界電流の平均値は1500Aであったが、溝がある場合の臨界電流の平均値は1850Aであった。本実験により、本発明の構造の酸化物超電導体通電素子では、臨界電流が約20%改善することが確認できた。   For comparison, an oxide superconductor energization element having a groove-free structure as shown in FIG. 8 was produced using the same material. Ten of each were prepared and the critical current at the liquid nitrogen temperature was compared. The average critical current without the grooves was 1500 A, but the average critical current with the grooves was 1850 A. From this experiment, it was confirmed that the critical current was improved by about 20% in the oxide superconductor conducting element having the structure of the present invention.

(実施例4)
溶融法で作製した縦40mm、横40mm、厚さ15mmで、25mol%の211相が123相中に微細分散したHo−Ba−Cu−O系酸化物超電導体から長さ40mm、幅2.5mm、厚さ1.5mmの棒状の試料を切り出し、銀製の電極端子2と半田接続し、GFRPで補強した、図5のような構造の酸化物超電導体通電素子を作製した。
Example 4
40 mm in length, 40 mm in width, 15 mm in thickness, 25 mm% of 211 phase and a Ho-Ba-Cu-O-based oxide superconductor finely dispersed in 123 phase, 40 mm long and 2.5 mm wide A bar-shaped sample having a thickness of 1.5 mm was cut out, soldered to the silver electrode terminal 2, and reinforced with GFRP to produce an oxide superconductor energization element having a structure as shown in FIG.

酸化物超電導体1を挿入する電極端子中央部の溝の長手方向長さ(深さ)は5mm、電極端子中央部の溝の上下に設けた応力緩和用の溝4の長手方向長さ(幅)は1mm、溝4の深さは1.5mmとした。   The longitudinal length (depth) of the groove at the center of the electrode terminal into which the oxide superconductor 1 is inserted is 5 mm, and the longitudinal length (width) of the groove 4 for stress relaxation provided above and below the groove at the center of the electrode terminal. ) Was 1 mm, and the depth of the groove 4 was 1.5 mm.

比較のため、同じ材料を用いて、図8のような溝のない構造の酸化物超電導体通電素子を作製した。それぞれ10本ずつ作製し、液体窒素温度での臨界電流を比較した。溝がない場合の臨界電流の平均値は625Aであったが、溝がある場合の臨界電流の平均値は750Aであった。本実験により、本発明の構造の酸化物超電導体通電素子では、臨界電流が約20%改善することが確認できた。   For comparison, an oxide superconductor energization element having a groove-free structure as shown in FIG. 8 was produced using the same material. Ten of each were prepared and the critical current at the liquid nitrogen temperature was compared. The average critical current without grooves was 625 A, but the average critical current with grooves was 750 A. From this experiment, it was confirmed that the critical current was improved by about 20% in the oxide superconductor conducting element having the structure of the present invention.

(実施例5)
溶融法で作製した直径46mm、厚さ15mmで、30mol%の211相が123相中に微細分散したDy−Ba−Cu−O系酸化物超電導体から長さ40mm、幅3mm、厚さ1mmの棒状の試料を切り出し、錫メッキした銅製の電極端子2と半田接続し、GFRPで補強した、図6のような構造の酸化物超電導体通電素子を作製した。
(Example 5)
A Dy-Ba-Cu-O-based oxide superconductor having a diameter of 46 mm, a thickness of 15 mm, and a 30 mol% 211 phase finely dispersed in the 123 phase, having a length of 40 mm, a width of 3 mm, and a thickness of 1 mm. A rod-shaped sample was cut out, soldered to a tin-plated copper electrode terminal 2, and reinforced with GFRP to produce an oxide superconductor energizing element having a structure as shown in FIG.

酸化物超電導体1を挿入する電極端子中央部の溝の長手方向長さ(深さ)は5mmとし、その近傍に応力緩和用の窪み4として直径1mm、深さ1mmものを格子状に設けた。   The longitudinal length (depth) of the groove at the center of the electrode terminal into which the oxide superconductor 1 is inserted is 5 mm, and a recess 4 for stress relaxation having a diameter of 1 mm and a depth of 1 mm is provided in the vicinity of the groove. .

比較のため、同じ材料を用いて、図8のような窪みのない構造の酸化物超電導体通電素子を作製した。それぞれ10本ずつ作製し、液体窒素温度での臨界電流を比較した。窪みがない場合の臨界電流の平均値は540Aであったが、窪みがある場合の臨界電流の平均値は720Aであった。本実験により、本発明の構造の酸化物超電導体通電素子では、臨界電流が約30%改善することが確認できた。   For comparison, an oxide superconducting current-carrying element having a structure having no depression as shown in FIG. 8 was produced using the same material. Ten of each were prepared and the critical current at the liquid nitrogen temperature was compared. The average value of the critical current when there was no depression was 540A, but the average value of the critical current when there was a depression was 720A. From this experiment, it was confirmed that the critical current was improved by about 30% in the oxide superconductor conducting element having the structure of the present invention.

本発明によれば、製作工程的に容易で、臨界電流の低下が小さい酸化物超電導体通電素子を提供することができるので、酸化物超電導体の工業上の利用範囲が拡大する。   According to the present invention, it is possible to provide an oxide superconductor energization element that is easy in the manufacturing process and has a small decrease in critical current, so that the industrial application range of the oxide superconductor is expanded.

化物超電導体通電素子の参考例を示す構造断面図である。It is a structural cross-sectional view showing a reference example of oxides superconductors energizing element. 本発明の酸化物超電導体通電素子の実施例を示す構造断面図である。 1 is a structural cross-sectional view showing an embodiment of an oxide superconductor energizing element of the present invention. 本発明の酸化物超電導体通電素子の別の実施例を示す構造断面図である。It is structural sectional drawing which shows another Example of the oxide superconductor energization element of this invention. 本発明の酸化物超電導体通電素子の別の実施例を示す構造断面図である。It is structural sectional drawing which shows another Example of the oxide superconductor energization element of this invention. 本発明の酸化物超電導体通電素子の別の実施例を示す構造断面図である。It is structural sectional drawing which shows another Example of the oxide superconductor energization element of this invention. 本発明の酸化物超電導体通電素子の別の実施例を示す構造断面図である。It is structural sectional drawing which shows another Example of the oxide superconductor energization element of this invention. 本発明の酸化物超電導体通電素子における窪みの様子を示す平面図である。It is a top view which shows the mode of the hollow in the oxide superconductor energization element of this invention. 従来の酸化物超電導体通電素子の構造を示す断面図である。It is sectional drawing which shows the structure of the conventional oxide superconductor energization element.

符号の説明Explanation of symbols

1 酸化物超電導体
2 電極端子
3 支持体
4 溝(または窪み)
1 Oxide superconductor 2 Electrode terminal 3 Support 4 Groove (or depression)

Claims (7)

酸化物超電導体と、前記酸化物超電導体の両端に電気的に接合した電極端子と、前記酸化物超電導体を補強する支持体とを有する酸化物超電導体通電素子であって
前記電極端子の前記酸化物超電導体との接合側端部に、先端にかけて連続して細くなるテーパを設け、該テーパ部先端が電極端子部の先端であり、かつ、前記テーパ部先端の厚さがテーパ部がない場合の1/2以下であり、
前記支持体が前記テーパ部と密着していることを特徴とする酸化物超電導体通電素子。
An oxide superconductor energization element having an oxide superconductor, electrode terminals electrically joined to both ends of the oxide superconductor, and a support for reinforcing the oxide superconductor ,
A taper that continuously narrows toward the tip is provided at the joint side end of the electrode terminal with the oxide superconductor, the tip of the taper is the tip of the electrode terminal, and the thickness of the tip of the taper There Ri der 1/2 or less in the case where there is no taper portion,
Oxide superconductor energizing elements the support is characterized that you have close contact with the tapered portion.
前記テーパ部長さと接合部長さとの比が1以下であることを特徴とする請求項1に記載の酸化物超電導体通電素子。   2. The oxide superconductor energization element according to claim 1, wherein a ratio of the taper length to the joint length is 1 or less. 前記テーパ部と接合部とのなす角度が45度以下であることを特徴とする請求項1又は2に記載の酸化物超電導体通電素子。   3. The oxide superconductor energization element according to claim 1, wherein an angle formed between the tapered portion and the joint portion is 45 degrees or less. 4. 酸化物超電導体と、前記酸化物超電導体の両端に電気的に接合した電極端子と、前記酸化物超電導体を補強する支持体とを有する酸化物超電導体通電素子であって
前記電極端子の前記酸化物超電導体との接合側端部に段状構造を設け、該段状構造部先端の厚さが段状構造部がない場合の1/2以下であり、
前記支持体が前記段状構造部と密着していることを特徴とする酸化物超電導体通電素子。
An oxide superconductor energization element having an oxide superconductor, electrode terminals electrically joined to both ends of the oxide superconductor, and a support for reinforcing the oxide superconductor ,
Wherein the stepped structure on the bonding end portions of said oxide superconductor electrode terminals provided state, and are half or less of the case where the thickness of the step-like structure tip no stepped structure,
Oxide superconductor energizing elements the support is characterized that you have close contact with the stepped structure.
前記段状構造部長さと接合部長さとの比が1以下であることを特徴とする請求項4に記載の酸化物超電導体通電素子。   5. The oxide superconductor energization element according to claim 4, wherein a ratio of the stepped structure portion length to the joint portion length is 1 or less. 酸化物超電導体と、前記酸化物超電導体の両端に電気的に接合した電極端子と、前記酸化物超電導体を補強する支持体とを有する酸化物超電導体通電素子であって
前記電極端子の前記酸化物超電導体との接合側端部に溝又は窪みを設け、該溝又は窪みの深さが少なくとも1mmであり、
前記支持体が前記溝部又は窪み部と密着していることを特徴とする酸化物超電導体通電素子。
An oxide superconductor energization element having an oxide superconductor, electrode terminals electrically joined to both ends of the oxide superconductor, and a support for reinforcing the oxide superconductor ,
The electrode wherein a groove or indentation in the bonding end portions of the oxide superconductor of terminals, Ri least 1mm der depth of the groove or recess,
Oxide superconductor energizing elements the support is characterized that you have close contact with the groove or recess.
前記酸化物超電導体は、単結晶状のREBa2CuOx相(REは、Y又は希土類元素から選ばれる1種又は2種以上)中にRE2BaCuO5相が微細分散していることを特徴とする請求項1〜の何れか1項に記載の酸化物超電導体通電素子。 The oxide superconductor is characterized in that a RE 2 BaCuO 5 phase is finely dispersed in a single-crystal REBa 2 CuO x phase (RE is one or more selected from Y or a rare earth element). The oxide superconductor energizing element according to any one of claims 1 to 6 .
JP2006069613A 2006-03-14 2006-03-14 Oxide superconductor conducting element Expired - Fee Related JP4728847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006069613A JP4728847B2 (en) 2006-03-14 2006-03-14 Oxide superconductor conducting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006069613A JP4728847B2 (en) 2006-03-14 2006-03-14 Oxide superconductor conducting element

Publications (2)

Publication Number Publication Date
JP2007250269A JP2007250269A (en) 2007-09-27
JP4728847B2 true JP4728847B2 (en) 2011-07-20

Family

ID=38594333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006069613A Expired - Fee Related JP4728847B2 (en) 2006-03-14 2006-03-14 Oxide superconductor conducting element

Country Status (1)

Country Link
JP (1) JP4728847B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020161909A1 (en) * 2019-02-08 2020-08-13 住友電気工業株式会社 Superconducting wire connection structure
WO2020165939A1 (en) * 2019-02-12 2020-08-20 住友電気工業株式会社 Superconducting wire connection structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030776A (en) * 1998-07-07 2000-01-28 Fujikura Ltd Connecting structure for superconducting current lead part
JP2004047259A (en) * 2002-07-11 2004-02-12 Nippon Steel Corp Oxide superconductor current-carrying element
JP2004244278A (en) * 2003-02-14 2004-09-02 Nippon Steel Corp Oxide superconductor and oxide superconductor conducting element, and their manufacturing method
JP2004304163A (en) * 2003-02-06 2004-10-28 Dowa Mining Co Ltd Oxide superconducting current lead, its manufacturing method, and superconducting system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030776A (en) * 1998-07-07 2000-01-28 Fujikura Ltd Connecting structure for superconducting current lead part
JP2004047259A (en) * 2002-07-11 2004-02-12 Nippon Steel Corp Oxide superconductor current-carrying element
JP2004304163A (en) * 2003-02-06 2004-10-28 Dowa Mining Co Ltd Oxide superconducting current lead, its manufacturing method, and superconducting system
JP2004244278A (en) * 2003-02-14 2004-09-02 Nippon Steel Corp Oxide superconductor and oxide superconductor conducting element, and their manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020161909A1 (en) * 2019-02-08 2020-08-13 住友電気工業株式会社 Superconducting wire connection structure
WO2020165939A1 (en) * 2019-02-12 2020-08-20 住友電気工業株式会社 Superconducting wire connection structure

Also Published As

Publication number Publication date
JP2007250269A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
KR100669214B1 (en) Superconducting articles and superconducting coils
JP3142934B2 (en) Superconducting current lead connection structure
JPH11144938A (en) Current lead device and refrigerator-cooled superconducting magnet
EP2117056B1 (en) Superconducting device for current conditioning
JP4728847B2 (en) Oxide superconductor conducting element
KR101615667B1 (en) Superconducting fault current limiter
US20040155739A1 (en) Superconductor assembly
JP4402928B2 (en) Oxide superconductor conducting element
JP5552805B2 (en) Oxide superconducting wire connection method
JP6471625B2 (en) Superconducting conductive element
JP5693915B2 (en) Superconducting current lead and superconducting magnet device
JP5037193B2 (en) Oxide superconducting conductor conducting element
JP2010129465A (en) Composite superconducting wire
JP2008305765A (en) Oxide superconductive current lead
JP5278109B2 (en) Oxide superconductor conducting element
JP2003324013A (en) Oxide superconductor current lead
US10658561B2 (en) Thermoelectric element and thermoelectric converter including at least one such element
JP3887277B2 (en) Oxide superconductor conducting element
JP5037146B2 (en) Oxide superconductor energization element and manufacturing method thereof
JP5233391B2 (en) Oxide superconductor conducting element
JP5626593B2 (en) Thermoelectric cooling type current lead
JP2004104840A (en) High withstand voltage superconductive current limiter
JP4012422B2 (en) Oxide superconductor current lead
JP2770247B2 (en) Method for producing superconducting composite with electrode
JPH0589919A (en) Low resistance current lead and low resistance current lead unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R151 Written notification of patent or utility model registration

Ref document number: 4728847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees