JP5233391B2 - Oxide superconductor conducting element - Google Patents
Oxide superconductor conducting element Download PDFInfo
- Publication number
- JP5233391B2 JP5233391B2 JP2008117405A JP2008117405A JP5233391B2 JP 5233391 B2 JP5233391 B2 JP 5233391B2 JP 2008117405 A JP2008117405 A JP 2008117405A JP 2008117405 A JP2008117405 A JP 2008117405A JP 5233391 B2 JP5233391 B2 JP 5233391B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide superconductor
- oxide
- current
- resin
- energization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002887 superconductor Substances 0.000 title claims description 124
- 229920005989 resin Polymers 0.000 claims description 50
- 239000011347 resin Substances 0.000 claims description 50
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 239000011231 conductive filler Substances 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 241000954177 Bangana ariza Species 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 238000010791 quenching Methods 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- 239000000945 filler Substances 0.000 description 18
- 230000000171 quenching effect Effects 0.000 description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 13
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 13
- 229910052709 silver Inorganic materials 0.000 description 13
- 239000004332 silver Substances 0.000 description 13
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 239000003822 epoxy resin Substances 0.000 description 12
- 239000011152 fibreglass Substances 0.000 description 12
- 229920000647 polyepoxide Polymers 0.000 description 12
- 239000010949 copper Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000004020 conductor Substances 0.000 description 8
- 239000004840 adhesive resin Substances 0.000 description 6
- 229920006223 adhesive resin Polymers 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229910002480 Cu-O Inorganic materials 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910015901 Bi-Sr-Ca-Cu-O Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
本発明は、電流リードや限流器、永久電流スイッチ等に使用する酸化物超電導体を用いた酸化物超電導体通電素子に関する。 The present invention relates to an oxide superconductor energization element using an oxide superconductor used for a current lead, a current limiter, a permanent current switch and the like.
酸化物超電導体は、電気抵抗がゼロで大電流を流せるので、電流リードや限流器、永久電流スイッチ等の通電素子に用いられる。酸化物超電導体を用いた通電素子は、例えば、特許文献1に記載されているように、酸化物超電導体と、酸化物超電導体の両端に半田等で電気的に接続された電極端子と、樹脂等で酸化物超電導体に接着された支持体(補強部材)とから主に構成される。
Oxide superconductors can be used for current-carrying elements such as current leads, current limiters, and permanent current switches because they can flow a large current with zero electrical resistance. An energization element using an oxide superconductor is, for example, as described in
特許文献1には、接着部材として、「低温用樹脂接着剤は、液体窒素温度等の低温においても亀裂等が生じず、接着力が維持されるものであり、たとえば、エポキシ系樹脂系接着剤、ポリイミド系樹脂系接着剤、ビニルエステル系樹脂系接着剤等が好ましく用いられる」と記載されており、さらに、「熱収縮率の調整のため、この接着剤にセラミックス粉末が添加されている。添加されるセラミックスとして、たとえば、アルミナ、ジルコニアまたはそれらの混合物が好ましい」と記載されている。特許文献1に例として挙げられている接着部材及びセラミックス粉末は、電気的絶縁材料であり、接着剤にセラミックス粉末を添加する理由として熱収縮率の調整が挙げられているが、特許文献1には、接着部材や添加粉末の電気伝導性に関する記載はない。
In
また、酸化物超電導体を用いた通電素子では、クエンチ(超電導状態から常電導状態への転移)等の異常事態において、過電流が流れた場合に、酸化物超電導体が破損したり、溶断したりするおそれがある。その対策として、例えば、特許文献2には、「このセラミックス超電導導体に並列に常電導導体を接続したもので、この常電導導体はクエンチ等の異常事態において電流のバイパスの役目を果たすもの」と記載されているように、外部に付加的にバイパス回路を接続することが提案されている。
Also, in an energizing element using an oxide superconductor, the oxide superconductor may be damaged or blown when an overcurrent flows in an abnormal situation such as a quench (transition from the superconducting state to the normal conducting state). There is a risk of As a countermeasure, for example,
外部に付加的にバイパス回路を設けることにより、酸化物超電導体通電素子の破損や溶断を防止することができるはずであるが、外部にバイパス回路を接続しても、酸化物超電導体が破損や溶断することが起こるという問題があった。酸化物超電導体が全体的にクエンチした場合には、設計通りに電流がバイパス回路側に迂回するため、酸化物超電導体の破損や溶断は起こり難い。しかし、酸化物超電導体の一部が局所的にクエンチした場合には、一部しか常電導状態に転移していないため、酸化物超電導体側の電気抵抗が十分に大きくならず、設計通りには電流がバイパス回路側に十分に迂回しない。そのため、酸化物超電導体の常電導転移部分に大きな電流が流れ続け、その部分の温度が局所的に急激に上昇する。その結果、酸化物超電導体の破損や溶断が起こっていた。 By providing an additional bypass circuit outside, it should be possible to prevent damage and fusing of the oxide superconductor energization element, but even if an external bypass circuit is connected, the oxide superconductor will be damaged or There was a problem that fusing occurred. When the oxide superconductor is quenched as a whole, the current is diverted to the bypass circuit side as designed, so that the oxide superconductor is hardly damaged or blown. However, when a part of the oxide superconductor is locally quenched, only part of the oxide superconductor has transitioned to the normal conducting state, so the electrical resistance on the oxide superconductor side is not sufficiently large, and as designed. The current is not sufficiently diverted to the bypass circuit side. Therefore, a large current continues to flow through the normal conducting transition portion of the oxide superconductor, and the temperature of that portion rapidly increases locally. As a result, the oxide superconductor was broken or melted.
そこで、本発明は、上記の問題を解決し、クエンチ時の耐久性に優れた酸化物超電導体通電素子を提供することを目的とする。 Then, this invention solves said problem and aims at providing the oxide superconductor energization element excellent in durability at the time of quenching.
本発明の酸化物超電導体通電素子は、以下のとおりである。
(1)単結晶状のREBa 2 Cu 3 O x 相(REはY又は希土類元素から選ばれる1種又は2種以上)中にRE 2 BaCuO 5 相が微細分散した酸化物超電導バルク体と、該酸化物超電導バルク体の両端に電気的に接合された電極端子と、該酸化物超電導バルク体に導電性樹脂により接着された支持体と、前記支持体を固定する機械的手段とを有する酸化物超電導通電素子において、前記酸化物超電導バルク体の表面が金属皮膜で被覆されており、かつ前記導電性樹脂が、電気絶縁性樹脂に金属粉末あるいはカーボン粉末からなる導電性フィラーを配合したものであり、さらに前記導電性樹脂の電気抵抗率が10 -2 Ωcm以下であることを特徴とする酸化物超電導体通電素子。
The oxide superconductor energization element of the present invention is as follows.
(1) an oxide superconducting bulk material in which a RE 2 BaCuO 5 phase is finely dispersed in a single-crystal REBa 2 Cu 3 O x phase (RE is one or more selected from Y or a rare earth element) ; An oxide having electrode terminals electrically joined to both ends of an oxide superconducting bulk body, a support bonded to the oxide superconducting bulk with a conductive resin, and mechanical means for fixing the support In the superconducting conductive element, the surface of the oxide superconducting bulk body is coated with a metal film, and the conductive resin is a mixture of an electrically insulating resin and a conductive filler made of metal powder or carbon powder. Furthermore , the oxide superconductor energizing element is characterized in that the electrical resistivity of the conductive resin is 10 −2 Ωcm or less .
本発明によれば、局所的なクエンチ時の耐久性に優れた酸化物超電導体通電素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the oxide superconductor energization element excellent in the durability at the time of local quenching can be provided.
以下に、本発明の実施形態について図に沿って説明する。
図1は、本発明の実施形態における酸化物超電導体通電素子の構造の一例を示す断面図である。
図1において、酸化物超電導体1の両端には、外部に接続するための電極端子2が半田等(図1では省略されている)で電気的に接合されている。さらに、酸化物超電導体1の両側には、補強のために導電性樹脂3によって支持体4が接着されている。支持体4は酸化物超電導体1の表面だけでなく、酸化物超電導体1と電極端子2との接合部をも覆うように密着被覆されている。酸化物超電導体1の両側の支持体4は、導電性樹脂3による接着固定に加えて、ボルト5等による機械的手段で固定されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of the structure of an oxide superconductor energization element according to an embodiment of the present invention.
In FIG. 1,
本発明において、導電性樹脂とは、電気抵抗率が小さく電気伝導性を有する樹脂のことである。酸化物超電導体の室温から臨界温度直上での四端子法によって測定される電気抵抗率は10-4〜10-3Ωcm程度であるが、クエンチ箇所に電流が流れ続けると、溶断する直前には数百K程度まで温度上昇する。酸化物超電導体の室温以上での電気抵抗率は温度にほぼ比例するので、溶断直前には酸化物超電導体の電気抵抗率は10-2Ωcm程度になっていると推定される。酸化物超電導体が局所的にクエンチした時に、通電電流がクエンチ箇所から導電性樹脂の方へ効果的に迂回するためには、導電性樹脂の電気抵抗率が酸化物超電導体の電気抵抗率よりも同程度か、より小さい方が好ましい。したがって、導電性樹脂の電気抵抗率としては、10-2Ωcm以下であることが好ましい。 In the present invention, the conductive resin is a resin having a small electrical resistivity and electrical conductivity. The electrical resistivity of the oxide superconductor measured by the four probe method from room temperature to just above the critical temperature is about 10 −4 to 10 −3 Ωcm. The temperature rises to about several hundred K. Since the electrical resistivity of the oxide superconductor at room temperature or higher is almost proportional to the temperature, it is estimated that the electrical resistivity of the oxide superconductor is about 10 −2 Ωcm immediately before fusing. When the oxide superconductor is locally quenched, the electrical resistivity of the conductive resin is more than the electrical resistivity of the oxide superconductor in order to effectively bypass the energizing current from the quench point to the conductive resin. Are preferably the same or smaller. Therefore, the electrical resistivity of the conductive resin is preferably 10 −2 Ωcm or less.
エポキシ系樹脂、フェノール系樹脂、ポリイミド系樹脂等のような汎用性の樹脂は、一般に電気絶縁性であるが、銀や銅、ニッケル等の金属粉末あるいはカーボン粉末等の導電性材料をフィラーとして攪拌混合することによって、導電性を付与することができる。酸化物超電導体の破損や溶断の防止のために必要な導電性樹脂の電気抵抗については、通電容量、冷凍機等の冷却能力、クエンチ検出から電流遮断までの時間等、酸化物超電導体通電素子が取り付けられる装置の性能や使用状況、使用環境等に依存するため、酸化物超電導体通電素子のみの構成で決定することはできない。そのため、本発明に用いる導電性樹脂としては、フィラーの配合比率を変化させることにより、容易に電気抵抗を調整することができるので、エポキシ系樹脂等の電気絶縁性樹脂に銀等の導電性フィラーを配合した導電性樹脂が好ましい。導電性フィラーの添加量としては、例えば、10〜90質量%、好ましくは40〜75質量%である。また、導電性フィラーの粒径は、例えば1〜100μmである。 General-purpose resins such as epoxy resins, phenol resins, polyimide resins, etc. are generally electrically insulating, but they are agitated using a conductive material such as metal powder such as silver, copper, nickel, or carbon powder as a filler. By mixing, conductivity can be imparted. Regarding the electrical resistance of conductive resin necessary to prevent breakage or fusing of oxide superconductors, the oxide superconductor energization elements, such as current carrying capacity, cooling capacity of refrigerators, time from quench detection to current interruption, etc. Since it depends on the performance, usage status, usage environment, and the like of the device to which is attached, it cannot be determined by the configuration of only the oxide superconductor energization element. Therefore, as the conductive resin used in the present invention, the electrical resistance can be easily adjusted by changing the blending ratio of the filler. Therefore, the conductive filler such as silver is added to the electrically insulating resin such as epoxy resin. A conductive resin containing is preferably used. As addition amount of an electroconductive filler, it is 10-90 mass%, for example, Preferably it is 40-75 mass%. Moreover, the particle size of a conductive filler is 1-100 micrometers, for example.
本発明の構造を有する酸化物超電導体通電素子において、通常の使用状態では、酸化物超電導体の電気抵抗はほぼゼロであるので、たとえ接着用の樹脂に導電性があったとしても、通電電流は導電性樹脂の方へ迂回することなく、ほぼ全電流が酸化物超電導体中を流れる。しかし、酸化物超電導体の一部がクエンチした場合、電流は、クエンチして常電導状態に転移した部分を迂回して、その直ぐ近くの導電性樹脂部分にも流れることになる。このような局所的な電流の迂回路を有することは、クエンチした部分で発生するジュール発熱量を小さくする効果があるので、クエンチした部分の局所的な急激な温度上昇は抑制される。加えて、酸化物超電導体に接着している導電性樹脂を通じて、局所的に発生したクエンチによる発熱を周囲に拡散させる効果もあるので、クエンチした部分の局所的な急激な温度上昇は抑制される。これらの効果により、酸化物超電導体通電素子のクエンチ時の耐久性は大幅に改善する。 In the oxide superconductor energization element having the structure of the present invention, the electric resistance of the oxide superconductor is almost zero in a normal use state, so even if the adhesive resin has conductivity, the energization current Almost completely flows through the oxide superconductor without detouring towards the conductive resin. However, when a part of the oxide superconductor is quenched, the current bypasses the part that has been quenched and transitioned to the normal conducting state, and also flows to the conductive resin part immediately adjacent thereto. Having such a local current detour has the effect of reducing the amount of Joule heat generated in the quenched portion, so that a local rapid temperature increase in the quenched portion is suppressed. In addition, there is an effect of diffusing heat generated by locally generated quench through the conductive resin bonded to the oxide superconductor, so that local rapid temperature rise in the quenched portion is suppressed. . By these effects, the durability at the time of quenching of the oxide superconductor conducting element is greatly improved.
さらに、導電性樹脂の電気抵抗を十分に小さくすることができれば、導電性樹脂だけでも十分なバイパス回路機能を持たせることが可能であり、外部にバイパス回路を設ける煩わしさを省くことができる。しかしながら、導電性樹脂の電気抵抗を小さくするためには、導電性フィラーの配合比率を大きくする必要があり、導電性樹脂の接着強度が低下するおそれがある。この場合には、ボルト等による機械的手段で支持体を固定することが有効になる。 Further, if the electrical resistance of the conductive resin can be made sufficiently small, it is possible to provide a sufficient bypass circuit function with only the conductive resin, and the troublesomeness of providing a bypass circuit outside can be eliminated. However, in order to reduce the electrical resistance of the conductive resin, it is necessary to increase the blending ratio of the conductive filler, which may reduce the adhesive strength of the conductive resin. In this case, it is effective to fix the support by mechanical means such as bolts.
本発明と同じようなクエンチ時の耐久性を改善する効果を得るために、外部に付加的にバイパス回路を設ける代わりに、補強のための支持体を銀、銅、アルミ等の良導体である金属で形成し、支持体自体をバイパス回路にすることが考えられる。しかしながら、良導体である金属製支持体であっても、電気絶縁性の樹脂を用いて酸化物超電導体に接着すると、本発明の導電性樹脂で接着した場合に比較して、酸化物超電導体に接しているのは電気絶縁性の樹脂なので、局所的なクエンチに対する温度上昇抑制効果は小さくなって好ましくない。さらに、熱侵入を抑制する機能が求められる電流リードでは、良導体である金属を支持体とすると熱侵入量が大幅に増大するので好ましくない。なお、金属製支持体の断面積を小さくすれば、熱侵入量を小さくすることはできるかもしれないが、断面積を小さくすると機械的強度も小さくなり、補強の機能が失われる。本発明で用いる導電性樹脂は、酸化物超電導体と支持体とを接着するものであり、元々その断面積は小さく、樹脂中に導電性フィラーを混合することで樹脂の熱伝導率が多少増大しても、素子全体の熱侵入量はあまり増大しない。 In order to obtain the effect of improving the durability at the time of quenching similar to the present invention, instead of providing an additional bypass circuit outside, the support for reinforcement is a metal that is a good conductor such as silver, copper, aluminum, etc. It is conceivable that the support itself is formed as a bypass circuit. However, even a metal support that is a good conductor is bonded to an oxide superconductor using an electrically insulating resin, compared to the case of bonding to an oxide superconductor using the conductive resin of the present invention. Since it is an electrically insulating resin that is in contact with it, the temperature rise suppression effect on local quenching is reduced, which is not preferable. Furthermore, in a current lead that is required to have a function of suppressing heat penetration, it is not preferable to use a metal that is a good conductor as a support because the amount of heat penetration is greatly increased. If the cross-sectional area of the metal support is reduced, the amount of heat penetration may be reduced. However, if the cross-sectional area is reduced, the mechanical strength is reduced and the reinforcing function is lost. The conductive resin used in the present invention adheres an oxide superconductor and a support, and originally has a small cross-sectional area. By mixing a conductive filler in the resin, the thermal conductivity of the resin is slightly increased. Even so, the heat penetration amount of the entire element does not increase so much.
本発明に用いる酸化物超電導体は、酸化物超電導体であれば特に材料系を制限するものではなく、RE-Ba-Cu-O(REはY又は希土類元素から選ばれた少なくとも1つの元素)系酸化物超電導体、Bi系酸化物超電導バルク体等でもよい。酸化物超電導バルク体の中でも、溶融法で製造された単結晶状のREBa2Cu3Ox相(123相)中にRE2BaCuO5相(211相)が微細分散した酸化物超電導バルク体は、臨界電流密度が高いので、同じ電流容量に対して必要な酸化物超電導体の断面積が小さくなる。そのため、酸化物超電導体通電素子に用いた場合、小さな断面積に大電流が集中することになるので、局所的なクエンチの影響を受け易い。したがって、本発明によるクエンチ時の耐久性改善の効果は、臨界電流密度の高いRE系溶融バルク超電導体においてより顕著になる。さらに、酸化物超電導体の表面に金属皮膜を形成すると、導電性樹脂との接触電気抵抗が低減し、局所的なクエンチ時に通電電流がスムーズに迂回するため、より好ましい。また、金属皮膜の厚さとしては、例えば0.5〜10μmである。 The oxide superconductor used in the present invention is not particularly limited as long as it is an oxide superconductor. RE-Ba-Cu-O (RE is at least one element selected from Y or rare earth elements) It may be a series oxide superconductor, a Bi series oxide superconducting bulk body, or the like. Among oxide superconducting bulk bodies, oxide superconducting bulk bodies in which the RE 2 BaCuO 5 phase (211 phase) is finely dispersed in the single-crystal REBa 2 Cu 3 O x phase (123 phase) produced by the melting method are Since the critical current density is high, the required cross-sectional area of the oxide superconductor is reduced for the same current capacity. For this reason, when used in an oxide superconductor energization element, a large current is concentrated in a small cross-sectional area, so that it is easily affected by local quenching. Therefore, the effect of improving the durability at the time of quenching according to the present invention becomes more remarkable in the RE-based molten bulk superconductor having a high critical current density. Furthermore, it is more preferable to form a metal film on the surface of the oxide superconductor because the contact electrical resistance with the conductive resin is reduced and the energization current smoothly bypasses during local quenching. Moreover, as thickness of a metal membrane | film | coat, it is 0.5-10 micrometers, for example.
本発明に用いる電極端子としては、銅、銀、アルミニウム等の電気良導体が、電極端子自体のジュール発熱を小さくできるので好ましい。また、本発明に用いる支持体としては、酸化物超電導体の機械的強度を補強する効果が大きいので、GFRP(ガラス繊維強化プラスチックス)やCFRP(炭素繊維強化プラスチックス)等の繊維強化材料、ステンレスやNiCr合金、Ti合金等の金属材料、アルミナや窒化珪素等のセラミックス材料等、強度や剛性が大きい材料が好ましく、それらの材料を組み合わせて用いてもよい。 As the electrode terminal used in the present invention, a good electrical conductor such as copper, silver, or aluminum is preferable because it can reduce Joule heat generation of the electrode terminal itself. Further, as the support used in the present invention, since the effect of reinforcing the mechanical strength of the oxide superconductor is great, fiber reinforced materials such as GFRP (glass fiber reinforced plastics) and CFRP (carbon fiber reinforced plastics), A material having high strength and rigidity, such as a metal material such as stainless steel, NiCr alloy, Ti alloy or the like, or a ceramic material such as alumina or silicon nitride, is preferable, and these materials may be used in combination.
(実施例1)
溶融法で作製した直径46mm、厚さ15mmで、25mol%の211相が123相中に微細分散したDy-Ba-Cu-O系単結晶状酸化物超電導体から長さ40mm、幅5mm、厚さ0.8mmの棒状の試料を切り出し、表面を1μmの厚さの銀で被覆した。次に、酸化物超電導体の両端を銅製の電極端子と半田接続し、ガラス繊維強化プラスチックス(GFRP)で酸化物超電導体の両側から接着固定した、図1のような構造の酸化物超電導体通電素子を作製した。接着樹脂としては、エポキシ系樹脂(商品名:スタイキャスト1266)を用い、60μm級の銀粒子をフィラーとして40質量%攪拌混合した後に、酸化物超電導体と支持体とに塗布し、酸化物超電導体の両側から支持体を重ね合わせた後に、ステンレス製ボルトで機械的に固定した状態で、樹脂を接着硬化させた。
Example 1
A Dy-Ba-Cu-O single crystal oxide superconductor having a diameter of 46 mm, a thickness of 15 mm, and a 25 mol% 211 phase finely dispersed in the 123 phase, produced by a melting method, 40 mm long, 5 mm wide, thick A 0.8 mm thick rod-shaped sample was cut out and the surface was coated with 1 μm thick silver. Next, both ends of the oxide superconductor are solder-connected to copper electrode terminals, and the oxide superconductor having the structure shown in FIG. 1 is bonded and fixed from both sides of the oxide superconductor with glass fiber reinforced plastics (GFRP). An energization element was produced. As an adhesive resin, an epoxy resin (trade name: Stycast 1266) is used. After stirring and mixing 60% by mass of 60 μm-class silver particles as a filler, it is applied to the oxide superconductor and the support, and the oxide superconductor. After overlapping the support from both sides of the body, the resin was adhesively cured in a state of being mechanically fixed with a stainless steel bolt.
比較のため、フィラーを混合しないで電気絶縁性のエポキシ系樹脂を接着用にそのまま使用した以外は同じ部材を用いて、同じ構造の酸化物超電導体通電素子を作製した。なお、本実施例の酸化物超電導体の電気抵抗率は300Kで600μΩcmであった。一方、フィラーを混合した導電性樹脂の、硬化後の300Kでの電気抵抗率は10mΩcmであった。 For comparison, an oxide superconducting current-carrying element having the same structure was produced using the same member except that an electrically insulating epoxy resin was used as it was for bonding without mixing the filler. Note that the electrical resistivity of the oxide superconductor of this example was 300 μK and 600 μΩcm. On the other hand, the electrical resistivity at 300K after curing of the conductive resin mixed with the filler was 10 mΩcm.
本実施例及び比較例の酸化物超電導体通電素子をそれぞれ10本ずつ作製し、液体窒素中にて通電試験を実施し、どちらも10本とも250Aで通電可能であることを確認した。その後、銅線を外部に付加的にバイパス回路として接続した状態で、液体窒素中で250A以上の電流を通電する過電流通電試験を実施し、通電素子中の酸化物超電導体を強制的にクエンチさせた。本実験に用いた電流電源は過電圧保護回路付のものであり、過電圧を検出してから通電電流遮断までの時間は2m秒であった。過電流通電試験後に、比較例の酸化物超電導体通電素子の場合、10本中7本において、通電素子中の酸化物超電導体が破損や溶断しており、250Aまで通電できなかった。一方、本実施例の酸化物超電導体通電素子の場合、10本全て250A通電可能であった。本実験により、本実施例の構造の酸化物超電導体通電素子では、クエンチ時の耐久性が大幅に改善していることが確認できた。 Ten oxide superconductor energization elements of each of the present example and the comparative example were produced, respectively, and an energization test was performed in liquid nitrogen, and it was confirmed that both of them could be energized at 250A. After that, with the copper wire connected to the outside as an additional bypass circuit, an overcurrent energization test in which a current of 250 A or more was conducted in liquid nitrogen was conducted to forcibly quench the oxide superconductor in the energization element. I let you. The current power source used in this experiment was equipped with an overvoltage protection circuit, and the time from detection of the overvoltage to interruption of the energization current was 2 milliseconds. In the case of the oxide superconductor energization element of the comparative example after the overcurrent energization test, the oxide superconductor in the energization element was broken or melted in 7 out of 10, and the current could not be applied up to 250A. On the other hand, in the case of the oxide superconductor energization element of this example, all 10 pieces could be energized with 250A. From this experiment, it was confirmed that the durability at the time of quenching was significantly improved in the oxide superconductor conducting element having the structure of this example.
(実施例2)
溶融法で作製した直径46mm、厚さ15mmで、20mol%の211相が123相中に微細分散し、初期原料に10質量%添加した銀が微細分散したGd-Ba-Cu-O系単結晶状酸化物超電導体から、長さ40mm、幅3mm、厚さ0.8mmの棒状の試料を切り出し、表面を2μmの厚さの銀で被覆した。次に、酸化物超電導体の両端を銅製の電極端子と半田接続し、ガラス繊維強化プラスチックス(GFRP)で酸化物超電導体の両側から接着固定した、図1のような構造の酸化物超電導体通電素子を作製した。接着樹脂としてはエポキシ系樹脂を用い、1μm級の銅粒子をフィラーとして75質量%攪拌混合した後に、酸化物超電導体と支持体とに塗布し、酸化物超電導体の両側から支持体を重ね合わせた後に、ステンレス製ボルトで機械的に固定した状態で樹脂を接着硬化させた。
(Example 2)
Gd-Ba-Cu-O single crystal with a diameter of 46 mm and a thickness of 15 mm produced by the melting method, with 20 mol% of the 211 phase finely dispersed in the 123 phase and 10 mass% added silver as the initial raw material. A rod-shaped sample having a length of 40 mm, a width of 3 mm, and a thickness of 0.8 mm was cut out from the oxide superconductor, and the surface was covered with silver having a thickness of 2 μm. Next, both ends of the oxide superconductor are solder-connected to copper electrode terminals, and the oxide superconductor having the structure shown in FIG. 1 is bonded and fixed from both sides of the oxide superconductor with glass fiber reinforced plastics (GFRP). An energization element was produced. An epoxy resin is used as the adhesive resin, and 1% by weight of copper particles as a filler is stirred and mixed by 75% by mass, then applied to the oxide superconductor and the support, and the support is overlapped from both sides of the oxide superconductor. After that, the resin was bonded and cured in a state of being mechanically fixed with a stainless steel bolt.
比較のため、フィラーを混合しないで電気絶縁性のエポキシ系樹脂を接着用にそのまま使用した以外は同じ部材を用いて、同じ構造の酸化物超電導体通電素子を作製した。なお、本実施例の酸化物超電導体の電気抵抗率は300Kで500μΩcmであった。一方、フィラーを混合した導電性樹脂の、硬化後の300Kでの電気抵抗率は1mΩcmであった。 For comparison, an oxide superconducting current-carrying element having the same structure was produced using the same member except that an electrically insulating epoxy resin was used as it was for bonding without mixing the filler. The electrical resistivity of the oxide superconductor of this example was 500 μΩcm at 300K. On the other hand, the electrical resistivity at 300 K after curing of the conductive resin mixed with the filler was 1 mΩcm.
本実施例及び比較例の酸化物超電導体通電素子をそれぞれ10本ずつ作製し、液体窒素中にて通電試験を実施し、どちらも10本とも150A通電可能であることを確認した。その後、外部に付加的に接続するバイパス回路なし状態で、液体窒素中で150A以上の電流を通電する過電流通電試験を実施し、通電素子中の酸化物超電導体を強制的にクエンチさせた。本実験に用いた電流電源は過電圧保護回路付のものであり、過電圧を検出してから通電電流遮断までの時間は2m秒であった。過電流通電試験後に、比較例の酸化物超電導体通電素子の場合、10本中10本とも、通電素子中の酸化物超電導体が破損や溶断しており、150Aまで通電できなかった。一方、本実施例の酸化物超電導体通電素子の場合、10本中2本において150Aまで通電できなかったものの、8本については150A通電可能であった。本実験により、本実施例の構造の酸化物超電導体通電素子では、クエンチ時の耐久性が大幅に改善していることが確認できた。 Ten oxide superconducting current-carrying elements of each of the present example and the comparative example were produced, respectively, and a current-carrying test was performed in liquid nitrogen. Thereafter, an overcurrent energization test in which a current of 150 A or more was passed in liquid nitrogen without a bypass circuit additionally connected to the outside was performed to forcibly quench the oxide superconductor in the energization element. The current power source used in this experiment was equipped with an overvoltage protection circuit, and the time from detection of the overvoltage to interruption of the energization current was 2 milliseconds. In the case of the oxide superconductor energization element of the comparative example after the overcurrent energization test, 10 out of 10 oxide superconductors in the energization element were damaged or melted, and could not be energized up to 150A. On the other hand, in the case of the oxide superconductor energization element of this example, although it was not possible to energize up to 150A in 2 out of 10, it was possible to energize 150A in 8 of them. From this experiment, it was confirmed that the durability at the time of quenching was significantly improved in the oxide superconductor conducting element having the structure of this example.
(実施例3)
溶融法で作製した直径30mm、厚さ15mmで、30mol%の211相が123相中に微細分散したHo-Ba-Cu-O系単結晶状酸化物超電導体から長さ30mm、幅2mm、厚さ1mmの棒状の試料を切り出した。次に、酸化物超電導体の表面に銀成膜を行わずに、酸化物超電導体の両端を銅製の電極端子と半田接続し、ガラス繊維強化プラスチックス(GFRP)で酸化物超電導体の両側から接着固定した、図1のような構造の酸化物超電導体通電素子を作製した。接着樹脂としては、エポキシ系樹脂を用い、10μm級のカーボン粒子をフィラーとして60質量%攪拌混合した後に、酸化物超電導体と支持体とに塗布し、酸化物超電導体の両側から支持体を重ね合わせた後に、ステンレス製ボルトで機械的に固定した状態で、樹脂を接着硬化させた。
(Example 3)
30 mm in length, 2 mm in thickness, 30 mm in length, 15 mm in thickness, 15 mm in thickness from a Ho-Ba-Cu-O single crystal oxide superconductor in which 30 mol% of 211 phase is finely dispersed in 123 phase A 1 mm thick rod-shaped sample was cut out. Next, without forming a silver film on the surface of the oxide superconductor, both ends of the oxide superconductor are solder-connected to copper electrode terminals, and glass fiber reinforced plastics (GFRP) are used from both sides of the oxide superconductor. An oxide superconductor energizing element having a structure as shown in FIG. As an adhesive resin, an epoxy resin is used, and 10 μm-class carbon particles are mixed as a filler by 60 mass%, and then applied to the oxide superconductor and the support, and the support is overlapped from both sides of the oxide superconductor. After matching, the resin was adhesively cured in a state of being mechanically fixed with a stainless steel bolt.
比較のため、フィラーを混合しないで電気絶縁性のエポキシ系樹脂を接着用にそのまま使用した以外は同じ部材を用いて、同じ構造の酸化物超電導体通電素子を作製した。なお、本実施例の酸化物超電導体の電気抵抗率は300Kで600μΩcmであった。一方、フィラーを混合した導電性樹脂の、硬化後の300Kでの電気抵抗率は1Ωcmであった。 For comparison, an oxide superconducting current-carrying element having the same structure was produced using the same member except that an electrically insulating epoxy resin was used as it was for bonding without mixing the filler. Note that the electrical resistivity of the oxide superconductor of this example was 300 μK and 600 μΩcm. On the other hand, the electrical resistivity at 300 K after curing of the conductive resin mixed with the filler was 1 Ωcm.
本実施例及び比較例の酸化物超電導体通電素子をそれぞれ10本ずつ作製し、液体窒素中にて通電試験を実施し、どちらも10本とも125A通電可能であることを確認した。その後、銅線を外部に付加的にバイパス回路として接続した状態で、液体窒素中で125A以上の電流を通電する過電流通電試験を実施し、通電素子中の酸化物超電導体を強制的にクエンチさせた。本実験に用いた電流電源は過電圧保護回路付のものであり、過電圧を検出してから通電電流遮断までの時間は2m秒であった。過電流通電試験後に、比較例の酸化物超電導体通電素子の場合、10本中8本において、通電素子中の酸化物超電導体が破損や溶断しており、125Aまで通電できなかった。一方、本実施例の酸化物超電導体通電素子の場合、10本中3本において125Aまで通電できなかったものの、7本については125A通電可能であった。本実験により、本実施例の構造の酸化物超電導体通電素子では、クエンチ時の耐久性が大幅に改善していることが確認できた。 Ten oxide superconducting current-carrying elements of each of the present example and the comparative example were produced, respectively, and an energization test was performed in liquid nitrogen, and it was confirmed that both of them could conduct 125A. After that, with the copper wire additionally connected to the outside as a bypass circuit, an overcurrent energization test in which a current of 125 A or more was conducted in liquid nitrogen was conducted, and the oxide superconductor in the energization element was forcibly quenched. I let you. The current power source used in this experiment was equipped with an overvoltage protection circuit, and the time from detection of the overvoltage to interruption of the energization current was 2 milliseconds. In the case of the oxide superconductor energization element of the comparative example after the overcurrent energization test, the oxide superconductor in the energization element was broken or melted in 8 out of 10 elements, and could not be energized up to 125A. On the other hand, in the case of the oxide superconductor energization element of this example, although it was not possible to energize up to 125A in 3 out of 10, it was possible to energize 125A in 7 of them. From this experiment, it was confirmed that the durability at the time of quenching was significantly improved in the oxide superconductor conducting element having the structure of this example.
(実施例4)
溶融法で作製した直径65mm、厚さ20mmで、30mol%の211相が123相中に微細分散したDy-Ba-Cu-O系単結晶状酸化物超電導体から、永久電流スイッチ素子に適用できるように電流通路を長くしたミアンダ形状の試料を切り出し、表面を10μmの厚さの銀で被覆した。ミアンダ形状には、縦30mm、横55mmの板形状に切り出した酸化物超電導体に、幅1mmの溝を交互に設けて作製した。次に、酸化物超電導体の両端を銅製の電極端子と半田接続し、ガラス繊維強化プラスチックス(GFRP)で酸化物超電導体の両側から接着固定し、図2のような酸化物超電導体通電素子を作製した。接着樹脂としては、エポキシ系樹脂を用い、1μm級の銀粒子をフィラーとして90質量%攪拌混合した後に、酸化物超電導体と支持体とに塗布し、酸化物超電導体の両側から支持体を重ね合わせた後に、ステンレス製ボルトで機械的に固定した状態で、樹脂を接着硬化させた。また、接着用の導電性樹脂は、ミアンダ形状の隙間を埋めるようにも塗布した。
Example 4
A Dy-Ba-Cu-O single crystal oxide superconductor having a diameter of 65 mm, a thickness of 20 mm, and a 30 mol% 211 phase finely dispersed in a 123 phase produced by a melting method can be applied to a permanent current switching element. Thus, a meander-shaped sample with a long current path was cut out, and the surface was coated with silver having a thickness of 10 μm. The meander shape was prepared by alternately providing grooves having a width of 1 mm on an oxide superconductor cut into a plate shape having a length of 30 mm and a width of 55 mm. Next, both ends of the oxide superconductor are solder-connected to copper electrode terminals and bonded and fixed from both sides of the oxide superconductor with glass fiber reinforced plastics (GFRP), and the oxide superconductor energization element as shown in FIG. Was made. As the adhesive resin, an epoxy resin is used, and after stirring and mixing 90% by mass of 1 μm class silver particles as a filler, it is applied to the oxide superconductor and the support, and the support is stacked from both sides of the oxide superconductor. After matching, the resin was adhesively cured in a state of being mechanically fixed with a stainless steel bolt. The conductive resin for adhesion was also applied so as to fill the meander-shaped gap.
比較のため、フィラーを混合しないで電気絶縁性のエポキシ系樹脂を接着用にそのまま使用した以外は同じ部材を用いて、同じ構造の酸化物超電導体通電素子を作製した。なお、本実施例の酸化物超電導体の電気抵抗率は300Kで800μΩcmであった。一方、フィラーを混合した導電性樹脂の、硬化後の300Kでの電気抵抗率は1mΩcmであった。 For comparison, an oxide superconducting current-carrying element having the same structure was produced using the same member except that an electrically insulating epoxy resin was used as it was for bonding without mixing the filler. Note that the electrical resistivity of the oxide superconductor of this example was 300 μK and 800 μΩcm. On the other hand, the electrical resistivity at 300 K after curing of the conductive resin mixed with the filler was 1 mΩcm.
本実施例及び比較例の酸化物超電導体通電素子をそれぞれ10本ずつ作製し、液体窒素中にて通電試験を実施し、どちらも10本とも250A通電可能であることを確認した。その後、銅線を外部に付加的にバイパス回路として接続した状態で、液体窒素中で250A以上の電流を通電する過電流通電試験を実施し、通電素子中の酸化物超電導体を強制的にクエンチさせた。本実験に用いた電流電源は過電圧保護回路付のものであり、過電圧を検出してから通電電流遮断までの時間は2m秒であった。過電流通電試験後に、比較例の酸化物超電導体通電素子の場合、10本中9本において、通電素子中の酸化物超電導体が破損や溶断しており、250Aまで通電できなかった。一方、本実施例の酸化物超電導体通電素子の場合、10本中1本において250Aまで通電できなかったものの、9本については250A通電可能であった。本実験により、本実施例の構造の酸化物超電導体通電素子では、クエンチ時の耐久性が大幅に改善していることが確認できた。 Ten oxide superconducting current-carrying elements of each of the present example and the comparative example were each manufactured, and a current-carrying test was performed in liquid nitrogen. It was confirmed that both of them could carry 250A. After that, with the copper wire connected to the outside as an additional bypass circuit, an overcurrent energization test in which a current of 250 A or more was conducted in liquid nitrogen was conducted to forcibly quench the oxide superconductor in the energization element. I let you. The current power source used in this experiment was equipped with an overvoltage protection circuit, and the time from detection of the overvoltage to interruption of the energization current was 2 milliseconds. In the case of the oxide superconductor energization element of the comparative example after the overcurrent energization test, the oxide superconductor in the energization element was broken or melted in 9 out of 10 elements, and current could not be applied up to 250A. On the other hand, in the case of the oxide superconductor energization element of this example, it was not possible to energize up to 250A in 1 out of 10, but 250A could be energized in 9 of them. From this experiment, it was confirmed that the durability at the time of quenching was significantly improved in the oxide superconductor conducting element having the structure of this example.
(実施例5)
外直径30mm、内直径10mm、長さ120mmの円筒形状のBi-Sr-Ca-Cu-O系酸化物超電導体を焼結法で作製し、その両端20mm長を厚さ5μmの銀で被覆した。次に、酸化物超電導体の両端10mm部分を銅製の電極端子と半田接続し、ガラス繊維強化プラスチックス(GFRP)で酸化物超電導体の両側から接着固定し、図3のような構造の酸化物超電導体通電素子を作製した。接着樹脂としては、エポキシ系樹脂を用い、8μm級の銀粒子をフィラーとして75質量%攪拌混合した後に、酸化物超電導体と支持体とに塗布し、酸化物超電導体の両側から支持体を重ね合わせた後に、ボルトで機械的に固定することなしに、樹脂を接着硬化させた。
(Example 5)
A cylindrical Bi-Sr-Ca-Cu-O-based oxide superconductor having an outer diameter of 30 mm, an inner diameter of 10 mm, and a length of 120 mm was produced by a sintering method, and both ends thereof were covered with silver having a thickness of 5 μm. . Next, 10 mm portions of both ends of the oxide superconductor are soldered to copper electrode terminals, and are bonded and fixed from both sides of the oxide superconductor with glass fiber reinforced plastics (GFRP), and the oxide having the structure as shown in FIG. A superconductor energization element was produced. As the adhesive resin, an epoxy resin is used, and 75 μ% by weight of 8 μm class silver particles as a filler is stirred and mixed, and then applied to the oxide superconductor and the support, and the support is overlapped from both sides of the oxide superconductor. After bonding, the resin was adhesively cured without being mechanically fixed with bolts.
比較のため、フィラーを混合しないで電気絶縁性のエポキシ系樹脂を接着用にそのまま使用した以外は同じ部材を用いて、同じ構造の酸化物超電導体通電素子を作製した。なお、本実施例の酸化物超電導体の電気抵抗率は300Kで2mΩcmであった。一方、フィラーを混合した導電性樹脂の、硬化後の300Kでの電気抵抗率は6mΩcmであった。 For comparison, an oxide superconducting current-carrying element having the same structure was produced using the same member except that an electrically insulating epoxy resin was used as it was for bonding without mixing the filler. Note that the electrical resistivity of the oxide superconductor of this example was 2 mΩcm at 300K. On the other hand, the electrical resistivity at 300 K after curing of the conductive resin mixed with the filler was 6 mΩcm.
本実施例及び比較例の酸化物超電導体通電素子をそれぞれ5本ずつ作製し、液体窒素中にて通電試験を実施し、どちらも5本とも250A通電可能であることを確認した。その後、銅線を外部に付加的にバイパス回路として接続した状態で、液体窒素中で250A以上の電流を通電する過電流通電試験を実施し、通電素子中の酸化物超電導体を強制的にクエンチさせた。本実験に用いた電流電源は過電圧保護回路付のもので、過電圧を検出してから通電電流遮断までの時間は2m秒であった。過電流通電試験後に、比較例の酸化物超電導体通電素子の場合、5本中5本において、通電素子中の酸化物超電導体が破損や溶断しており、250Aまで通電できなかった。一方、本実施例の酸化物超電導体通電素子の場合、5本中1本において250Aまで通電できなかったものの、4本については250A通電可能であった。本実験により、本実施例の構造の酸化物超電導体通電素子では、クエンチ時の耐久性が大幅に改善していることが確認できた。 Five oxide superconducting current-carrying elements of each of the present example and the comparative example were produced, respectively, and an energization test was performed in liquid nitrogen, and both of them were confirmed to be capable of conducting 250A. After that, with the copper wire connected to the outside as an additional bypass circuit, an overcurrent energization test in which a current of 250 A or more was conducted in liquid nitrogen was conducted to forcibly quench the oxide superconductor in the energization element. I let you. The current power source used in this experiment was equipped with an overvoltage protection circuit, and the time from detection of the overvoltage to interruption of the energization current was 2 milliseconds. In the case of the oxide superconductor energization element of the comparative example after the overcurrent energization test, the oxide superconductor in the energization element was broken or melted in 5 out of 5 elements, and could not be energized up to 250A. On the other hand, in the case of the oxide superconductor energization element of this example, it was not possible to energize up to 250A in one of the five, but 250A could be energized in four. From this experiment, it was confirmed that the durability at the time of quenching was significantly improved in the oxide superconductor conducting element having the structure of this example.
本発明によれば、クエンチ時の耐久性に優れた酸化物超電導体通電素子を提供することができるので、酸化物超電導体の工業上の利用範囲が拡大する。 According to the present invention, an oxide superconductor energization element excellent in durability at the time of quenching can be provided, so that the industrial application range of the oxide superconductor is expanded.
1 酸化物超電導体
2 電極端子
3 導電性樹脂
4 支持体
5 ボルト
1
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008117405A JP5233391B2 (en) | 2008-04-28 | 2008-04-28 | Oxide superconductor conducting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008117405A JP5233391B2 (en) | 2008-04-28 | 2008-04-28 | Oxide superconductor conducting element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009267240A JP2009267240A (en) | 2009-11-12 |
JP5233391B2 true JP5233391B2 (en) | 2013-07-10 |
Family
ID=41392682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008117405A Active JP5233391B2 (en) | 2008-04-28 | 2008-04-28 | Oxide superconductor conducting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5233391B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6471625B2 (en) * | 2015-06-25 | 2019-02-20 | 新日鐵住金株式会社 | Superconducting conductive element |
JP7395413B2 (en) * | 2020-04-09 | 2023-12-11 | 株式会社東芝 | Superconducting coil manufacturing method and electrical equipment manufacturing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01155670A (en) * | 1987-12-11 | 1989-06-19 | Matsushita Electric Works Ltd | Manufacture of superconductive material |
JP4402928B2 (en) * | 2003-09-22 | 2010-01-20 | 新日本製鐵株式会社 | Oxide superconductor conducting element |
JP4612311B2 (en) * | 2004-01-28 | 2011-01-12 | 新日本製鐵株式会社 | Oxide superconductor current lead |
JP5005582B2 (en) * | 2008-03-04 | 2012-08-22 | 富士電機株式会社 | Superconducting current lead manufacturing method |
-
2008
- 2008-04-28 JP JP2008117405A patent/JP5233391B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009267240A (en) | 2009-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5828291A (en) | Multiple compound conductor current-limiting device | |
JP3984303B2 (en) | High temperature superconductor and method of using the high temperature superconductor | |
EP1830446B1 (en) | Electrical device for current conditioning | |
JP6505565B2 (en) | Connection structure of high temperature superconducting conductor, high temperature superconducting coil and high temperature superconducting coil | |
JP5233391B2 (en) | Oxide superconductor conducting element | |
JP5022279B2 (en) | Oxide superconducting current lead | |
US6657533B2 (en) | Superconducting conductors and their method of manufacture | |
JP2004190113A (en) | Alloy-type thermal fuse and material for thermal fuse element | |
JP6471625B2 (en) | Superconducting conductive element | |
JP4402928B2 (en) | Oxide superconductor conducting element | |
JP5037193B2 (en) | Oxide superconducting conductor conducting element | |
JP5278109B2 (en) | Oxide superconductor conducting element | |
JP2022021490A (en) | Superconducting coil and superconducting coil device | |
JP5037146B2 (en) | Oxide superconductor energization element and manufacturing method thereof | |
EP1105885B1 (en) | Superconducting conductors | |
US4736070A (en) | Miniaturized lighting or overload protective device and protective device used therein | |
JP3872738B2 (en) | High withstand voltage superconducting fault current limiter | |
JP2018055990A (en) | Superconductive current lead and oxide superconducting wire material | |
JP4728847B2 (en) | Oxide superconductor conducting element | |
JP4734004B2 (en) | Superconducting current lead | |
JP3887277B2 (en) | Oxide superconductor conducting element | |
JP7127463B2 (en) | Oxide superconducting bulk conductor | |
JP2020013960A (en) | Superconducting coil and superconducting coil device | |
JP7335501B2 (en) | Oxide superconducting bulk conductor and current-carrying element | |
US8450246B2 (en) | Low resistivity contact to iron-pnictide superconductors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130311 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5233391 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160405 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |