JP2009267240A - Conducting element using oxide superconductor - Google Patents

Conducting element using oxide superconductor Download PDF

Info

Publication number
JP2009267240A
JP2009267240A JP2008117405A JP2008117405A JP2009267240A JP 2009267240 A JP2009267240 A JP 2009267240A JP 2008117405 A JP2008117405 A JP 2008117405A JP 2008117405 A JP2008117405 A JP 2008117405A JP 2009267240 A JP2009267240 A JP 2009267240A
Authority
JP
Japan
Prior art keywords
oxide superconductor
current
energization
oxide
energization element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008117405A
Other languages
Japanese (ja)
Other versions
JP5233391B2 (en
Inventor
Hidekazu Tejima
英一 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008117405A priority Critical patent/JP5233391B2/en
Publication of JP2009267240A publication Critical patent/JP2009267240A/en
Application granted granted Critical
Publication of JP5233391B2 publication Critical patent/JP5233391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conducting element using an oxide superconductor, which is superior in durability against quench, in particular, local quench. <P>SOLUTION: The conducting element using the oxide superconductor comprises at least the oxide superconductor, electrode terminals electrically connected to both ends of the oxide superconductor, and a support bonded to the oxide superconductor by conductive resin. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電流リードや限流器、永久電流スイッチ等に使用する酸化物超電導体を用いた酸化物超電導体通電素子に関する。   The present invention relates to an oxide superconductor energization element using an oxide superconductor used for a current lead, a current limiter, a permanent current switch and the like.

酸化物超電導体は、電気抵抗がゼロで大電流を流せるので、電流リードや限流器、永久電流スイッチ等の通電素子に用いられる。酸化物超電導体を用いた通電素子は、例えば、特許文献1に記載されているように、酸化物超電導体と、酸化物超電導体の両端に半田等で電気的に接続された電極端子と、樹脂等で酸化物超電導体に接着された支持体(補強部材)とから主に構成される。   Oxide superconductors can be used for current-carrying elements such as current leads, current limiters, and permanent current switches because they can flow a large current with zero electrical resistance. An energization element using an oxide superconductor is, for example, as described in Patent Document 1, an oxide superconductor and electrode terminals electrically connected to both ends of the oxide superconductor by solder or the like, It is mainly comprised from the support body (reinforcement member) adhere | attached on the oxide superconductor with resin etc.

特許文献1には、接着部材として、「低温用樹脂接着剤は、液体窒素温度等の低温においても亀裂等が生じず、接着力が維持されるものであり、たとえば、エポキシ系樹脂系接着剤、ポリイミド系樹脂系接着剤、ビニルエステル系樹脂系接着剤等が好ましく用いられる」と記載されており、さらに、「熱収縮率の調整のため、この接着剤にセラミックス粉末が添加されている。添加されるセラミックスとして、たとえば、アルミナ、ジルコニアまたはそれらの混合物が好ましい」と記載されている。特許文献1に例として挙げられている接着部材及びセラミックス粉末は、電気的絶縁材料であり、接着剤にセラミックス粉末を添加する理由として熱収縮率の調整が挙げられているが、特許文献1には、接着部材や添加粉末の電気伝導性に関する記載はない。   In Patent Document 1, as an adhesive member, “a low-temperature resin adhesive does not cause cracks or the like even at a low temperature such as liquid nitrogen temperature, and maintains an adhesive force. For example, an epoxy-based resin adhesive In addition, a polyimide resin adhesive, a vinyl ester resin adhesive, and the like are preferably used ”, and“ a ceramic powder is added to the adhesive for adjusting the heat shrinkage rate ”. As the ceramic to be added, for example, alumina, zirconia or a mixture thereof is preferable ". The adhesive member and the ceramic powder cited as examples in Patent Document 1 are electrically insulating materials, and the adjustment of the heat shrinkage rate is cited as the reason for adding the ceramic powder to the adhesive. There is no description regarding the electrical conductivity of the adhesive member or the additive powder.

また、酸化物超電導体を用いた通電素子では、クエンチ(超電導状態から常電導状態への転移)等の異常事態において、過電流が流れた場合に、酸化物超電導体が破損したり、溶断したりするおそれがある。その対策として、例えば、特許文献2には、「このセラミックス超電導導体に並列に常電導導体を接続したもので、この常電導導体はクエンチ等の異常事態において電流のバイパスの役目を果たすもの」と記載されているように、外部に付加的にバイパス回路を接続することが提案されている。   Also, in an energizing element using an oxide superconductor, the oxide superconductor may be damaged or blown when an overcurrent flows in an abnormal situation such as a quench (transition from the superconducting state to the normal conducting state). There is a risk of As a countermeasure, for example, Patent Document 2 states that “a normal conductive conductor is connected in parallel with this ceramic superconductive conductor, and this normal conductive conductor serves as a current bypass in an abnormal situation such as a quench”. As described, it has been proposed to additionally connect a bypass circuit to the outside.

特開平8−264312号公報JP-A-8-264312 特許第2768776号公報Japanese Patent No. 2768776

外部に付加的にバイパス回路を設けることにより、酸化物超電導体通電素子の破損や溶断を防止することができるはずであるが、外部にバイパス回路を接続しても、酸化物超電導体が破損や溶断することが起こるという問題があった。酸化物超電導体が全体的にクエンチした場合には、設計通りに電流がバイパス回路側に迂回するため、酸化物超電導体の破損や溶断は起こり難い。しかし、酸化物超電導体の一部が局所的にクエンチした場合には、一部しか常電導状態に転移していないため、酸化物超電導体側の電気抵抗が十分に大きくならず、設計通りには電流がバイパス回路側に十分に迂回しない。そのため、酸化物超電導体の常電導転移部分に大きな電流が流れ続け、その部分の温度が局所的に急激に上昇する。その結果、酸化物超電導体の破損や溶断が起こっていた。   By providing an additional bypass circuit outside, it should be possible to prevent damage and fusing of the oxide superconductor energization element, but even if an external bypass circuit is connected, the oxide superconductor will be damaged or There was a problem that fusing occurred. When the oxide superconductor is quenched as a whole, the current is diverted to the bypass circuit side as designed, so that the oxide superconductor is hardly damaged or blown. However, when a part of the oxide superconductor is locally quenched, only part of the oxide superconductor has transitioned to the normal conducting state, so the electrical resistance on the oxide superconductor side is not sufficiently large, and as designed. The current is not sufficiently diverted to the bypass circuit side. Therefore, a large current continues to flow through the normal conducting transition portion of the oxide superconductor, and the temperature of that portion rapidly increases locally. As a result, the oxide superconductor was broken or melted.

そこで、本発明は、上記の問題を解決し、クエンチ時の耐久性に優れた酸化物超電導体通電素子を提供することを目的とする。   Then, this invention solves said problem and aims at providing the oxide superconductor energization element excellent in durability at the time of quenching.

本発明の酸化物超電導体通電素子は、以下のとおりである。
(1)酸化物超電導体と、該酸化物超電導体の両端に電気的に接合された電極端子と、該酸化物超電導体に導電性樹脂により接着された支持体とから少なくとも構成されてなることを特徴とする酸化物超電導体通電素子。
(2)前記導電性樹脂が、電気絶縁性樹脂に導電性フィラーを配合したものであることを特徴とする(1)に記載の酸化物超電導体通電素子。
(3)前記導電性フィラーが金属粉末あるいはカーボン粉末であることを特徴とする(2)に記載の酸化物超電導体通電素子。
(4)前記導電性樹脂の電気抵抗率が10-2Ωcm以下であることを特徴とする(1)〜(3)のいずれかに記載の酸化物超電導体通電素子。
(5)前記支持体を固定する機械的手段をさらに有することを特徴とする(1)〜(4)のいずれかに記載の酸化物超電導体通電素子。
(6)前記酸化物超電導体の表面が金属皮膜で被覆されていることを特徴とする(1)〜(5)のいずれかに記載の酸化物超電導体通電素子。
(7)前記酸化物超電導体が、単結晶状のREBa2Cu3Ox相(REはY又は希土類元素から選ばれる1種又は2種以上)中にRE2BaCuO5相が微細分散した酸化物超電導体であることを特徴とする(1)〜(6)のいずれかに記載の酸化物超電導体通電素子。
The oxide superconductor energization element of the present invention is as follows.
(1) It is composed at least of an oxide superconductor, electrode terminals electrically joined to both ends of the oxide superconductor, and a support bonded to the oxide superconductor with a conductive resin. An oxide superconductor energization element.
(2) The oxide superconductor energization element according to (1), wherein the conductive resin is a mixture of an electrically insulating resin and a conductive filler.
(3) The oxide superconductor energization element according to (2), wherein the conductive filler is a metal powder or a carbon powder.
(4) The oxide superconductor energization element according to any one of (1) to (3), wherein an electrical resistivity of the conductive resin is 10 −2 Ωcm or less.
(5) The oxide superconductor energization element according to any one of (1) to (4), further comprising mechanical means for fixing the support.
(6) The oxide superconductor energization element according to any one of (1) to (5), wherein a surface of the oxide superconductor is covered with a metal film.
(7) Oxide superconductor is an oxide in which a RE 2 BaCuO 5 phase is finely dispersed in a single crystalline REBa 2 Cu 3 O x phase (RE is one or more selected from Y or rare earth elements) The oxide superconductor energization element according to any one of (1) to (6), which is a physical superconductor.

本発明によれば、局所的なクエンチ時の耐久性に優れた酸化物超電導体通電素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the oxide superconductor energization element excellent in the durability at the time of local quenching can be provided.

以下に、本発明の実施形態について図に沿って説明する。
図1は、本発明の実施形態における酸化物超電導体通電素子の構造の一例を示す断面図である。
図1において、酸化物超電導体1の両端には、外部に接続するための電極端子2が半田等(図1では省略されている)で電気的に接合されている。さらに、酸化物超電導体1の両側には、補強のために導電性樹脂3によって支持体4が接着されている。支持体4は酸化物超電導体1の表面だけでなく、酸化物超電導体1と電極端子2との接合部をも覆うように密着被覆されている。酸化物超電導体1の両側の支持体4は、導電性樹脂3による接着固定に加えて、ボルト5等による機械的手段で固定されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of the structure of an oxide superconductor energization element according to an embodiment of the present invention.
In FIG. 1, electrode terminals 2 for external connection are electrically connected to both ends of an oxide superconductor 1 with solder or the like (omitted in FIG. 1). Furthermore, a support 4 is bonded to both sides of the oxide superconductor 1 with a conductive resin 3 for reinforcement. The support 4 is tightly coated so as to cover not only the surface of the oxide superconductor 1 but also the joint between the oxide superconductor 1 and the electrode terminal 2. Supports 4 on both sides of oxide superconductor 1 are fixed by mechanical means such as bolts 5 in addition to adhesive fixing by conductive resin 3.

本発明において、導電性樹脂とは、電気抵抗率が小さく電気伝導性を有する樹脂のことである。酸化物超電導体の室温から臨界温度直上での四端子法によって測定される電気抵抗率は10-4〜10-3Ωcm程度であるが、クエンチ箇所に電流が流れ続けると、溶断する直前には数百K程度まで温度上昇する。酸化物超電導体の室温以上での電気抵抗率は温度にほぼ比例するので、溶断直前には酸化物超電導体の電気抵抗率は10-2Ωcm程度になっていると推定される。酸化物超電導体が局所的にクエンチした時に、通電電流がクエンチ箇所から導電性樹脂の方へ効果的に迂回するためには、導電性樹脂の電気抵抗率が酸化物超電導体の電気抵抗率よりも同程度か、より小さい方が好ましい。したがって、導電性樹脂の電気抵抗率としては、10-2Ωcm以下であることが好ましい。 In the present invention, the conductive resin is a resin having a small electrical resistivity and electrical conductivity. The electrical resistivity of the oxide superconductor measured by the four probe method from room temperature to just above the critical temperature is about 10 −4 to 10 −3 Ωcm. The temperature rises to about several hundred K. Since the electrical resistivity of the oxide superconductor at room temperature or higher is almost proportional to the temperature, it is estimated that the electrical resistivity of the oxide superconductor is about 10 −2 Ωcm immediately before fusing. When the oxide superconductor is locally quenched, the electrical resistivity of the conductive resin is more than the electrical resistivity of the oxide superconductor in order to effectively bypass the energizing current from the quench point to the conductive resin. Are preferably the same or smaller. Therefore, the electrical resistivity of the conductive resin is preferably 10 −2 Ωcm or less.

エポキシ系樹脂、フェノール系樹脂、ポリイミド系樹脂等のような汎用性の樹脂は、一般に電気絶縁性であるが、銀や銅、ニッケル等の金属粉末あるいはカーボン粉末等の導電性材料をフィラーとして攪拌混合することによって、導電性を付与することができる。酸化物超電導体の破損や溶断の防止のために必要な導電性樹脂の電気抵抗については、通電容量、冷凍機等の冷却能力、クエンチ検出から電流遮断までの時間等、酸化物超電導体通電素子が取り付けられる装置の性能や使用状況、使用環境等に依存するため、酸化物超電導体通電素子のみの構成で決定することはできない。そのため、本発明に用いる導電性樹脂としては、フィラーの配合比率を変化させることにより、容易に電気抵抗を調整することができるので、エポキシ系樹脂等の電気絶縁性樹脂に銀等の導電性フィラーを配合した導電性樹脂が好ましい。導電性フィラーの添加量としては、例えば、10〜90質量%、好ましくは40〜75質量%である。また、導電性フィラーの粒径は、例えば1〜100μmである。   General-purpose resins such as epoxy resins, phenol resins, polyimide resins, etc. are generally electrically insulating, but they are agitated using a conductive material such as metal powder such as silver, copper, nickel, or carbon powder as a filler. By mixing, conductivity can be imparted. Regarding the electrical resistance of conductive resin necessary to prevent breakage or fusing of oxide superconductors, the oxide superconductor energization elements, such as current carrying capacity, cooling capacity of refrigerators, time from quench detection to current interruption, etc. Since it depends on the performance, usage status, usage environment, and the like of the device to which is attached, it cannot be determined by the configuration of only the oxide superconductor energization element. Therefore, as the conductive resin used in the present invention, the electrical resistance can be easily adjusted by changing the blending ratio of the filler. Therefore, the conductive filler such as silver is added to the electrically insulating resin such as epoxy resin. A conductive resin containing is preferably used. As addition amount of an electroconductive filler, it is 10-90 mass%, for example, Preferably it is 40-75 mass%. Moreover, the particle size of a conductive filler is 1-100 micrometers, for example.

本発明の構造を有する酸化物超電導体通電素子において、通常の使用状態では、酸化物超電導体の電気抵抗はほぼゼロであるので、たとえ接着用の樹脂に導電性があったとしても、通電電流は導電性樹脂の方へ迂回することなく、ほぼ全電流が酸化物超電導体中を流れる。しかし、酸化物超電導体の一部がクエンチした場合、電流は、クエンチして常電導状態に転移した部分を迂回して、その直ぐ近くの導電性樹脂部分にも流れることになる。このような局所的な電流の迂回路を有することは、クエンチした部分で発生するジュール発熱量を小さくする効果があるので、クエンチした部分の局所的な急激な温度上昇は抑制される。加えて、酸化物超電導体に接着している導電性樹脂を通じて、局所的に発生したクエンチによる発熱を周囲に拡散させる効果もあるので、クエンチした部分の局所的な急激な温度上昇は抑制される。これらの効果により、酸化物超電導体通電素子のクエンチ時の耐久性は大幅に改善する。   In the oxide superconductor energization element having the structure of the present invention, the electric resistance of the oxide superconductor is almost zero in a normal use state, so even if the adhesive resin has conductivity, the energization current Almost completely flows through the oxide superconductor without detouring towards the conductive resin. However, when a part of the oxide superconductor is quenched, the current bypasses the part that has been quenched and transitioned to the normal conducting state, and also flows to the conductive resin part immediately adjacent thereto. Having such a local current detour has the effect of reducing the amount of Joule heat generated in the quenched portion, so that a local rapid temperature increase in the quenched portion is suppressed. In addition, there is an effect of diffusing heat generated by locally generated quench through the conductive resin bonded to the oxide superconductor, so that local rapid temperature rise in the quenched portion is suppressed. . By these effects, the durability at the time of quenching of the oxide superconductor conducting element is greatly improved.

さらに、導電性樹脂の電気抵抗を十分に小さくすることができれば、導電性樹脂だけでも十分なバイパス回路機能を持たせることが可能であり、外部にバイパス回路を設ける煩わしさを省くことができる。しかしながら、導電性樹脂の電気抵抗を小さくするためには、導電性フィラーの配合比率を大きくする必要があり、導電性樹脂の接着強度が低下するおそれがある。この場合には、ボルト等による機械的手段で支持体を固定することが有効になる。   Further, if the electrical resistance of the conductive resin can be made sufficiently small, it is possible to provide a sufficient bypass circuit function with only the conductive resin, and the troublesomeness of providing a bypass circuit outside can be eliminated. However, in order to reduce the electrical resistance of the conductive resin, it is necessary to increase the blending ratio of the conductive filler, which may reduce the adhesive strength of the conductive resin. In this case, it is effective to fix the support by mechanical means such as bolts.

本発明と同じようなクエンチ時の耐久性を改善する効果を得るために、外部に付加的にバイパス回路を設ける代わりに、補強のための支持体を銀、銅、アルミ等の良導体である金属で形成し、支持体自体をバイパス回路にすることが考えられる。しかしながら、良導体である金属製支持体であっても、電気絶縁性の樹脂を用いて酸化物超電導体に接着すると、本発明の導電性樹脂で接着した場合に比較して、酸化物超電導体に接しているのは電気絶縁性の樹脂なので、局所的なクエンチに対する温度上昇抑制効果は小さくなって好ましくない。さらに、熱侵入を抑制する機能が求められる電流リードでは、良導体である金属を支持体とすると熱侵入量が大幅に増大するので好ましくない。なお、金属製支持体の断面積を小さくすれば、熱侵入量を小さくすることはできるかもしれないが、断面積を小さくすると機械的強度も小さくなり、補強の機能が失われる。本発明で用いる導電性樹脂は、酸化物超電導体と支持体とを接着するものであり、元々その断面積は小さく、樹脂中に導電性フィラーを混合することで樹脂の熱伝導率が多少増大しても、素子全体の熱侵入量はあまり増大しない。   In order to obtain the effect of improving the durability at the time of quenching similar to the present invention, instead of providing an additional bypass circuit on the outside, the support for reinforcement is a metal that is a good conductor such as silver, copper, aluminum, etc. It is conceivable that the support itself is formed as a bypass circuit. However, even a metal support that is a good conductor is bonded to an oxide superconductor using an electrically insulating resin, compared to the case of bonding to an oxide superconductor using the conductive resin of the present invention. Since it is an electrically insulating resin that is in contact with it, the temperature rise suppression effect on local quenching is reduced, which is not preferable. Furthermore, in a current lead that is required to have a function of suppressing heat penetration, it is not preferable to use a metal that is a good conductor as a support because the amount of heat penetration is greatly increased. If the cross-sectional area of the metal support is reduced, the amount of heat penetration may be reduced, but if the cross-sectional area is reduced, the mechanical strength is also reduced and the reinforcing function is lost. The conductive resin used in the present invention adheres the oxide superconductor and the support, originally has a small cross-sectional area, and the heat conductivity of the resin is somewhat increased by mixing a conductive filler in the resin. Even so, the heat penetration amount of the entire element does not increase so much.

本発明に用いる酸化物超電導体は、酸化物超電導体であれば特に材料系を制限するものではなく、RE-Ba-Cu-O(REはY又は希土類元素から選ばれた少なくとも1つの元素)系酸化物超電導体、Bi系酸化物超電導バルク体等でもよい。酸化物超電導バルク体の中でも、溶融法で製造された単結晶状のREBa2Cu3Ox相(123相)中にRE2BaCuO5相(211相)が微細分散した酸化物超電導バルク体は、臨界電流密度が高いので、同じ電流容量に対して必要な酸化物超電導体の断面積が小さくなる。そのため、酸化物超電導体通電素子に用いた場合、小さな断面積に大電流が集中することになるので、局所的なクエンチの影響を受け易い。したがって、本発明によるクエンチ時の耐久性改善の効果は、臨界電流密度の高いRE系溶融バルク超電導体においてより顕著になる。さらに、酸化物超電導体の表面に金属皮膜を形成すると、導電性樹脂との接触電気抵抗が低減し、局所的なクエンチ時に通電電流がスムーズに迂回するため、より好ましい。また、金属皮膜の厚さとしては、例えば0.5〜10μmである。 The oxide superconductor used in the present invention is not particularly limited as long as it is an oxide superconductor. RE-Ba-Cu-O (RE is at least one element selected from Y or rare earth elements) It may be a series oxide superconductor, a Bi series oxide superconducting bulk body, or the like. Among oxide superconducting bulk bodies, oxide superconducting bulk bodies in which RE 2 BaCuO 5 phase (211 phase) is finely dispersed in single-crystal REBa 2 Cu 3 O x phase (123 phase) produced by the melting method are Since the critical current density is high, the required cross-sectional area of the oxide superconductor is reduced for the same current capacity. For this reason, when used in an oxide superconductor energization element, a large current is concentrated in a small cross-sectional area, so that it is easily affected by local quenching. Therefore, the effect of improving the durability at the time of quenching according to the present invention becomes more remarkable in the RE-based molten bulk superconductor having a high critical current density. Furthermore, it is more preferable to form a metal film on the surface of the oxide superconductor because the contact electrical resistance with the conductive resin is reduced and the energization current smoothly bypasses during local quenching. Moreover, as thickness of a metal membrane | film | coat, it is 0.5-10 micrometers, for example.

本発明に用いる電極端子としては、銅、銀、アルミニウム等の電気良導体が、電極端子自体のジュール発熱を小さくできるので好ましい。また、本発明に用いる支持体としては、酸化物超電導体の機械的強度を補強する効果が大きいので、GFRP(ガラス繊維強化プラスチックス)やCFRP(炭素繊維強化プラスチックス)等の繊維強化材料、ステンレスやNiCr合金、Ti合金等の金属材料、アルミナや窒化珪素等のセラミックス材料等、強度や剛性が大きい材料が好ましく、それらの材料を組み合わせて用いてもよい。   As the electrode terminal used in the present invention, a good electrical conductor such as copper, silver, or aluminum is preferable because it can reduce Joule heat generation of the electrode terminal itself. Further, as the support used in the present invention, since the effect of reinforcing the mechanical strength of the oxide superconductor is great, fiber reinforced materials such as GFRP (glass fiber reinforced plastics) and CFRP (carbon fiber reinforced plastics), A material having high strength and rigidity, such as a metal material such as stainless steel, NiCr alloy, Ti alloy or the like, or a ceramic material such as alumina or silicon nitride, is preferable, and these materials may be used in combination.

(実施例1)
溶融法で作製した直径46mm、厚さ15mmで、25mol%の211相が123相中に微細分散したDy-Ba-Cu-O系単結晶状酸化物超電導体から長さ40mm、幅5mm、厚さ0.8mmの棒状の試料を切り出し、表面を1μmの厚さの銀で被覆した。次に、酸化物超電導体の両端を銅製の電極端子と半田接続し、ガラス繊維強化プラスチックス(GFRP)で酸化物超電導体の両側から接着固定した、図1のような構造の酸化物超電導体通電素子を作製した。接着樹脂としては、エポキシ系樹脂(商品名:スタイキャスト1266)を用い、60μm級の銀粒子をフィラーとして40質量%攪拌混合した後に、酸化物超電導体と支持体とに塗布し、酸化物超電導体の両側から支持体を重ね合わせた後に、ステンレス製ボルトで機械的に固定した状態で、樹脂を接着硬化させた。
Example 1
A Dy-Ba-Cu-O single crystal oxide superconductor having a diameter of 46 mm, a thickness of 15 mm, and a 25 mol% 211 phase finely dispersed in the 123 phase, produced by a melting method, has a length of 40 mm, a width of 5 mm, and a thickness. A 0.8 mm thick rod-shaped sample was cut out and the surface was coated with 1 μm thick silver. Next, both ends of the oxide superconductor are solder-connected to copper electrode terminals, and the oxide superconductor having the structure shown in FIG. 1 is bonded and fixed from both sides of the oxide superconductor with glass fiber reinforced plastics (GFRP). An energization element was produced. As an adhesive resin, an epoxy resin (trade name: Stycast 1266) is used. After stirring and mixing 60% by mass of 60 μm-class silver particles as a filler, it is applied to the oxide superconductor and the support, and the oxide superconductor. After overlapping the support from both sides of the body, the resin was adhesively cured in a state of being mechanically fixed with a stainless steel bolt.

比較のため、フィラーを混合しないで電気絶縁性のエポキシ系樹脂を接着用にそのまま使用した以外は同じ部材を用いて、同じ構造の酸化物超電導体通電素子を作製した。なお、本実施例の酸化物超電導体の電気抵抗率は300Kで600μΩcmであった。一方、フィラーを混合した導電性樹脂の、硬化後の300Kでの電気抵抗率は10mΩcmであった。   For comparison, an oxide superconducting current-carrying element having the same structure was produced using the same member except that an electrically insulating epoxy resin was used as it was for bonding without mixing the filler. Note that the electrical resistivity of the oxide superconductor of this example was 300 μK and 600 μΩcm. On the other hand, the electrical resistivity at 300K after curing of the conductive resin mixed with the filler was 10 mΩcm.

本実施例及び比較例の酸化物超電導体通電素子をそれぞれ10本ずつ作製し、液体窒素中にて通電試験を実施し、どちらも10本とも250Aで通電可能であることを確認した。その後、銅線を外部に付加的にバイパス回路として接続した状態で、液体窒素中で250A以上の電流を通電する過電流通電試験を実施し、通電素子中の酸化物超電導体を強制的にクエンチさせた。本実験に用いた電流電源は過電圧保護回路付のものであり、過電圧を検出してから通電電流遮断までの時間は2m秒であった。過電流通電試験後に、比較例の酸化物超電導体通電素子の場合、10本中7本において、通電素子中の酸化物超電導体が破損や溶断しており、250Aまで通電できなかった。一方、本実施例の酸化物超電導体通電素子の場合、10本全て250A通電可能であった。本実験により、本実施例の構造の酸化物超電導体通電素子では、クエンチ時の耐久性が大幅に改善していることが確認できた。   Ten oxide superconductor energization elements of each of the present example and the comparative example were produced, respectively, and an energization test was performed in liquid nitrogen, and it was confirmed that both of them could be energized at 250A. After that, with the copper wire connected to the outside as an additional bypass circuit, an overcurrent energization test in which a current of 250 A or more was conducted in liquid nitrogen was conducted to forcibly quench the oxide superconductor in the energization element. I let you. The current power source used in this experiment was equipped with an overvoltage protection circuit, and the time from detection of the overvoltage to interruption of the energization current was 2 milliseconds. In the case of the oxide superconductor energization element of the comparative example after the overcurrent energization test, the oxide superconductor in the energization element was broken or melted in 7 out of 10, and the current could not be applied up to 250A. On the other hand, in the case of the oxide superconductor energization element of this example, all 10 pieces could be energized with 250A. From this experiment, it was confirmed that the durability at the time of quenching was significantly improved in the oxide superconductor conducting element having the structure of this example.

(実施例2)
溶融法で作製した直径46mm、厚さ15mmで、20mol%の211相が123相中に微細分散し、初期原料に10質量%添加した銀が微細分散したGd-Ba-Cu-O系単結晶状酸化物超電導体から、長さ40mm、幅3mm、厚さ0.8mmの棒状の試料を切り出し、表面を2μmの厚さの銀で被覆した。次に、酸化物超電導体の両端を銅製の電極端子と半田接続し、ガラス繊維強化プラスチックス(GFRP)で酸化物超電導体の両側から接着固定した、図1のような構造の酸化物超電導体通電素子を作製した。接着樹脂としてはエポキシ系樹脂を用い、1μm級の銅粒子をフィラーとして75質量%攪拌混合した後に、酸化物超電導体と支持体とに塗布し、酸化物超電導体の両側から支持体を重ね合わせた後に、ステンレス製ボルトで機械的に固定した状態で樹脂を接着硬化させた。
(Example 2)
Gd-Ba-Cu-O single crystal with a diameter of 46 mm and a thickness of 15 mm produced by the melting method, with 20 mol% of the 211 phase finely dispersed in the 123 phase and 10 mass% added silver as the initial raw material. A rod-shaped sample having a length of 40 mm, a width of 3 mm, and a thickness of 0.8 mm was cut out from the oxide superconductor, and the surface was covered with silver having a thickness of 2 μm. Next, both ends of the oxide superconductor are solder-connected to copper electrode terminals, and the oxide superconductor having a structure as shown in FIG. 1 is bonded and fixed from both sides of the oxide superconductor with glass fiber reinforced plastics (GFRP). An energization element was produced. An epoxy resin is used as the adhesive resin, and 1% by weight of copper particles as a filler is stirred and mixed by 75% by mass, then applied to the oxide superconductor and the support, and the support is overlapped from both sides of the oxide superconductor. After that, the resin was bonded and cured in a state of being mechanically fixed with a stainless steel bolt.

比較のため、フィラーを混合しないで電気絶縁性のエポキシ系樹脂を接着用にそのまま使用した以外は同じ部材を用いて、同じ構造の酸化物超電導体通電素子を作製した。なお、本実施例の酸化物超電導体の電気抵抗率は300Kで500μΩcmであった。一方、フィラーを混合した導電性樹脂の、硬化後の300Kでの電気抵抗率は1mΩcmであった。   For comparison, an oxide superconducting current-carrying element having the same structure was produced using the same member except that an electrically insulating epoxy resin was used as it was for bonding without mixing the filler. The electrical resistivity of the oxide superconductor of this example was 500 μΩcm at 300K. On the other hand, the electrical resistivity at 300 K after curing of the conductive resin mixed with the filler was 1 mΩcm.

本実施例及び比較例の酸化物超電導体通電素子をそれぞれ10本ずつ作製し、液体窒素中にて通電試験を実施し、どちらも10本とも150A通電可能であることを確認した。その後、外部に付加的に接続するバイパス回路なし状態で、液体窒素中で150A以上の電流を通電する過電流通電試験を実施し、通電素子中の酸化物超電導体を強制的にクエンチさせた。本実験に用いた電流電源は過電圧保護回路付のものであり、過電圧を検出してから通電電流遮断までの時間は2m秒であった。過電流通電試験後に、比較例の酸化物超電導体通電素子の場合、10本中10本とも、通電素子中の酸化物超電導体が破損や溶断しており、150Aまで通電できなかった。一方、本実施例の酸化物超電導体通電素子の場合、10本中2本において150Aまで通電できなかったものの、8本については150A通電可能であった。本実験により、本実施例の構造の酸化物超電導体通電素子では、クエンチ時の耐久性が大幅に改善していることが確認できた。   Ten oxide superconducting current-carrying elements of each of the present example and the comparative example were produced, respectively, and a current-carrying test was performed in liquid nitrogen. Thereafter, an overcurrent energization test in which a current of 150 A or more was passed in liquid nitrogen without a bypass circuit additionally connected to the outside was performed to forcibly quench the oxide superconductor in the energization element. The current power source used in this experiment was equipped with an overvoltage protection circuit, and the time from detection of the overvoltage to interruption of the energization current was 2 milliseconds. In the case of the oxide superconductor energization element of the comparative example after the overcurrent energization test, 10 out of 10 oxide superconductors in the energization element were damaged or melted, and could not be energized up to 150A. On the other hand, in the case of the oxide superconductor energization element of this example, although it was not possible to energize up to 150A in 2 out of 10, it was possible to energize 150A in 8 of them. From this experiment, it was confirmed that the durability at the time of quenching was significantly improved in the oxide superconductor conducting element having the structure of this example.

(実施例3)
溶融法で作製した直径30mm、厚さ15mmで、30mol%の211相が123相中に微細分散したHo-Ba-Cu-O系単結晶状酸化物超電導体から長さ30mm、幅2mm、厚さ1mmの棒状の試料を切り出した。次に、酸化物超電導体の表面に銀成膜を行わずに、酸化物超電導体の両端を銅製の電極端子と半田接続し、ガラス繊維強化プラスチックス(GFRP)で酸化物超電導体の両側から接着固定した、図1のような構造の酸化物超電導体通電素子を作製した。接着樹脂としては、エポキシ系樹脂を用い、10μm級のカーボン粒子をフィラーとして60質量%攪拌混合した後に、酸化物超電導体と支持体とに塗布し、酸化物超電導体の両側から支持体を重ね合わせた後に、ステンレス製ボルトで機械的に固定した状態で、樹脂を接着硬化させた。
(Example 3)
30 mm in length, 2 mm in thickness, 30 mm in length, 15 mm in thickness, 15 mm in thickness from a Ho-Ba-Cu-O single crystal oxide superconductor in which 30 mol% of 211 phase is finely dispersed in 123 phase A 1 mm thick rod-shaped sample was cut out. Next, without forming a silver film on the surface of the oxide superconductor, both ends of the oxide superconductor are solder-connected to copper electrode terminals, and glass fiber reinforced plastics (GFRP) are used from both sides of the oxide superconductor. An oxide superconductor energizing element having a structure as shown in FIG. As an adhesive resin, an epoxy resin is used, and 10 μm-class carbon particles are mixed as a filler by 60 mass%, and then applied to the oxide superconductor and the support, and the support is overlapped from both sides of the oxide superconductor. After matching, the resin was adhesively cured in a state of being mechanically fixed with a stainless steel bolt.

比較のため、フィラーを混合しないで電気絶縁性のエポキシ系樹脂を接着用にそのまま使用した以外は同じ部材を用いて、同じ構造の酸化物超電導体通電素子を作製した。なお、本実施例の酸化物超電導体の電気抵抗率は300Kで600μΩcmであった。一方、フィラーを混合した導電性樹脂の、硬化後の300Kでの電気抵抗率は1Ωcmであった。   For comparison, an oxide superconducting current-carrying element having the same structure was produced using the same member except that an electrically insulating epoxy resin was used as it was for bonding without mixing the filler. Note that the electrical resistivity of the oxide superconductor of this example was 300 μK and 600 μΩcm. On the other hand, the electrical resistivity at 300 K after curing of the conductive resin mixed with the filler was 1 Ωcm.

本実施例及び比較例の酸化物超電導体通電素子をそれぞれ10本ずつ作製し、液体窒素中にて通電試験を実施し、どちらも10本とも125A通電可能であることを確認した。その後、銅線を外部に付加的にバイパス回路として接続した状態で、液体窒素中で125A以上の電流を通電する過電流通電試験を実施し、通電素子中の酸化物超電導体を強制的にクエンチさせた。本実験に用いた電流電源は過電圧保護回路付のものであり、過電圧を検出してから通電電流遮断までの時間は2m秒であった。過電流通電試験後に、比較例の酸化物超電導体通電素子の場合、10本中8本において、通電素子中の酸化物超電導体が破損や溶断しており、125Aまで通電できなかった。一方、本実施例の酸化物超電導体通電素子の場合、10本中3本において125Aまで通電できなかったものの、7本については125A通電可能であった。本実験により、本実施例の構造の酸化物超電導体通電素子では、クエンチ時の耐久性が大幅に改善していることが確認できた。   Ten oxide superconducting current-carrying elements of each of the present example and the comparative example were produced, respectively, and an energization test was performed in liquid nitrogen, and it was confirmed that both of them could conduct 125A. After that, with the copper wire additionally connected to the outside as a bypass circuit, an overcurrent energization test in which a current of 125 A or more was conducted in liquid nitrogen was conducted, and the oxide superconductor in the energization element was forcibly quenched. I let you. The current power source used in this experiment was equipped with an overvoltage protection circuit, and the time from detection of the overvoltage to interruption of the energization current was 2 milliseconds. In the case of the oxide superconductor energization element of the comparative example after the overcurrent energization test, the oxide superconductor in the energization element was broken or melted in 8 out of 10 elements, and could not be energized up to 125A. On the other hand, in the case of the oxide superconductor energization element of this example, although it was not possible to energize up to 125A in 3 out of 10, it was possible to energize 125A in 7 of them. From this experiment, it was confirmed that the durability at the time of quenching was significantly improved in the oxide superconductor conducting element having the structure of this example.

(実施例4)
溶融法で作製した直径65mm、厚さ20mmで、30mol%の211相が123相中に微細分散したDy-Ba-Cu-O系単結晶状酸化物超電導体から、永久電流スイッチ素子に適用できるように電流通路を長くしたミアンダ形状の試料を切り出し、表面を10μmの厚さの銀で被覆した。ミアンダ形状には、縦30mm、横55mmの板形状に切り出した酸化物超電導体に、幅1mmの溝を交互に設けて作製した。次に、酸化物超電導体の両端を銅製の電極端子と半田接続し、ガラス繊維強化プラスチックス(GFRP)で酸化物超電導体の両側から接着固定し、図2のような酸化物超電導体通電素子を作製した。接着樹脂としては、エポキシ系樹脂を用い、1μm級の銀粒子をフィラーとして90質量%攪拌混合した後に、酸化物超電導体と支持体とに塗布し、酸化物超電導体の両側から支持体を重ね合わせた後に、ステンレス製ボルトで機械的に固定した状態で、樹脂を接着硬化させた。また、接着用の導電性樹脂は、ミアンダ形状の隙間を埋めるようにも塗布した。
Example 4
A Dy-Ba-Cu-O single crystal oxide superconductor having a diameter of 65 mm, a thickness of 20 mm, and a 30 mol% 211 phase finely dispersed in a 123 phase produced by a melting method can be applied to a permanent current switching element. Thus, a meander-shaped sample with a long current path was cut out, and the surface was coated with silver having a thickness of 10 μm. The meander shape was prepared by alternately providing grooves having a width of 1 mm on an oxide superconductor cut into a plate shape having a length of 30 mm and a width of 55 mm. Next, both ends of the oxide superconductor are solder-connected to copper electrode terminals and bonded and fixed from both sides of the oxide superconductor with glass fiber reinforced plastics (GFRP), and the oxide superconductor energization element as shown in FIG. Was made. As the adhesive resin, an epoxy resin is used, and after stirring and mixing 90% by mass of 1 μm class silver particles as a filler, it is applied to the oxide superconductor and the support, and the support is stacked from both sides of the oxide superconductor. After matching, the resin was adhesively cured in a state of being mechanically fixed with a stainless steel bolt. The conductive resin for adhesion was also applied so as to fill the meander-shaped gap.

比較のため、フィラーを混合しないで電気絶縁性のエポキシ系樹脂を接着用にそのまま使用した以外は同じ部材を用いて、同じ構造の酸化物超電導体通電素子を作製した。なお、本実施例の酸化物超電導体の電気抵抗率は300Kで800μΩcmであった。一方、フィラーを混合した導電性樹脂の、硬化後の300Kでの電気抵抗率は1mΩcmであった。   For comparison, an oxide superconducting current-carrying element having the same structure was produced using the same member except that an electrically insulating epoxy resin was used as it was for bonding without mixing the filler. Note that the electrical resistivity of the oxide superconductor of this example was 300 μK and 800 μΩcm. On the other hand, the electrical resistivity at 300 K after curing of the conductive resin mixed with the filler was 1 mΩcm.

本実施例及び比較例の酸化物超電導体通電素子をそれぞれ10本ずつ作製し、液体窒素中にて通電試験を実施し、どちらも10本とも250A通電可能であることを確認した。その後、銅線を外部に付加的にバイパス回路として接続した状態で、液体窒素中で250A以上の電流を通電する過電流通電試験を実施し、通電素子中の酸化物超電導体を強制的にクエンチさせた。本実験に用いた電流電源は過電圧保護回路付のものであり、過電圧を検出してから通電電流遮断までの時間は2m秒であった。過電流通電試験後に、比較例の酸化物超電導体通電素子の場合、10本中9本において、通電素子中の酸化物超電導体が破損や溶断しており、250Aまで通電できなかった。一方、本実施例の酸化物超電導体通電素子の場合、10本中1本において250Aまで通電できなかったものの、9本については250A通電可能であった。本実験により、本実施例の構造の酸化物超電導体通電素子では、クエンチ時の耐久性が大幅に改善していることが確認できた。   Ten oxide superconducting current-carrying elements of each of the present example and the comparative example were each manufactured, and a current-carrying test was performed in liquid nitrogen. It was confirmed that both of them could carry 250A. After that, with the copper wire connected to the outside as an additional bypass circuit, an overcurrent energization test in which a current of 250 A or more was conducted in liquid nitrogen was conducted to forcibly quench the oxide superconductor in the energization element. I let you. The current power source used in this experiment was equipped with an overvoltage protection circuit, and the time from detection of the overvoltage to interruption of the energization current was 2 milliseconds. In the case of the oxide superconductor energization element of the comparative example after the overcurrent energization test, the oxide superconductor in the energization element was broken or melted in 9 out of 10 elements, and current could not be applied up to 250A. On the other hand, in the case of the oxide superconductor energization element of this example, it was not possible to energize up to 250A in 1 out of 10, but 250A could be energized in 9 of them. From this experiment, it was confirmed that the durability at the time of quenching was significantly improved in the oxide superconductor conducting element having the structure of this example.

(実施例5)
外直径30mm、内直径10mm、長さ120mmの円筒形状のBi-Sr-Ca-Cu-O系酸化物超電導体を焼結法で作製し、その両端20mm長を厚さ5μmの銀で被覆した。次に、酸化物超電導体の両端10mm部分を銅製の電極端子と半田接続し、ガラス繊維強化プラスチックス(GFRP)で酸化物超電導体の両側から接着固定し、図3のような構造の酸化物超電導体通電素子を作製した。接着樹脂としては、エポキシ系樹脂を用い、8μm級の銀粒子をフィラーとして75質量%攪拌混合した後に、酸化物超電導体と支持体とに塗布し、酸化物超電導体の両側から支持体を重ね合わせた後に、ボルトで機械的に固定することなしに、樹脂を接着硬化させた。
(Example 5)
A cylindrical Bi-Sr-Ca-Cu-O-based oxide superconductor having an outer diameter of 30 mm, an inner diameter of 10 mm, and a length of 120 mm was produced by a sintering method, and both ends thereof were covered with silver having a thickness of 5 μm. . Next, 10 mm portions of both ends of the oxide superconductor are soldered to copper electrode terminals, and are bonded and fixed from both sides of the oxide superconductor with glass fiber reinforced plastics (GFRP), and the oxide having the structure as shown in FIG. A superconductor energization element was produced. As the adhesive resin, an epoxy resin is used, and 75 μ% by weight of 8 μm class silver particles as a filler is stirred and mixed, and then applied to the oxide superconductor and the support, and the support is overlapped from both sides of the oxide superconductor. After bonding, the resin was adhesively cured without being mechanically fixed with bolts.

比較のため、フィラーを混合しないで電気絶縁性のエポキシ系樹脂を接着用にそのまま使用した以外は同じ部材を用いて、同じ構造の酸化物超電導体通電素子を作製した。なお、本実施例の酸化物超電導体の電気抵抗率は300Kで2mΩcmであった。一方、フィラーを混合した導電性樹脂の、硬化後の300Kでの電気抵抗率は6mΩcmであった。   For comparison, an oxide superconducting current-carrying element having the same structure was produced using the same member except that an electrically insulating epoxy resin was used as it was for bonding without mixing the filler. Note that the electrical resistivity of the oxide superconductor of this example was 2 mΩcm at 300K. On the other hand, the electrical resistivity at 300 K after curing of the conductive resin mixed with the filler was 6 mΩcm.

本実施例及び比較例の酸化物超電導体通電素子をそれぞれ5本ずつ作製し、液体窒素中にて通電試験を実施し、どちらも5本とも250A通電可能であることを確認した。その後、銅線を外部に付加的にバイパス回路として接続した状態で、液体窒素中で250A以上の電流を通電する過電流通電試験を実施し、通電素子中の酸化物超電導体を強制的にクエンチさせた。本実験に用いた電流電源は過電圧保護回路付のもので、過電圧を検出してから通電電流遮断までの時間は2m秒であった。過電流通電試験後に、比較例の酸化物超電導体通電素子の場合、5本中5本において、通電素子中の酸化物超電導体が破損や溶断しており、250Aまで通電できなかった。一方、本実施例の酸化物超電導体通電素子の場合、5本中1本において250Aまで通電できなかったものの、4本については250A通電可能であった。本実験により、本実施例の構造の酸化物超電導体通電素子では、クエンチ時の耐久性が大幅に改善していることが確認できた。   Five oxide superconducting current-carrying elements of each of the present example and the comparative example were produced, respectively, and an energization test was performed in liquid nitrogen, and both of them were confirmed to be capable of conducting 250A. After that, with the copper wire connected to the outside as an additional bypass circuit, an overcurrent energization test in which a current of 250 A or more was conducted in liquid nitrogen was conducted to forcibly quench the oxide superconductor in the energization element. I let you. The current power source used in this experiment was equipped with an overvoltage protection circuit, and the time from detection of the overvoltage to interruption of the energization current was 2 milliseconds. In the case of the oxide superconductor energization element of the comparative example after the overcurrent energization test, the oxide superconductor in the energization element was broken or melted in 5 out of 5 elements, and could not be energized up to 250A. On the other hand, in the case of the oxide superconductor energization element of this example, it was not possible to energize up to 250A in one of the five, but 250A could be energized in four. From this experiment, it was confirmed that the durability at the time of quenching was significantly improved in the oxide superconductor conducting element having the structure of this example.

本発明によれば、クエンチ時の耐久性に優れた酸化物超電導体通電素子を提供することができるので、酸化物超電導体の工業上の利用範囲が拡大する。   According to the present invention, an oxide superconductor energization element excellent in durability at the time of quenching can be provided, so that the industrial application range of the oxide superconductor is expanded.

本発明の酸化物超電導体通電素子の一例を示す構造断面図である。It is a structure sectional view showing an example of an oxide superconductor energization element of the present invention. 本発明の酸化物超電導体通電素子の別の一例を示す構造断面図である。It is structural sectional drawing which shows another example of the oxide superconductor energization element of this invention. 本発明の酸化物超電導体通電素子のさらに別の一例を示す構造断面図である。It is structural sectional drawing which shows another example of the oxide superconductor energization element of this invention.

符号の説明Explanation of symbols

1 酸化物超電導体
2 電極端子
3 導電性樹脂
4 支持体
5 ボルト
1 Oxide Superconductor 2 Electrode Terminal 3 Conductive Resin 4 Support 5 Bolt

Claims (7)

酸化物超電導体と、該酸化物超電導体の両端に電気的に接合された電極端子と、該酸化物超電導体に導電性樹脂により接着された支持体とから少なくとも構成されてなることを特徴とする酸化物超電導体通電素子。   It is characterized by comprising at least an oxide superconductor, electrode terminals electrically joined to both ends of the oxide superconductor, and a support bonded to the oxide superconductor with a conductive resin. Oxide superconductor conducting element. 前記導電性樹脂が、電気絶縁性樹脂に導電性フィラーを配合したものであることを特徴とする請求項1に記載の酸化物超電導体通電素子。   2. The oxide superconductor energization element according to claim 1, wherein the conductive resin is a mixture of an electrically insulating resin and a conductive filler. 前記導電性フィラーが金属粉末あるいはカーボン粉末であることを特徴とする請求項2に記載の酸化物超電導体通電素子。   3. The oxide superconductor energization element according to claim 2, wherein the conductive filler is metal powder or carbon powder. 前記導電性樹脂の電気抵抗率が10-2Ωcm以下であることを特徴とする請求項1〜3のいずれか1項に記載の酸化物超電導体通電素子。 The oxide superconductor energization element according to any one of claims 1 to 3, wherein an electrical resistivity of the conductive resin is 10 -2 Ωcm or less. 前記支持体を固定する機械的手段をさらに有することを特徴とする請求項1〜4のいずれか1項に記載の酸化物超電導体通電素子。   The oxide superconductor energization element according to any one of claims 1 to 4, further comprising mechanical means for fixing the support. 前記酸化物超電導体の表面が金属皮膜で被覆されていることを特徴とする請求項1〜5のいずれか1項に記載の酸化物超電導体通電素子。   The oxide superconductor energization element according to any one of claims 1 to 5, wherein a surface of the oxide superconductor is covered with a metal film. 前記酸化物超電導体が、単結晶状のREBa2Cu3Ox相(REはY又は希土類元素から選ばれる1種又は2種以上)中にRE2BaCuO5相が微細分散した酸化物超電導体であることを特徴とする請求項1〜6のいずれか1項に記載の酸化物超電導体通電素子。 The oxide superconductor is an oxide superconductor in which the RE 2 BaCuO 5 phase is finely dispersed in a single-crystal REBa 2 Cu 3 O x phase (RE is one or more selected from Y or a rare earth element). The oxide superconductor energization element according to any one of claims 1 to 6, wherein
JP2008117405A 2008-04-28 2008-04-28 Oxide superconductor conducting element Active JP5233391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008117405A JP5233391B2 (en) 2008-04-28 2008-04-28 Oxide superconductor conducting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008117405A JP5233391B2 (en) 2008-04-28 2008-04-28 Oxide superconductor conducting element

Publications (2)

Publication Number Publication Date
JP2009267240A true JP2009267240A (en) 2009-11-12
JP5233391B2 JP5233391B2 (en) 2013-07-10

Family

ID=41392682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008117405A Active JP5233391B2 (en) 2008-04-28 2008-04-28 Oxide superconductor conducting element

Country Status (1)

Country Link
JP (1) JP5233391B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011204A (en) * 2015-06-25 2017-01-12 新日鐵住金株式会社 Superconducting conductive element
JP2021168325A (en) * 2020-04-09 2021-10-21 株式会社東芝 Manufacturing method of superconducting coil, and, manufacturing method of electric equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155670A (en) * 1987-12-11 1989-06-19 Matsushita Electric Works Ltd Manufacture of superconductive material
JP2005100683A (en) * 2003-09-22 2005-04-14 Nippon Steel Corp Oxide superconductor energizing element
JP2005217039A (en) * 2004-01-28 2005-08-11 Nippon Steel Corp Conducting element using oxide superconductor
JP2009211899A (en) * 2008-03-04 2009-09-17 Fuji Electric Systems Co Ltd Superconductive current lead and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155670A (en) * 1987-12-11 1989-06-19 Matsushita Electric Works Ltd Manufacture of superconductive material
JP2005100683A (en) * 2003-09-22 2005-04-14 Nippon Steel Corp Oxide superconductor energizing element
JP2005217039A (en) * 2004-01-28 2005-08-11 Nippon Steel Corp Conducting element using oxide superconductor
JP2009211899A (en) * 2008-03-04 2009-09-17 Fuji Electric Systems Co Ltd Superconductive current lead and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011204A (en) * 2015-06-25 2017-01-12 新日鐵住金株式会社 Superconducting conductive element
JP2021168325A (en) * 2020-04-09 2021-10-21 株式会社東芝 Manufacturing method of superconducting coil, and, manufacturing method of electric equipment
JP7395413B2 (en) 2020-04-09 2023-12-11 株式会社東芝 Superconducting coil manufacturing method and electrical equipment manufacturing method

Also Published As

Publication number Publication date
JP5233391B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
US5828291A (en) Multiple compound conductor current-limiting device
JP3984303B2 (en) High temperature superconductor and method of using the high temperature superconductor
EP1830446B1 (en) Electrical device for current conditioning
JP5233391B2 (en) Oxide superconductor conducting element
JP5022279B2 (en) Oxide superconducting current lead
JP2004190113A (en) Alloy-type thermal fuse and material for thermal fuse element
JP6471625B2 (en) Superconducting conductive element
US6657533B2 (en) Superconducting conductors and their method of manufacture
JP3977884B2 (en) Current limiting element, current limiter using oxide superconductor, and manufacturing method thereof
JP4402928B2 (en) Oxide superconductor conducting element
JP5037193B2 (en) Oxide superconducting conductor conducting element
JP5011181B2 (en) Oxide superconducting current lead
JP2003037303A (en) Superconducting coil with permanent current switch using magnesium diboride superconducting wire material and its manufacturing method
JP5278109B2 (en) Oxide superconductor conducting element
JP5037146B2 (en) Oxide superconductor energization element and manufacturing method thereof
JP4805688B2 (en) Superconducting wire and superconducting device using the same
JP3872738B2 (en) High withstand voltage superconducting fault current limiter
Luo et al. A comparative study of silver-epoxy and tin-lead solder in their joints with copper, through mechanical and electrical measurements during debonding
JP4728847B2 (en) Oxide superconductor conducting element
EP1105885A1 (en) Superconducting conductors and their method of manufacture
JP4734004B2 (en) Superconducting current lead
JP7127463B2 (en) Oxide superconducting bulk conductor
JP2020013960A (en) Superconducting coil and superconducting coil device
JP7335501B2 (en) Oxide superconducting bulk conductor and current-carrying element
JP2022021490A (en) Superconducting coil and superconducting coil device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R151 Written notification of patent or utility model registration

Ref document number: 5233391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350