JPH0588523B2 - - Google Patents

Info

Publication number
JPH0588523B2
JPH0588523B2 JP17659786A JP17659786A JPH0588523B2 JP H0588523 B2 JPH0588523 B2 JP H0588523B2 JP 17659786 A JP17659786 A JP 17659786A JP 17659786 A JP17659786 A JP 17659786A JP H0588523 B2 JPH0588523 B2 JP H0588523B2
Authority
JP
Japan
Prior art keywords
winding
tap
excitation
excitation winding
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17659786A
Other languages
Japanese (ja)
Other versions
JPS6333804A (en
Inventor
Hiroyuki Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17659786A priority Critical patent/JPS6333804A/en
Priority to EP19870110097 priority patent/EP0254946B1/en
Priority to DE8787110097T priority patent/DE3773785D1/en
Publication of JPS6333804A publication Critical patent/JPS6333804A/en
Publication of JPH0588523B2 publication Critical patent/JPH0588523B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/02Auto-transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鉄心の側脚にタツプ巻線と励磁巻線
を巻装した単相変圧器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a single-phase transformer in which a tap winding and an excitation winding are wound around the side legs of an iron core.

〔従来の技術〕[Conventional technology]

鉄心の側脚にタツプ巻線と励磁巻線を巻装した
単相変圧器として、例えば、特開昭56−48114号
公報に示されるような構成のものが提案されてい
る。これを図により説明する。
As a single-phase transformer in which a tap winding and an excitation winding are wound around the side legs of an iron core, a structure as shown in, for example, Japanese Unexamined Patent Publication No. 56-48114 has been proposed. This will be explained using a diagram.

第3図は従来の単相変圧器の巻線配置図であ
る。図で、1A,1Bは高圧巻線、2A,2Bは
中圧巻線、3は低圧巻線である。これら巻線は鉄
心の主脚4A,4Bに図示の順で巻装されてい
る。5は励磁巻線、6はタツプ巻線であり、これ
ら2つの巻線は鉄心の側脚4Cに図示の順で巻装
されている。2つの高圧巻線1A,1Bは互いに
並列接続され、2つの中圧巻線2A,2Bは互い
に直列接続されている。又、低圧巻線3は励磁巻
線5と互いに並列接続されている。
FIG. 3 is a winding layout diagram of a conventional single-phase transformer. In the figure, 1A and 1B are high voltage windings, 2A and 2B are medium voltage windings, and 3 is a low voltage winding. These windings are wound around the main legs 4A, 4B of the iron core in the order shown. 5 is an excitation winding, and 6 is a tap winding, and these two windings are wound around the side leg 4C of the iron core in the order shown. The two high voltage windings 1A, 1B are connected in parallel with each other, and the two medium voltage windings 2A, 2B are connected in series with each other. Further, the low voltage winding 3 and the excitation winding 5 are connected in parallel with each other.

このような構成の単相変圧器では、中圧巻線と
低圧巻線間のインピーダンスは、中圧巻線が主脚
4A,4Bにおいて直列接続されているので、主
脚4Aの高圧巻線と中圧巻線間のインピーダンス
が加わることにより大きくなるという利点があ
る。又、それ以外にタツプ切換による高圧巻線と
低圧巻線間のインピーダンスの変化幅を抑制し得
るという利点を有する。これを第4図に示す。
In a single-phase transformer with such a configuration, the impedance between the medium-voltage winding and the low-voltage winding is determined by the impedance between the high-voltage winding and the medium-voltage winding of the main leg 4A, since the medium-voltage winding is connected in series on the main legs 4A and 4B. This has the advantage that the impedance between the lines becomes larger due to the addition of impedance. Another advantage is that it is possible to suppress the range of change in impedance between the high-voltage winding and the low-voltage winding due to tap switching. This is shown in FIG.

第4図は第3図に示す構成に対応する磁束密度
分布図である。図で、曲線A,B,Cはそれぞれ
主脚4A,4B、側脚4Cにおける磁束密度を示
す。B1,B2,B3はそれぞれタツプ位置を最高タ
ツプ、中央タツプ、最低タツプとしたときの磁束
密度、C1,C3はそれぞれタツプ位置を最高タツ
プ、最低タツプとしたときの磁束密度である。主
脚4Aでは中圧巻線電流が一定となるので、タツ
プ位置による磁束密度の変化はなくインピーダン
スも一定となる。一方、主脚4Bではタツプ位置
による高圧巻線電流の変化をこの主脚4Bだけで
分担するので、磁束密度は可成り変化する。しか
しながら、主脚4Aのインピーダンスが一定であ
るため、全体として高圧巻線と中圧巻線間のイン
ピーダンスの変化幅を小さくすることができる。
FIG. 4 is a magnetic flux density distribution diagram corresponding to the configuration shown in FIG. 3. In the figure, curves A, B, and C indicate the magnetic flux densities in the main legs 4A, 4B, and the side legs 4C, respectively. B 1 , B 2 , and B 3 are the magnetic flux densities when the tap positions are the highest tap, middle tap, and lowest tap, respectively, and C 1 and C 3 are the magnetic flux densities when the tap positions are the highest tap and the lowest tap, respectively. be. In the main landing gear 4A, the medium voltage winding current is constant, so the magnetic flux density does not change depending on the tap position and the impedance is also constant. On the other hand, in the main leg 4B, since only the main leg 4B shares the change in the high voltage winding current depending on the tap position, the magnetic flux density changes considerably. However, since the impedance of the main landing gear 4A is constant, the range of change in impedance between the high-voltage winding and the medium-voltage winding can be reduced overall.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の単相変圧器においては、主脚におけ
るインピーダンスの変化を抑制することができる
ものの、全体としてのインピーダンスの変化は可
成り大きい。そして、上記従来の単相変圧器のみ
ならず、その他の単相変圧器、例えば単相単巻変
圧器等であつても、側脚に励磁巻線とタツプ巻線
が巻装された単相変圧器においては、タツプ位置
切換によつて生じる変圧器全体のインピーダンス
の変化をさらに小さくすることは困難であつた。
In the conventional single-phase transformer described above, although the change in impedance in the main leg can be suppressed, the change in impedance as a whole is quite large. Not only the conventional single-phase transformer described above, but also other single-phase transformers such as single-phase single-turn transformers, single-phase transformers with excitation windings and tap windings wound around the side legs. In transformers, it has been difficult to further reduce the change in impedance of the entire transformer caused by switching the tap position.

本発明の目的は、タツプ位置が切換えられた場
合の変圧器のインピーダンスの変化を、従来のも
のに比較して、より一層小さくすることができる
単相変圧器を提供するにある。
An object of the present invention is to provide a single-phase transformer that can reduce the change in impedance of the transformer when the tap position is switched, compared to conventional transformers.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、本発明は、側脚
の巻装したタツプ巻線と励磁巻線とを備えた単相
変圧器において、励磁巻線を第1の励磁巻線単位
と第2の励磁巻線単位の2つに分割し、側脚の内
側に第1の励磁巻線単位を巻装し、その外側にタ
ツプ巻線を巻装し、さらにその外側に第2の励磁
巻線単位を巻装し、第1の励磁巻線単位と第2の
励磁巻線単位とを直列に接続したことを特徴とす
る。
In order to achieve the above object, the present invention provides a single-phase transformer equipped with a tap winding wound around a side leg and an excitation winding, in which the excitation winding is divided into a first excitation winding unit and a second excitation winding unit. The first excitation winding unit is wound on the inside of the side leg, the tap winding is wound on the outside of the first excitation winding unit, and the second excitation winding is wound on the outside of the first excitation winding unit. The device is characterized in that the first excitation winding unit and the second excitation winding unit are connected in series.

〔作用〕[Effect]

励磁巻線を2つに分割し、これら分割された励
磁巻線間にタツプ巻線を挟み込むようにして各巻
線を側脚に巻装することにより、側脚における磁
束密度が小さくなり、即ち、側脚におけるインピ
ーダンスが小さくなり、この結果、タツプ位置を
切換えたときの変圧器のインピーダンスの変化が
抑制される。
By dividing the excitation winding into two and winding each winding around the side leg with a tap winding sandwiched between these divided excitation windings, the magnetic flux density in the side leg is reduced, that is, The impedance at the side leg is reduced, and as a result, changes in the impedance of the transformer when switching the tap position are suppressed.

〔実施例〕〔Example〕

以下、本発明を図示の実施例に基づいて説明す
る。
Hereinafter, the present invention will be explained based on illustrated embodiments.

第1図は本発明の実施例に係る単相単巻変圧器
の巻線配置図である。図で、10は鉄心、11は
鉄心10の主脚、12は鉄心10の側脚である。
13は3次巻線、14は分路巻線、15は直列巻
線であり、これら各巻線はそれぞれ順に主脚11
に巻装されている。16aは励磁巻線を2つに分
割した一方の巻線であり、以下これを第1の励磁
巻線と称する。16bは分割された励磁巻線のう
ちの他方の巻線であり、第2の励磁巻線と称す
る。17はタツプ巻線である。これら各巻線は、
第1の励磁巻線16aを内側に、タツプ巻線17
を中間に、第2の励磁巻線16bを外側にして側
脚12に巻装される。即ち、タツプ巻線17は分
割された2つの励磁巻線16a,16bに挟まれ
た構成となる。
FIG. 1 is a winding arrangement diagram of a single-phase single-winding transformer according to an embodiment of the present invention. In the figure, 10 is an iron core, 11 is a main leg of the iron core 10, and 12 is a side leg of the iron core 10.
13 is a tertiary winding, 14 is a shunt winding, and 15 is a series winding, and each of these windings is connected to the main landing gear 11 in turn.
is wrapped in. Reference numeral 16a denotes one of the two divided excitation windings, and hereinafter this will be referred to as the first excitation winding. 16b is the other winding of the divided excitation windings, and is referred to as a second excitation winding. 17 is a tap winding. Each of these windings is
With the first excitation winding 16a inside, the tap winding 17
It is wound around the side leg 12 with the excitation winding 16b in the middle and the second excitation winding 16b on the outside. That is, the tap winding 17 is sandwiched between two divided excitation windings 16a and 16b.

第1の励磁巻線16aと第2の励磁巻線16b
とは互いに直列に接続されており、この直列回路
に並列に分路巻線14が接続され、この並列回路
に直列巻線15が接続されている。
First excitation winding 16a and second excitation winding 16b
are connected to each other in series, a shunt winding 14 is connected in parallel to this series circuit, and a series winding 15 is connected to this parallel circuit.

このように構成された単相単巻変圧器において
は、分路巻線14を各励磁巻線16a,16bと
並列に接続することにより、タツプ位置を切換え
た場合分路巻線14および直列巻線15内の電流
分布がほとんど変化しないようにしているが、本
実施例では、さらに、当該励磁巻線を第1の励磁
巻線16aと第2の励磁巻線16bとに分割し、
これら分割した巻線によりタツプ巻線を挟むこと
により、変圧器のインピーダンスのタツプ位置切
換えによる変化を抑制できる。
In the single-phase single-winding transformer configured in this way, by connecting the shunt winding 14 in parallel with each excitation winding 16a, 16b, when the tap position is switched, the shunt winding 14 and the series winding Although the current distribution within the wire 15 is kept almost unchanged, in this embodiment, the excitation winding is further divided into a first excitation winding 16a and a second excitation winding 16b,
By sandwiching the tap winding between these divided windings, changes in the impedance of the transformer due to switching of the tap position can be suppressed.

第2図a,bはそれぞれ第1図に示す側脚の巻
線配置図、およびこれに対応する位置の鎖交磁束
密度の特性図である。第2図aで、第1図に示す
部分と同じ部分には同一符号が付してある。又、
第2図bでC′は最高電圧のタツプ位置の場合の磁
束密度、C″は中央のタツプ位置の場合の磁束密
度、Cは最低電圧のタツプ位置の場合の磁束密
度を示す。ここで、 NE1:第1の励磁巻線16aの巻数 NE2:第2の励磁巻線16bの巻数 DE1:第1の励磁巻線16aの巻幅(cm) DG1:第1の励磁巻線16aとタツプ巻線17
との間のギヤツプG1の寸法(cm) DT:タツプ巻線17の巻幅(cm) DG2:タツプ巻線17と第2の励磁巻線16b
との間のギヤツプG2の寸法(cm) DE2:第2の励磁巻線16bの巻幅(cm) RE1:第1の励磁巻線16aの平均半径(cm) RG1:ギヤツプG1の平均半径(cm) RT:タツプ巻線17の平均半径(cm) RG2:ギヤツプG2の平均半径(cm) RE2:第2の励磁巻線16bの平均半径(cm) I:各励磁巻線16a,16bに流れる電流
(A) f:電流Iの周波数(Hz) h:各巻線16a,16b,17の高さ(cm) P:変圧器の基準容量(VA) とすると、タツプ巻線17と各励磁巻線16a,
16bとの間のインピーダンス%VZ1は概略、次
式で表される。
FIGS. 2a and 2b are a winding arrangement diagram of the side leg shown in FIG. 1, and a characteristic diagram of the interlinkage magnetic flux density at the corresponding position, respectively. In FIG. 2a, the same parts as those shown in FIG. 1 are given the same reference numerals. or,
In Figure 2b, C' is the magnetic flux density at the highest voltage tap position, C'' is the magnetic flux density at the center tap position, and C is the magnetic flux density at the lowest voltage tap position. N E1 : Number of turns of the first excitation winding 16a N E2 : Number of turns of the second excitation winding 16b D E1 : Winding width (cm) of the first excitation winding 16a D G1 : First excitation winding 16a and tap winding 17
Dimensions of gap G1 between (cm) D T : Winding width of tap winding 17 (cm) D G2 : Tap winding 17 and second excitation winding 16b
Dimensions of the gap G 2 (cm) D E2 : Winding width of the second excitation winding 16b (cm) R E1 : Average radius of the first excitation winding 16a (cm) R G1 : Gap G 1 R T : Average radius of tap winding 17 (cm) R G2 : Average radius of gap G 2 (cm) R E2 : Average radius of second excitation winding 16b (cm) I: Each Current flowing through the excitation windings 16a, 16b (A) f: Frequency of current I (Hz) h: Height of each winding 16a, 16b, 17 (cm) P: Standard capacity of transformer (VA) Then, tap The winding 17 and each excitation winding 16a,
16b, the impedance % V Z1 is roughly expressed by the following equation.

%VZ1=7.9fNE1 2・I2・Δ1/P×10-6(%)
……(1) ただし、Δ1は Δ1=DE1/3・2πRE1/h +DG1・2πRG1/h+{
1−NE2/NE1 +(NE2/NE12}・DT/3・2πRT/h
+(NE2/NE12・{DG2・2πRG2/h+DE2/3・2
πRE2/h}……(2) 次に、比較のため、第3図に示すように励磁巻
線が分割されない従来の巻線配置の場合について
みる。この場合、 NE:励磁巻線の巻数 DE:励磁巻線の巻幅 DG:励磁巻線とタツプ巻線のギヤツプの寸法 DT:タツプ巻線の巻幅 RE:側脚から励磁巻線の中央までの距離 RG:側脚から両巻線ギヤツプ中央までの距離 RT:側脚からタツプ巻線の中央までの距離 とすると、タツプ巻線と励磁巻線との間のインピ
ーダンス%VZ2は概略、次式で表される。
%V Z1 = 7.9fN E1 2・I 2・Δ 1 /P×10 -6 (%)
...(1) However, Δ 1 is Δ 1 =D E1 /3・2πR E1 /h +D G1・2πR G1 /h+{
1−N E2 /N E1 + (N E2 /N E1 ) 2 }・D T /3・2πR T /h
+(N E2 /N E1 ) 2・{D G2・2πR G2 /h+D E2 /3・2
πR E2 /h}...(2) Next, for comparison, let us consider the conventional winding arrangement in which the excitation winding is not divided, as shown in FIG. In this case, N E : Number of turns of excitation winding D E : Width of excitation winding D G : Dimensions of gap between excitation winding and tap winding D T : Width of tap winding R E : Excitation from side leg Distance to the center of the winding R G : Distance from the side leg to the center of both winding gaps R T : Distance from the side leg to the center of the tap winding, then the impedance between the tap winding and the excitation winding %V Z2 is roughly expressed by the following formula.

%VZ2=7.9fNE 2・I2・Δ2/P×10-6(%
)……(3) ただし、Δ2は Δ2=DE/3・2πDE/h+DG・2πRG/h
+DT/3・2πRT/h……(4) 今、同じ仕様の単相単巻変圧器を設計した場
合、 (1)式と(3)式を比較してみると、値f,I,Pは
同一であり、巻数NEは、NE=NE1+NE2である。
また、値Δ1と値Δ2とは、巻線間の絶縁寸法によ
つて多少差があるが、一例として、値Δ1は値Δ2
の1.6倍程度となる。そして、巻数NE1,NE2が等
しいとすると、両インピーダーンスの比は次のよ
うになる。
%V Z2 = 7.9fN E 2・I 2・Δ 2 /P×10 -6 (%
)...(3) However, Δ 2 is Δ 2 = D E /3・2πD E /h+D G・2πR G /h
+D T /3・2πR T /h...(4) Now, if we design a single-phase autotransformer with the same specifications, comparing equations (1) and (3), we find that the values f, I , P are the same, and the number of turns N E is N E =N E1 +N E2 .
Also, there is a slight difference between the value Δ 1 and the value Δ 2 depending on the insulation dimensions between the windings, but as an example, the value Δ 1 is the value Δ 2
It is about 1.6 times that of If the numbers of turns N E1 and N E2 are equal, the ratio of both impedances is as follows.

%VZ1/%VZ2=0.4 ……(5) 即ち、側脚12のインピーダンスは、励磁巻線
が2つに分割されない従来の構成に比較し、本実
施例のように励磁巻線を2つに分割し、これらの
巻線でタツプ巻線を挟んだ構成では、ほぼ40%に
低下することになる。このように、当該インピー
ダンスの絶対値が小さくなるので、当然、タツプ
位置を切換えた場合のインピーダンスの変化も小
さくなる。
%V Z1 /%V Z2 = 0.4 ...(5) That is, the impedance of the side leg 12 is higher than the conventional configuration in which the excitation winding is not divided into two, as in the present embodiment, where the excitation winding is divided into two. In a configuration where the tap winding is sandwiched between two windings, the reduction will be approximately 40%. In this way, since the absolute value of the impedance becomes small, naturally the change in impedance when switching the tap position also becomes small.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明では、励磁巻線を2
つに分割し、これら分割された励磁巻線でタツプ
巻線を挟むようにしたので、タツプ位置の切換に
よつて生じる変圧器のインピーダンスの変化を、
従来のものよりさらに小さくすることができる。
As described above, in the present invention, the excitation winding is
Since the tap winding is sandwiched between these divided excitation windings, changes in the impedance of the transformer caused by switching the tap position can be
It can be made even smaller than the conventional one.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る単相単巻変圧器
の巻線配置図、第2図a,bは第1図に示す側脚
の巻線配置図および鎖交磁束密度の特性図、第3
図は従来の単相変圧器の巻線配置図、第4図は第
3図に示す単相変圧器の磁束密度の特性図であ
る。 10……鉄心、12……側脚、16a……第1
の励磁巻線、16b……第2の励磁巻線、17…
…タツプ巻線。
Fig. 1 is a winding arrangement diagram of a single-phase single-winding transformer according to an embodiment of the present invention, and Figs. 2 a and b are winding arrangement diagrams of the side legs shown in Fig. 1 and characteristic diagrams of interlinkage magnetic flux density. , 3rd
The figure is a winding arrangement diagram of a conventional single-phase transformer, and FIG. 4 is a characteristic diagram of magnetic flux density of the single-phase transformer shown in FIG. 3. 10... Iron core, 12... Side leg, 16a... First
Excitation winding, 16b...Second excitation winding, 17...
...Tap winding.

Claims (1)

【特許請求の範囲】[Claims] 1 側脚に巻装したタツプ巻線と励磁巻線とを備
えた単相変圧器において、前記励磁巻線を第1の
励磁巻線単位と第2の励磁巻線単位とに分割し、
前記側脚にその内側から順に前記第1の励磁巻線
単位、前記タツプ巻線、および前記第2の励磁巻
線単位を巻装し、前記第1の励磁巻線単位と前記
第2の励磁巻線単位とを直列に接続したことを特
徴とする単相変圧器。
1. In a single-phase transformer equipped with a tap winding and an excitation winding wound around a side leg, the excitation winding is divided into a first excitation winding unit and a second excitation winding unit,
The first excitation winding unit, the tap winding, and the second excitation winding unit are wound around the side leg in order from the inside thereof, and the first excitation winding unit and the second excitation winding unit are wound on the side leg in order from the inside thereof. A single-phase transformer characterized by connecting winding units in series.
JP17659786A 1986-07-29 1986-07-29 Single-phase transformer Granted JPS6333804A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP17659786A JPS6333804A (en) 1986-07-29 1986-07-29 Single-phase transformer
EP19870110097 EP0254946B1 (en) 1986-07-29 1987-07-13 A single phase auto transformer
DE8787110097T DE3773785D1 (en) 1986-07-29 1987-07-13 SINGLE-PHASE TRANSFORMER IN ECONOMY.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17659786A JPS6333804A (en) 1986-07-29 1986-07-29 Single-phase transformer

Publications (2)

Publication Number Publication Date
JPS6333804A JPS6333804A (en) 1988-02-13
JPH0588523B2 true JPH0588523B2 (en) 1993-12-22

Family

ID=16016349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17659786A Granted JPS6333804A (en) 1986-07-29 1986-07-29 Single-phase transformer

Country Status (3)

Country Link
EP (1) EP0254946B1 (en)
JP (1) JPS6333804A (en)
DE (1) DE3773785D1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3367427B2 (en) * 1998-08-11 2003-01-14 株式会社高岳製作所 Single-phase three-wire transformer
CN107546015B (en) * 2017-10-10 2024-04-05 国网辽宁省电力有限公司鞍山供电公司 Line voltage regulating transformer with vector conversion function
JP7179566B2 (en) * 2018-10-04 2022-11-29 東北電力株式会社 Autotransformer with phase adjuster

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1377430A (en) * 1963-09-19 1964-11-06 Materiel Electrique S W Le Autotransformers with regulating windings
US4524341A (en) * 1983-02-07 1985-06-18 Owen D W Transformer with series-parallel-series winding between split winding

Also Published As

Publication number Publication date
JPS6333804A (en) 1988-02-13
EP0254946A1 (en) 1988-02-03
DE3773785D1 (en) 1991-11-21
EP0254946B1 (en) 1991-10-16

Similar Documents

Publication Publication Date Title
JPH0588523B2 (en)
JPS56131916A (en) Single-phase on-load tap-changing transformer
JPH11186070A (en) Single-phase autotransformer
JPH0241855Y2 (en)
JPH0320891B2 (en)
JP3556817B2 (en) Tap-switching autotransformer under load
JPH0329967Y2 (en)
JPS6144418Y2 (en)
JPH05205950A (en) On-load tap changing single-phase transformer
JPS6252931B2 (en)
JPS6240415Y2 (en)
JPH01222418A (en) Transformer equipped with voltage adjusting device
JPS63252409A (en) Transformer with tap
JPH0793213B2 (en) Transformer with tap
JPS586290B2 (en) On-load tap-changing transformer
JPH043093B2 (en)
JPH0520884B2 (en)
JPH03229405A (en) Variable capacity type shunt reactor
JPS5952820A (en) Single-phase transformer
JPH0572086B2 (en)
JPH0122972B2 (en)
JPH0143445B2 (en)
JPS593843B2 (en) single phase transformer
JPS598053B2 (en) single phase three winding transformer
JPS5952819A (en) On-load voltage regulator