JPH0320891B2 - - Google Patents

Info

Publication number
JPH0320891B2
JPH0320891B2 JP56032599A JP3259981A JPH0320891B2 JP H0320891 B2 JPH0320891 B2 JP H0320891B2 JP 56032599 A JP56032599 A JP 56032599A JP 3259981 A JP3259981 A JP 3259981A JP H0320891 B2 JPH0320891 B2 JP H0320891B2
Authority
JP
Japan
Prior art keywords
winding
tertiary
tap
shunt
leg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56032599A
Other languages
Japanese (ja)
Other versions
JPS57148323A (en
Inventor
Kenichi Hayashi
Takeshi Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56032599A priority Critical patent/JPS57148323A/en
Publication of JPS57148323A publication Critical patent/JPS57148323A/en
Publication of JPH0320891B2 publication Critical patent/JPH0320891B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は三次巻線付単相単巻変圧器に関するも
のである。 電力需要のめざましい伸びに対応して昭和48年
に我国初の500KV送電が開始され、さらに近い
将来1000KV級送電が計画されている。 これらの500KV送電など直接々地系統間の連
繋に使用される変圧器は経済性と我国の厳しい鉄
道輸送制限に対応するため単相単巻変圧器が採用
されている。 第1図は従来の代表的な単相単巻変圧器の結線
図をしめし、直列巻線1、分路巻線2、タツプ巻
線4を直列接続してその一端を高圧線路端子Uと
し、他端を中性点端子vとし、さらに三次巻線3
を設けてその端子を三次端子a,bとし、この三
次巻線3と、タツプ巻線4を励磁する励磁巻線5
とを並列接続したもので、タツプ巻線4を分路巻
線2の中性点側に直列接続し、直列巻線1と分路
巻線2との間から引出した低圧線路端子uの電圧
を一定にし、高圧線路端子Uの電圧を可変してい
るものである。この種単相単巻変圧器の具体的な
巻線配置の一例を第2図にしめす。単相四脚鉄心
の2つの主脚71,72にそれぞれ直列11,1
2、分路21,22、三次31,32の各巻線を
巻装してそれぞれ並列接続し、また側脚70にタ
ツプ巻線4と、三次巻線31,32に並列接続さ
れる励磁巻線5を巻装している。 この結線によれば、励磁巻線5の電圧が低く、
巻線構成が比較的単純になるという利点はあるも
のの、中性点側でタツプ切換を行なつて高圧線路
端子Uの電圧を可変するため、鉄心の励磁がタツ
プ位置によつて変化しそのため三次電圧が変動す
るという欠点がある。 例えば実際に使用されている500KV/√3−
275KV/√3−63KVの三次巻線付単相単巻変圧
器の場合、最高タツプ、定格タツプ、最低タツプ
の各々における鉄心励磁電圧比は252.7KV(=
527.7−275):225KV(=500−275):202.7KV(=
477.7−275)となつている。従つて三次電圧は各
タツプで70.8KV、63KV、56.8KVと大幅に変動
する。 三次端子には、一般にコンデンサやリアクトル
を接続し、無効電力調整を行なうから上記のよう
にタツプ位置により大幅に端子電圧が変動すると
コンデンサ等の利用率が低下する、無効電力制御
が複雑になるなどの問題が生じる。 三次端子電圧を一定とするためこれまで第3図
のように三次回路の途中に直列変圧器6を設け、
これをタツプ巻線4から励磁し、三次巻線3の電
圧変化分をこの直列変圧器6の電圧変化で補償す
る方法が提案されている。 しかし実際にはこの方法は上述のように直列変
圧器6を別に必要とするため、据付スペースが大
きくなること、結線が複雑になり機器の信頼性上
好ましくないなどの理由からこれまでまだ採用さ
れていない。以上のようにこれまでの中性点側タ
ツプ切換の単巻変圧器では三次電圧がタツプ位置
によつて変動するので運用が複雑となつている欠
点があつた。 本発明は以上のような従来の単巻変圧器のもつ
欠点を除去し、三次電圧がタツプによつて変化せ
ず、しかも据付スペースも大きくならない改良さ
れた三次巻線付単相単巻変圧器を提供することを
目的とするものである。 以下本発明の一実施例を第4図および第5図に
より説明する。第4図は本発明による三次巻線付
単相単巻変圧器の結線図で、直列巻線1、分路巻
線2およびタツプ巻線4を直列に接続し、その一
端を高圧線路端子Uとし、他端を中性点端子vと
している。直列巻線1と分路巻線2との間から引
出した低圧線路端子uと中性点端子vとの間に接
続される低圧巻線8を設け、この低圧巻線8によ
つて三次巻線3を励磁するようにしている。三次
巻線3はタツプ巻線4を励磁する励磁巻線5を並
列に接続されている。 第5図は第4図の結線による三次巻線付単相単
巻変圧器の各巻線配置の一実施例をしめしてい
る。単相4脚鉄心の第1の主脚71に直列巻線1
の分路巻線2を巻装し、第2の主脚72に低圧巻
線8と三次巻線3を巻装している。そして一方の
側脚70に分路巻線2の中性点側に接続されたタ
ツプ巻線4と、三次巻線3に並列に接続される励
磁巻線5を巻装している。 然るに本発明による三次巻線付単相単巻変圧器
においては、三次巻線3は、電圧が一定に保たれ
る低圧巻線8によつて励磁されるので、タツプの
位置によつて電圧が変動することはない。 また三次巻線3の電圧が一定に保たれることか
ら、この三次巻線3によつて励磁されるタツプ巻
線4の誘起電圧も一定となるが、これによる各巻
線の誘起電圧は前述の電圧定格の単巻変圧器の場
合第1表のようになるので、高圧線路端子Uの各
タツプにおける電圧は最高タツプ525KV/√3、
定格タツプ500KV/√3、最低タツプ475KV/
√3とプラス側、マイナス側と電圧変化幅が一定
となつて変圧器運用が容易になる利点もある。
The present invention relates to a single-phase autotransformer with a tertiary winding. In response to the remarkable growth in electricity demand, Japan's first 500KV power transmission began in 1972, and 1000KV class power transmission is planned in the near future. The transformers used for direct connection between ground systems, such as these 500KV power transmission systems, are single-phase autotransformers in order to be economical and to comply with Japan's strict railway transportation restrictions. Figure 1 shows a wiring diagram of a typical conventional single-phase single-winding transformer, in which a series winding 1, a shunt winding 2, and a tap winding 4 are connected in series, with one end serving as a high-voltage line terminal U. The other end is the neutral point terminal v, and the tertiary winding 3
are provided, and the terminals are used as tertiary terminals a and b, and this tertiary winding 3 and an excitation winding 5 that excites the tap winding 4 are connected.
The tap winding 4 is connected in series to the neutral point side of the shunt winding 2, and the voltage at the low voltage line terminal u drawn out from between the series winding 1 and the shunt winding 2. is kept constant, and the voltage at the high voltage line terminal U is varied. An example of a specific winding arrangement of this type of single-phase autotransformer is shown in FIG. 2. Series 11 and 1 are connected to the two main legs 71 and 72 of the single-phase four-leg iron core, respectively.
2. The shunt windings 21, 22 and the tertiary windings 31, 32 are wound and connected in parallel, and the tap winding 4 is connected to the side leg 70, and the excitation winding is connected in parallel to the tertiary windings 31, 32. 5 is wrapped. According to this connection, the voltage of the excitation winding 5 is low;
Although there is an advantage that the winding configuration is relatively simple, since the voltage at the high-voltage line terminal U is varied by tap switching on the neutral point side, the excitation of the iron core changes depending on the tap position, and therefore the tertiary The disadvantage is that the voltage fluctuates. For example, 500KV/√3− actually used
In the case of a single-phase single-turn transformer with a tertiary winding of 275KV/√3-63KV, the core excitation voltage ratio at each of the highest tap, rated tap, and lowest tap is 252.7KV (=
527.7−275): 225KV (=500−275): 202.7KV (=
477.7−275). Therefore, the tertiary voltage varies greatly from 70.8KV to 63KV to 56.8KV at each tap. Generally, a capacitor or reactor is connected to the tertiary terminal to adjust reactive power, so if the terminal voltage changes significantly depending on the tap position as described above, the utilization rate of the capacitor etc. will decrease and reactive power control will become complicated. The problem arises. In order to keep the tertiary terminal voltage constant, a series transformer 6 was installed in the middle of the tertiary circuit as shown in Figure 3.
A method has been proposed in which this is excited from the tap winding 4 and the voltage change in the tertiary winding 3 is compensated for by the voltage change in the series transformer 6. However, in reality, this method has not been adopted until now because it requires a separate series transformer 6 as mentioned above, which increases the installation space and complicates the wiring, which is unfavorable for the reliability of the equipment. Not yet. As mentioned above, conventional autotransformers with tap switching on the neutral point side have the disadvantage that the tertiary voltage varies depending on the tap position, making operation complicated. The present invention eliminates the drawbacks of conventional autotransformers as described above, and provides an improved single-phase autotransformer with a tertiary winding that does not change the tertiary voltage due to taps and does not require a large installation space. The purpose is to provide the following. An embodiment of the present invention will be described below with reference to FIGS. 4 and 5. FIG. 4 is a wiring diagram of a single-phase single-winding transformer with a tertiary winding according to the present invention, in which a series winding 1, a shunt winding 2 and a tap winding 4 are connected in series, with one end connected to a high-voltage line terminal U. and the other end is the neutral point terminal v. A low voltage winding 8 is provided which is connected between a low voltage line terminal u drawn out from between the series winding 1 and the shunt winding 2 and a neutral point terminal v, and the tertiary winding is performed by this low voltage winding 8. The wire 3 is energized. The tertiary winding 3 is connected in parallel with an excitation winding 5 that excites the tap winding 4. FIG. 5 shows an embodiment of the winding arrangement of a single-phase single-turn transformer with a tertiary winding according to the connection shown in FIG. Series winding 1 on the first main leg 71 of the single-phase four-leg iron core
A shunt winding 2 is wound around the second main leg 72, and a low voltage winding 8 and a tertiary winding 3 are wound around the second main leg 72. A tap winding 4 connected to the neutral point side of the shunt winding 2 and an excitation winding 5 connected in parallel to the tertiary winding 3 are wound around one side leg 70. However, in the single-phase single-turn transformer with a tertiary winding according to the present invention, the tertiary winding 3 is excited by the low-voltage winding 8 that keeps the voltage constant, so the voltage varies depending on the position of the tap. It never changes. Furthermore, since the voltage of the tertiary winding 3 is kept constant, the induced voltage of the tap winding 4 excited by this tertiary winding 3 also becomes constant, but the induced voltage of each winding due to this is as described above. In the case of an autotransformer with a voltage rating as shown in Table 1, the voltage at each tap of the high voltage line terminal U is the maximum tap 525KV/√3,
Rated tap 500KV/√3, minimum tap 475KV/
√3 has the advantage that the voltage change width is constant on the positive side and negative side, making it easier to operate the transformer.

【表】 さらに三次電圧を一定とするための従来の第3
図の構成に較べると直列変圧器が不要となるの
で、結線、構成が単純化される。 加えて、第5図にしめすように主脚71に巻装
される巻線が直列巻線1および分路巻線2のみと
されるため、第2図にしめす従来の各2組の直列
巻線11,12および分路巻線21,22を1組
にして主脚71に集中して巻装しても巻線径は極
端に大きくなることもなく、輸送限界内での製作
が可能となる。また変圧器容量が大きくなつて主
脚71に直列、分路巻線を集中して巻装すると巻
線径が大きくなりすぎるような場合には、主脚数
を増した単相5脚鉄心を用い、その内の2つの主
脚に第5図の主脚71と同一の構成で直列、分路
巻線を分割して巻装して構成すればよい。 なお第5図にしめす各巻線は同じ単相4脚鉄心
の各脚へ配置した場合について説明したが、これ
らに限られるものではなく、例えばタツプ巻線4
と励磁巻線5を別の鉄心に巻装して所謂、負荷時
電圧調整器として構成してもよいし、更にこの場
合、主変圧器の鉄心を単相3脚鉄心として、主脚
に直列巻線1、分路巻線2を巻装し、側脚に低圧
巻線8、三次巻線3を巻装することにしてもよ
い。特に三次巻線3を側脚に巻装する場合はその
巻回数を主脚に巻装する場合に較べ略2倍にする
ことになるが、この結果三次巻線3と低圧巻線8
のインピーダンスが略4倍にも大きくなり、三次
しや断容量を小さく抑える上で好都合になるとい
う効果もある。 更に山間部などへの輸送で重量制限が厳しい場
合には、三次巻線と低圧巻線を別の鉄心に巻くこ
とも可能である。 以上の説明はすべての単相器としたが、例えば
タツプ部分を前記の別置負荷時電圧調整器とする
場合にこれを三相器とすることも可能であり、ま
た三次巻線3と低圧巻線8部分を別の三相器とし
て構成することもでき、いずれも本発明と全く同
一の作用効果があることは明白である。 以上説明のように本発明によれば、いずれも三
次電圧をタツプ位置によらずに一定に保つことが
出来、かつ小形で経済的な三次巻線付単相単巻変
圧器を得ることが出来る。
[Table] The conventional third method for making the tertiary voltage constant
Compared to the configuration shown in the figure, a series transformer is not required, so the wiring and configuration are simplified. In addition, since the windings wound around the main landing gear 71 are only the series winding 1 and the shunt winding 2, as shown in FIG. 5, the two sets of series windings shown in FIG. Even if the wires 11, 12 and the shunt windings 21, 22 are made into one set and concentrated on the main landing gear 71, the diameter of the winding does not become extremely large, and manufacturing can be done within the transport limit. Become. In addition, if the transformer capacity increases and the winding diameter becomes too large if series and shunt windings are concentrated around the main leg 71, a single-phase five-leg iron core with an increased number of main legs may be used. 5, and the series and shunt windings may be divided and wound around two of the main legs in the same configuration as the main leg 71 of FIG. 5. Although the windings shown in FIG. 5 are arranged on each leg of the same single-phase four-leg iron core, the present invention is not limited to this. For example, tap windings 4
The excitation winding 5 and excitation winding 5 may be wound around another core to form a so-called on-load voltage regulator, or in this case, the core of the main transformer may be a single-phase three-legged core connected in series to the main leg. The winding 1 and the shunt winding 2 may be wound, and the low voltage winding 8 and the tertiary winding 3 may be wound around the side legs. In particular, when winding the tertiary winding 3 on the side landing gear, the number of turns is approximately twice that of winding it on the main landing gear, but as a result, the tertiary winding 3 and the low voltage winding 8
This also has the effect of increasing the impedance by approximately four times, which is advantageous in keeping the tertiary shunt capacitance small. Furthermore, if weight restrictions are strict due to transportation to mountainous areas, it is also possible to wind the tertiary winding and low voltage winding on separate iron cores. In the above explanation, all single-phase converters were used, but for example, if the tap part is used as the above-mentioned separate load voltage regulator, it is also possible to use this as a three-phase converter. It is clear that the 8 portions of the winding wire can be constructed as another three-phase transformer, and that either method has exactly the same effect as the present invention. As explained above, according to the present invention, the tertiary voltage can be kept constant regardless of the tap position, and a small and economical single-phase single-turn transformer with a tertiary winding can be obtained. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の三次巻線付単相単巻変圧器の結
線図、第2図はその巻線配置の一例をしめす構成
図、第3図は三次電圧をタツプ位置によらず一定
に保つための従来の提案図で、直列変圧器を利用
する方法を説明する結線図、第4図は本発明の三
次巻線付単相単巻変圧器の結線図、第5図はその
巻線配置の一例をしめす構成図である。 記号の説明、1,11,12……直列巻線、
2,21,22……分路巻線、3,31,32…
…三次巻線、4……タツプ巻線、5……励磁巻
線、6……直列変圧器、71,72……鉄心主
脚、70……鉄心側脚、8……低圧巻線、U……
高圧線路端子、u……低圧線路端子、v……中性
点端子、a,b……三次端子。
Figure 1 is a wiring diagram of a conventional single-phase single-winding transformer with a tertiary winding, Figure 2 is a configuration diagram showing an example of the winding arrangement, and Figure 3 keeps the tertiary voltage constant regardless of the tap position. Figure 4 is a wiring diagram of the single-phase autotransformer with tertiary winding of the present invention, and Figure 5 is its winding arrangement. It is a block diagram showing an example. Explanation of symbols, 1, 11, 12...Series winding,
2, 21, 22...Shunt winding, 3, 31, 32...
...Tertiary winding, 4...Tap winding, 5...Excitation winding, 6...Series transformer, 71, 72...Iron core main leg, 70...Iron core side leg, 8...Low voltage winding, U ……
High voltage line terminal, u...low voltage line terminal, v...neutral point terminal, a, b...tertiary terminal.

Claims (1)

【特許請求の範囲】 1 単相4脚鉄心の第1の主脚に直列巻線と分路
巻線を巻装し、第2の主脚に低圧巻線と三次巻線
を巻装し、一方の側脚には前記分路巻線の中性点
側に直列接続されるタツプ巻線と、前記三次巻線
に並列接続される励磁巻線を巻装し、前記低圧巻
線はその両端を前記分路巻線とタツプ巻線の両側
端子に並列接続したことを特徴とする三次巻線付
単相単巻変圧器。 2 特許請求の範囲1項記載のものにおいて、タ
ツプ巻線と励磁巻線は別の鉄心脚に巻装したこと
を特徴とする三次巻線付単相単巻変圧器。 3 単相3脚鉄心の主脚に直列巻線と分路巻線を
巻装し、一方の側脚に低圧巻線と三次巻線を巻装
し、別の鉄心脚に前記分路巻線の中性点側に直列
接続されるタツプ巻線と、前記三次巻線に並列接
続される励磁巻線を巻装し、前記低圧巻線はその
両端を前記分路巻線とタツプ巻線の両側端子に並
列接続したことを特徴とする三次巻線付単相単巻
変圧器。 4 特許請求の範囲第3項記載のものにおいて、
低圧巻線と三次巻線は別の鉄心脚に巻装したこと
を特徴とする三次巻線付単相単巻変圧器。 5 単相3脚鉄心の主脚に直列巻線と分路巻線を
巻装し、一方の側脚に前記分路巻線の中性点側に
直列接続されるタツプ巻線と、励磁巻線を巻装
し、別の鉄心脚に低圧巻線と三次巻線を巻装し、
前記低圧巻線はその両端を前記分路巻線とタツプ
巻線の両側端子に並列接続するとともに前記三次
巻線は前記励磁巻線と並列接続したことを特徴と
する三次巻線付単相単巻変圧器。
[Claims] 1. A series winding and a shunt winding are wound around the first main leg of a single-phase four-leg iron core, and a low voltage winding and a tertiary winding are wound around the second main leg, One side leg is wound with a tap winding connected in series to the neutral point side of the shunt winding and an excitation winding connected in parallel to the tertiary winding, and the low voltage winding is connected at both ends thereof. are connected in parallel to terminals on both sides of the shunt winding and the tap winding. 2. A single-phase single-turn transformer with a tertiary winding according to claim 1, characterized in that the tap winding and the excitation winding are wound on separate core legs. 3 A series winding and a shunt winding are wound around the main legs of a single-phase three-legged iron core, a low voltage winding and a tertiary winding are wound around one side leg, and the shunt winding is wound around the other iron core leg. A tap winding connected in series to the neutral point side and an excitation winding connected in parallel to the tertiary winding are wound, and both ends of the low voltage winding are connected to the shunt winding and the tap winding. A single-phase autotransformer with a tertiary winding characterized by parallel connection to terminals on both sides. 4 In what is stated in claim 3,
A single-phase autotransformer with a tertiary winding, characterized in that the low voltage winding and the tertiary winding are wound on separate iron core legs. 5 A series winding and a shunt winding are wound around the main legs of a single-phase three-leg iron core, and one side leg has a tap winding connected in series to the neutral point side of the shunt winding, and an excitation winding. The wire is wound, and the low voltage winding and tertiary winding are wound around another core leg.
The low voltage winding has both ends connected in parallel to both terminals of the shunt winding and the tap winding, and the tertiary winding is connected in parallel to the excitation winding. winding transformer.
JP56032599A 1981-03-09 1981-03-09 Single-phase autotransformer with tertiary winding Granted JPS57148323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56032599A JPS57148323A (en) 1981-03-09 1981-03-09 Single-phase autotransformer with tertiary winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56032599A JPS57148323A (en) 1981-03-09 1981-03-09 Single-phase autotransformer with tertiary winding

Publications (2)

Publication Number Publication Date
JPS57148323A JPS57148323A (en) 1982-09-13
JPH0320891B2 true JPH0320891B2 (en) 1991-03-20

Family

ID=12363320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56032599A Granted JPS57148323A (en) 1981-03-09 1981-03-09 Single-phase autotransformer with tertiary winding

Country Status (1)

Country Link
JP (1) JPS57148323A (en)

Also Published As

Publication number Publication date
JPS57148323A (en) 1982-09-13

Similar Documents

Publication Publication Date Title
JPH0320891B2 (en)
CN112750603A (en) Voltage regulating method of high-voltage side of autotransformer, transformer body structure and autotransformer
JPH11186070A (en) Single-phase autotransformer
JPS6214083B2 (en)
JPH0241855Y2 (en)
JPH0122971B2 (en)
JP2642825B2 (en) Single phase load tap change transformer
EP0254946A1 (en) A single phase auto transformer
JPS6037707A (en) Three-phase autotransformer
JPS59123214A (en) Auto-transformer
JPS6240415Y2 (en)
JPH07220954A (en) Three-phase on-load tap switching transformer
JPH0212007B2 (en)
JPH0132347Y2 (en)
JPS59175111A (en) Three-phase on-load tap changing transformer
JPS6223442B2 (en)
JPS586110A (en) Autotransformer
JPH0260045B2 (en)
JPS598053B2 (en) single phase three winding transformer
JPS60106111A (en) Single-phase three-winding transformer
JPH0122972B2 (en)
JPH0260044B2 (en)
JPS5943083B2 (en) On-load tap-changing transformer
JPS5927088B2 (en) single phase auto transformer
JPS5871611A (en) Single-phase autotransformer