JPH0122972B2 - - Google Patents

Info

Publication number
JPH0122972B2
JPH0122972B2 JP56175457A JP17545781A JPH0122972B2 JP H0122972 B2 JPH0122972 B2 JP H0122972B2 JP 56175457 A JP56175457 A JP 56175457A JP 17545781 A JP17545781 A JP 17545781A JP H0122972 B2 JPH0122972 B2 JP H0122972B2
Authority
JP
Japan
Prior art keywords
winding
phase
core
tertiary
tap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56175457A
Other languages
Japanese (ja)
Other versions
JPS5877214A (en
Inventor
Kenichi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56175457A priority Critical patent/JPS5877214A/en
Publication of JPS5877214A publication Critical patent/JPS5877214A/en
Publication of JPH0122972B2 publication Critical patent/JPH0122972B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Description

【発明の詳細な説明】 (a) 技術分野の説明 本発明は三次巻線付単相単巻変圧器に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (a) Description of the technical field The present invention relates to a single-phase autotransformer with a tertiary winding.

(b) 従来技術の説明 我国の187KV〜275KVの超高圧送電以上の系
統では直接接地方式が採られており、これらの系
統間の連繋に使用される変圧器は、我国の厳しい
鉄道輸送制限に対応するため単相単巻変圧器が採
用されている。
(b) Description of the prior art Direct grounding systems are used in Japan's ultra-high voltage power transmission systems of 187KV to 275KV and above, and the transformers used to connect these systems are subject to Japan's strict railway transportation restrictions. To accommodate this, a single-phase autotransformer is used.

第1図は従来の代表的な単相単巻変圧器の結線
図をしめしたもので、直列巻線1、分路巻線2、
タツプ巻線4を直列接続してその一端を高圧線路
端子Uとし、他端を中性点端子vとし、さらに三
次巻線3を設けてその端子を三次端子a,bと
し、この三次巻線3と、タツプ巻線4を励磁する
励磁巻線5とを並列接続したもので、直列巻線1
と分離巻線2との接続点となる低圧線路端子uの
電圧を一定にし、高圧線路端子Uの電圧を可変す
るものである。
Figure 1 shows the wiring diagram of a typical conventional single-phase single-winding transformer, with series winding 1, shunt winding 2,
Tap windings 4 are connected in series, one end of which is used as a high-voltage line terminal U, the other end used as a neutral point terminal v, and a tertiary winding 3 is provided, the terminals of which are used as tertiary terminals a and b, and this tertiary winding 3 and an excitation winding 5 that excites the tap winding 4 are connected in parallel, and the series winding 1
The voltage at the low-voltage line terminal U, which is the connection point between the line and the separation winding 2, is kept constant, and the voltage at the high-voltage line terminal U is varied.

この単相単巻変圧器の具体的な構成の一例を第
2図および第3図にしめす。第2図a,bは従来
の一般的な単相三脚鉄心をしめしたもので、aは
鉄心抜板の配置をしめす正面図、bは各鉄心脚に
断面をしめす平面図である。第2図からわかるよ
うに一般に単相三脚鉄心は2組の同一断面積を有
する単相二脚鉄心71,72を長手方向に隣接さ
せて構成したもので、隣接する鉄心脚を組合せて
中央脚とし、両側の鉄心脚を側脚としたものであ
る。従つて中央脚の断面積は側脚の2倍の断面積
を有している。
An example of a specific configuration of this single-phase autotransformer is shown in FIGS. 2 and 3. FIGS. 2a and 2b show a conventional single-phase three-legged core, in which a is a front view showing the arrangement of core punching, and FIG. 2b is a plan view showing a cross section of each core leg. As can be seen from Fig. 2, a single-phase three-legged core generally consists of two pairs of single-phase two-legged cores 71 and 72 having the same cross-sectional area, adjacent to each other in the longitudinal direction. The iron core legs on both sides were used as side legs. The cross-sectional area of the central leg therefore has twice the cross-sectional area of the side legs.

第3図は第2図にしめした単相三脚鉄心に各巻
線を配置した単相単巻変圧器をしめす正面図で、
中央側に直列巻線1、分路巻線2および三次巻線
3が巻装され、一方の側脚にタツプ巻線4と、三
次巻線3に並列接続される励磁巻線5が巻装され
ている。第3図の構成によれば、励磁巻線5の電
圧が一般に電圧の低い三次電圧と同じになり、巻
線構成も比較的単純になるという利点はあるもの
の、中性点側でタツプ切換を行つて高圧線路端U
の電圧を可変するため鉄心の励磁がタツプ位置に
よつて変化し、そのため三次電圧が変動するとい
う欠点がある。例えば実際に使用されている
500KV/√3−275KV/√3−63KVの三次巻線
付単相単巻変圧器の場合、最高タツプ、定格タツ
プ、最低タツプの各々における鉄心励磁電圧比は
252.7KV(=527.7−275):225KV(=500−225):
202.7KV(=477.7−275)となつている。従つて
三次電圧は各タツプで70.8KV,63KV,56.8KV
と大幅に変動する。三次端子a,bは一般に三相
バンクでデルタ結線され、コンデンサやリアクト
ルを接続し、無効電力調整を行なうから、上記の
ようにタツプ位置により端子電圧が大幅に変動す
ると、コンデンサ等の利用率が低下し、かつ無効
電力制御が複雑になるなどの問題が生じる。
Figure 3 is a front view showing the single-phase autotransformer in which each winding is arranged on the single-phase tripod core shown in Figure 2.
A series winding 1, a shunt winding 2 and a tertiary winding 3 are wound on the center side, and a tap winding 4 and an excitation winding 5 connected in parallel to the tertiary winding 3 are wound on one side leg. has been done. The configuration shown in Figure 3 has the advantage that the voltage of the excitation winding 5 is generally the same as the tertiary voltage, which is a low voltage, and the winding configuration is relatively simple. Go to the high voltage line end U
Since the voltage of the tap is varied, the excitation of the iron core changes depending on the tap position, which has the disadvantage that the tertiary voltage fluctuates. For example, actually used
In the case of a 500KV/√3-275KV/√3-63KV single-phase single-turn transformer with tertiary winding, the core excitation voltage ratio at each of the highest tap, rated tap, and lowest tap is
252.7KV (=527.7−275): 225KV (=500−225):
It is 202.7KV (=477.7−275). Therefore, the tertiary voltage is 70.8KV, 63KV, 56.8KV at each tap.
and fluctuates significantly. The tertiary terminals a and b are generally delta-connected in a three-phase bank, and a capacitor or reactor is connected to adjust the reactive power. Therefore, if the terminal voltage changes significantly depending on the tap position as described above, the utilization rate of the capacitor etc. will decrease. This causes problems such as a decrease in power consumption and complicated reactive power control.

さらに三次巻線容量は、一般に一次、二次容量
の20〜30%程度であらり、他の主巻線(直列巻線
および分路巻線)に較べて小さくなるが、第3図
の従来例ではこれらを同一の鉄心脚に巻いている
ため、三次巻線と他の巻線間インピーダンス、と
りわけ二次(低圧)一三次巻線間のインピーダン
スが小さくなりすぎるきらいがある。この三次イ
ンピーダンスが小さいということは三次外部短絡
時の事故電流が大きくなるので、このため三次巻
線は事故電流による大きな電磁機械力に耐えるよ
うに熱的に必要な容量以上に大きくすることが必
要になる。また三次回路の事故電流が大きいと、
三次回路のしや断器もそれだけ大容量のものが必
要になる。従つて大容量器になるほど、三次イン
ピーダンスを大きくすることが有効であるが、こ
のため三次巻線と他巻線間の距離を絶縁上必要な
距離以上に拡げることは変圧器全体が大きくなる
ので、輸送制限上および経済性の点から限界があ
る。また三次回路に限流リアクトルを設ける案も
あるが、構成が複雑になりまた経済性の点から不
利になる。
Furthermore, the tertiary winding capacity is generally about 20 to 30% of the primary and secondary capacity, which is smaller than other main windings (series windings and shunt windings). In the example, since these are wound around the same core leg, the impedance between the tertiary winding and other windings, especially the impedance between the secondary (low voltage) primary and tertiary windings, tends to become too small. If this tertiary impedance is small, the fault current in the event of a tertiary external short circuit will be large, so the tertiary winding must have a larger capacity than is thermally necessary to withstand the large electromagnetic mechanical force caused by the fault current. become. Also, if the fault current in the tertiary circuit is large,
The tertiary circuit and disconnector also require a larger capacity. Therefore, the larger the capacitance is, the more effective it is to increase the tertiary impedance, but for this reason, increasing the distance between the tertiary winding and other windings beyond the distance required for insulation will increase the size of the entire transformer. However, there are limitations due to transportation restrictions and economic efficiency. There is also a plan to provide a current limiting reactor in the tertiary circuit, but this would complicate the configuration and be disadvantageous from an economic point of view.

しかしならが一方では、三相バンクでデルタ結
線される三次巻線と他の巻線との間のインピーダ
ンスが余り大きくなると、一次域は二次からみた
変圧器の零相インピーダンスが大きくなるので、
直接接地系統に使用される変圧器としては不適当
になつてしまう。即ち直接接地系統では、系統一
線地絡事故時でも健全相の対地電圧上昇を出来る
だけ低く抑えることが望まれており、そのために
は系統の零相インピーダンスを小さくすることが
必要となる。
However, on the other hand, if the impedance between the tertiary winding and the other windings connected in delta in a three-phase bank becomes too large, the zero-sequence impedance of the transformer seen from the secondary will become large in the primary region.
This makes it unsuitable as a transformer for use in a directly grounded system. That is, in a directly grounded system, it is desired to suppress the rise in ground voltage of a healthy phase as low as possible even in the event of a line-to-ground fault in the system, and to do so, it is necessary to reduce the zero-sequence impedance of the system.

単相単巻変圧器3台を組み合せる三相バンクで
はデルタ結線される三次巻線と他の巻線との間の
インピーダンスがそのまま零相インピーダンスに
なるので、前述のように三次巻線のインピーダン
スは三次しや断容量の点からは大きい方がよい
が、余り大きいと系統運用上問題点になるわけで
ある。
In a three-phase bank that combines three single-phase single-winding transformers, the impedance between the delta-connected tertiary winding and other windings becomes the zero-sequence impedance, so as mentioned above, the impedance of the tertiary winding From the standpoint of cubic capacity, it is better to have a larger value, but if it is too large, it will cause problems in system operation.

(c) 発明の目的 本発明はこのような従来の単相単巻変圧器のも
つ欠点を除去し、三次インピーダンスを適度な値
に選ぶことが出来る改良された単相単巻変圧器を
提供することを目的とする。
(c) Purpose of the Invention The present invention provides an improved single-phase autotransformer that eliminates the drawbacks of the conventional single-phase autotransformer and allows the tertiary impedance to be selected at an appropriate value. The purpose is to

(d) 発明の実施例 以下本発明の一実施例を図面を参照して説明す
る。第4図は本発明による単相単巻変圧器に使用
する単相三脚鉄心をしめたもので、aは鉄心抜板
の配置をしめす正面図、bは各鉄心脚の断面をし
めす平面図である。第4図において長手方向に隣
接させた2組の単相二脚鉄心81,82はそれぞ
れ異なつた断面積を有しているが、それらの合
計、即ち隣接する鉄心脚を組合せた中央脚の断面
積は従来の第2図にしめす例の中央脚の断面積と
同じである。
(d) Embodiment of the Invention An embodiment of the present invention will be described below with reference to the drawings. Figure 4 shows a single-phase tripod core used in a single-phase autotransformer according to the present invention, where a is a front view showing the arrangement of core punching, and b is a plan view showing a cross section of each core leg. be. In FIG. 4, two sets of single-phase bipedal cores 81 and 82 adjacent to each other in the longitudinal direction have different cross-sectional areas, but the sum of them, that is, the cross-section of the central leg that combines the adjacent core legs. The area is the same as the cross-sectional area of the central leg in the conventional example shown in FIG.

第5図は第4図にしめした単相三脚鉄心に各巻
線を配置した本発明による単相単巻変圧器の正面
図をしめし、第6図はその結線図をしめす。即ち
単相三脚鉄心の中央脚に直列巻線1、分路巻線2
およびタツプ巻線4を巻装し、断面積の大きい方
の側脚に三次巻線3と低圧巻線6を巻装してあ
り、この低圧巻線6はその両端を低圧線路端子u
と中性点vに接続している。
FIG. 5 shows a front view of a single-phase autotransformer according to the present invention in which each winding is arranged on the single-phase tripod core shown in FIG. 4, and FIG. 6 shows its wiring diagram. In other words, the series winding 1 and the shunt winding 2 are connected to the center leg of the single-phase tripod core.
and a tap winding 4, and a tertiary winding 3 and a low voltage winding 6 are wound around the side leg with a larger cross-sectional area, and both ends of the low voltage winding 6 are connected to the low voltage line terminal u.
and is connected to the neutral point v.

このように構成した場合、三次巻線3はその励
磁が、電圧が一定に保たれる低圧巻線6によつて
行なわれるため、タツプ巻線4のタツプの位置に
よつて電圧が変動することがない。また三次巻線
3は、その断面積が中央脚よりも小さな側脚に巻
装されるため、中央脚に巻装した場合に較べる
と、巻回数は断面積比 a(=中央脚断面積/側脚断面積)倍だけ多くなるが
、その 結果巻線間もれインピーダンス、即ち三次インピ
ーダンスは略a2倍と大きくなる。従つて例えば小
さい断面積の側脚の断面積を中央脚の30%、大き
い断面積を有する側脚の断面積を中央脚の70%に
選べば、a=1/0.7ゆえに三次インピーダンスは略 2倍(=1/0.72)になる。また同様にa=1/0.58に 選べば略3倍にすることが出来る。第2図の従来
例で同様の構成とした場合はa=1/0.5となり、三 次インピーダンスが略4倍にもなつてしまうこと
に較べると、本発明による単相単巻変圧器におい
ては、三次インピーダンスの大きさにはるかに融
通性がある。従つて三次インピーダンスの適度の
調整が可能となる。
With this configuration, the tertiary winding 3 is excited by the low voltage winding 6 whose voltage is kept constant, so the voltage does not fluctuate depending on the position of the tap in the tap winding 4. There is no. Furthermore, since the tertiary winding 3 is wound around the side legs whose cross-sectional area is smaller than the center leg, the number of windings is equal to the cross-sectional area ratio a (=center leg cross-sectional area/ As a result, the inter-winding impedance, that is, the tertiary impedance, becomes approximately twice as large as the side leg cross-sectional area). Therefore, for example, if the cross-sectional area of the side legs with a small cross-sectional area is selected to be 30% of the center leg, and the cross-sectional area of the side legs with a large cross-sectional area is selected to be 70% of the center leg, the tertiary impedance will be approximately 2 because a = 1/0.7. It becomes twice (=1/0.72). Similarly, if a=1/0.58 is chosen, it can be approximately tripled. When the conventional example shown in Fig. 2 has the same configuration, a = 1/0.5, and the tertiary impedance becomes approximately four times. There is much more flexibility in impedance magnitude. Therefore, it is possible to adjust the tertiary impedance appropriately.

次に第7図および第8図は本発明の他の実施例
よる単相単巻変圧器の正面図および結線図をしめ
したものである。この単相単巻変圧器は第4図に
しめした単相三脚鉄心の中央脚に直列巻線1、分
路巻線2を巻装し、断面積の大きい方の側脚に三
次巻線3と低圧巻線6を巻装してあり、この低圧
巻線6はその両端を低圧線路端子uと中性点vに
接続している。
Next, FIGS. 7 and 8 show a front view and a wiring diagram of a single-phase autotransformer according to another embodiment of the present invention. This single-phase autotransformer has a series winding 1 and a shunt winding 2 wound around the central leg of the single-phase tripod core shown in Figure 4, and a tertiary winding 3 wound around the side leg with a larger cross-sectional area. A low voltage winding 6 is wound thereon, and both ends of the low voltage winding 6 are connected to a low voltage line terminal u and a neutral point v.

また上記単相三脚鉄心とは別の鉄心83に、タ
ツプ巻線4と励磁巻線5を巻装し、その励磁巻線
5は三次巻線3と並列接続して構成する。
Further, a tap winding 4 and an excitation winding 5 are wound around an iron core 83 different from the single-phase tripod iron core, and the excitation winding 5 is connected in parallel with the tertiary winding 3.

このように構成した場合、第5図の実施例と同
等の効果が得られるだけでなく、タツプ巻線4を
変圧器本体の単相三脚鉄心と別の鉄心83に巻い
てあるので、例えばこのタツプ部分を変圧器本体
とは別のタンクに収納しておけば、万一のタツプ
部分の事故に際しては、これを切離すことによ
り、変圧器本体はタツプなし変圧器として運転が
継続できるし、さらにこのタツプ部分を他の二相
と併せて三相器で構成することも出来、この場合
に三相星形結線中性点切換用タツプ切換器が有効
に使える大きな利点がある。
When configured in this way, not only can the same effect as the embodiment shown in FIG. If the tap part is stored in a separate tank from the transformer body, in the unlikely event of an accident involving the tap part, by disconnecting it, the transformer body can continue operating as a transformer without a tap. Furthermore, this tap portion can be combined with other two phases to form a three-phase device, and in this case there is a great advantage that a three-phase star connection neutral point switching tap changer can be used effectively.

(e) 発明の効果 以上説明のように、本発明によれば、三次電圧
がタツプ位置によつて変動せず、かつ三次インピ
ーダンスの適度な調整が可能な改良された単相単
巻変圧器を得ることができる。
(e) Effects of the Invention As explained above, the present invention provides an improved single-phase autotransformer in which the tertiary voltage does not vary depending on the tap position and the tertiary impedance can be appropriately adjusted. Obtainable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の三次巻線単相単巻変圧器の結線
図、第2図aおよびbは従来の単相三脚鉄心の鉄
心抜板の配置をしめす正面図および各鉄心脚の断
面をしめす平面図、第3図は第2図の鉄心を使用
した、第1図の結線による単相単巻変圧器の正面
図、第4図aおよびbは本発明の単相単巻変圧器
に使用する単相三脚鉄心の鉄心抜板の配置をしめ
す正面図および各鉄心脚の断面を示す平面図、第
5図は本発明による単相単巻変圧器をしめす正面
図、第6図は第5図にしめす巻線の結線図、第7
図は本発明の単相単巻変圧器の他の実施例をしめ
す正面図、第8図は第7図にしめす巻線の結線図
である。 1…直列巻線、2…分路巻線、3…三次巻線、
4…タツプ巻線、5…励磁巻線、6…低圧巻線、
71,72,81,82…単相二脚鉄心、83…
鉄心、U…高圧線路端子、u…低圧線路端子、v
…中性点端子、a,b…三次端子。
Figure 1 is a wiring diagram of a conventional tertiary winding single-phase single-winding transformer, and Figures 2 a and b show a front view showing the arrangement of core punching in a conventional single-phase three-legged core, and a cross-section of each core leg. A plan view, FIG. 3 is a front view of a single-phase autotransformer using the core shown in FIG. 2 and the wiring shown in FIG. 1, and FIGS. FIG. 5 is a front view showing the arrangement of core punching of a single-phase three-legged core and a plan view showing a cross section of each core leg; FIG. 5 is a front view showing a single-phase autotransformer according to the present invention; FIG. Winding wiring diagram shown in figure 7
The figure is a front view showing another embodiment of the single-phase autotransformer of the present invention, and FIG. 8 is a wiring diagram of the winding shown in FIG. 7. 1...Series winding, 2...Shunt winding, 3...Tertiary winding,
4... Tap winding, 5... Excitation winding, 6... Low voltage winding,
71, 72, 81, 82...single phase biped core, 83...
Iron core, U...High voltage line terminal, u...Low voltage line terminal, v
...neutral point terminal, a, b...tertiary terminal.

Claims (1)

【特許請求の範囲】 1 鉄心脚の断面積が異なる2組の単相二脚鉄心
を隣接させ、その隣接する鉄心脚を組合せて中央
脚とし、両側に位置する鉄心脚を側脚として単相
三脚鉄心を構成し、この単相三脚鉄心の中央脚に
はそれぞれ直列接続される直列巻線、分路巻線、
タツプ巻線を巻装し、一方の断面積の大きい側脚
には三次巻線、低圧巻線を巻装し、該低圧巻線は
その一端を前記直列巻線と分路巻線の接続点とな
る低圧線路端子に、他端を前記タツプ巻線を介し
て引き出される中性点端子に接続したことを特徴
とする単相単巻変圧器。 2 鉄心脚の断面積が異なる2組の単相二脚鉄心
を隣接させ、その隣接する鉄心脚を組合せて中央
脚とし、両側に位置する鉄心脚を側脚として単相
三脚鉄心を構成し、この単相三脚鉄心の中央脚に
は直列接続される直列巻線および分路巻線を巻装
し、一方の断面積の大きい側脚には三次巻線およ
び低圧巻線を巻装し、前記単相三脚鉄心とは別の
鉄心に前記分路巻線に直列接続されるタツプ巻線
と、前記三次巻線に並列接続される励磁巻線を巻
装し、前記低圧巻線はその一端を前記直列巻線と
分路巻線の接続点となる低圧線路端子に、他端を
前記タツプ巻線を介して引き出される中性点端子
に接続したことを特徴とする単相単巻変圧器。
[Claims] 1. Two sets of single-phase bipedal cores with different cross-sectional areas of the core legs are placed adjacent to each other, the adjacent core legs are combined to form a central leg, and the core legs located on both sides are used as side legs to form a single-phase core. A series winding, a shunt winding, and
A tap winding is wound, and a tertiary winding and a low voltage winding are wound around one side leg having a large cross-sectional area, and one end of the low voltage winding is connected to the connection point between the series winding and the shunt winding. A single-phase single-winding transformer, characterized in that the other end is connected to a low-voltage line terminal, and the other end is connected to a neutral point terminal drawn out through the tap winding. 2. Two sets of single-phase two-legged cores with different cross-sectional areas of the core legs are placed adjacent to each other, the adjacent core legs are combined to form a central leg, and the core legs located on both sides are used as side legs to form a single-phase three-legged core, A series winding and a shunt winding connected in series are wound around the central leg of this single-phase tripod core, and a tertiary winding and a low voltage winding are wound around one of the side legs having a large cross-sectional area. A tap winding connected in series to the shunt winding and an excitation winding connected in parallel to the tertiary winding are wound around an iron core other than the single-phase tripod iron core, and the low voltage winding has one end thereof. A single-phase single-winding transformer, characterized in that the other end is connected to a low voltage line terminal serving as a connection point between the series winding and the shunt winding, and a neutral point terminal drawn out via the tap winding.
JP56175457A 1981-10-31 1981-10-31 Single-phase autotransformer Granted JPS5877214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56175457A JPS5877214A (en) 1981-10-31 1981-10-31 Single-phase autotransformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56175457A JPS5877214A (en) 1981-10-31 1981-10-31 Single-phase autotransformer

Publications (2)

Publication Number Publication Date
JPS5877214A JPS5877214A (en) 1983-05-10
JPH0122972B2 true JPH0122972B2 (en) 1989-04-28

Family

ID=15996397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56175457A Granted JPS5877214A (en) 1981-10-31 1981-10-31 Single-phase autotransformer

Country Status (1)

Country Link
JP (1) JPS5877214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148468A1 (en) * 2010-05-26 2011-12-01 三菱電機株式会社 Transformer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871158A (en) * 2021-09-26 2021-12-31 吴江变压器有限公司 Single-phase autotransformer of single-column suit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148468A1 (en) * 2010-05-26 2011-12-01 三菱電機株式会社 Transformer

Also Published As

Publication number Publication date
JPS5877214A (en) 1983-05-10

Similar Documents

Publication Publication Date Title
US3509507A (en) Grounded y - y three-phase transformer
JPH0122972B2 (en)
JP3544465B2 (en) Single-phase autotransformer
JPH0793214B2 (en) Single phase auto transformer
JPH06310350A (en) Heterocapacitance load three-phase scott connection transformer
JPH0212007B2 (en)
JPS6240415Y2 (en)
US2287990A (en) Zero sequence isolator
JPS5934983Y2 (en) scott wiring transformer
US2277860A (en) Ground fault neutralizer
JP2001189220A (en) Transformer equipment
JPS6144418Y2 (en)
JPS5834740Y2 (en) Three-phase on-load tap-changing transformer
JPS6246316A (en) Voltage phase regulating transformer
JPS5952819A (en) On-load voltage regulator
JPS58109A (en) Autotransformer
JPS598053B2 (en) single phase three winding transformer
JPS5836484B2 (en) Fukaziden Atsushi Yousei Kitsuki Tansou Hen Atsuki
JPS60160107A (en) Transformer
JPS6196709A (en) Autotransformer
JPH0320891B2 (en)
JPS5871610A (en) Single-phase autotransformer
JPH05205950A (en) On-load tap changing single-phase transformer
JPS6037706A (en) Transformer with no-voltage tap changer
Kierstead Some schemes of current-limiting-reactor applications