JPH0241855Y2 - - Google Patents

Info

Publication number
JPH0241855Y2
JPH0241855Y2 JP1982032599U JP3259982U JPH0241855Y2 JP H0241855 Y2 JPH0241855 Y2 JP H0241855Y2 JP 1982032599 U JP1982032599 U JP 1982032599U JP 3259982 U JP3259982 U JP 3259982U JP H0241855 Y2 JPH0241855 Y2 JP H0241855Y2
Authority
JP
Japan
Prior art keywords
winding
series
voltage
iron core
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982032599U
Other languages
Japanese (ja)
Other versions
JPS58135923U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3259982U priority Critical patent/JPS58135923U/en
Publication of JPS58135923U publication Critical patent/JPS58135923U/en
Application granted granted Critical
Publication of JPH0241855Y2 publication Critical patent/JPH0241855Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

【考案の詳細な説明】 考案の技術分野 本考案は大容量分割型単相単巻変圧器に関す
る。
[Detailed Description of the Invention] Technical Field of the Invention The present invention relates to a large-capacity split single-phase autotransformer.

考案の技術的背景とその問題点 近年電力需要の増大に伴い、送電々圧も高くな
り、変圧器も超高圧大容量化をたどつている。こ
のため、三相変圧器を各相毎に分割した単相器単
位で製作し、輸送単位を小さくして輸送制限に対
処し、現地で架線等による結線接続で三相バンク
を形成し大容量化を計つている。
Technical background of the idea and its problems In recent years, as the demand for electric power has increased, the transmission voltage has also increased, and transformers are also becoming ultra-high voltage and large capacity. For this reason, three-phase transformers are manufactured in units of single-phase transformers that are divided into individual phases, the transportation unit is made smaller to cope with transportation restrictions, and three-phase banks are formed by connecting wires using overhead wires etc. on-site to increase capacity. is planning to change.

第1図は分割型単相三巻線単巻変圧器の代表的
な結線図であり、第2図はその中身構成図であ
る。第1図および第2図において1は直列巻線、
2は分路巻線、3は低圧巻線で鉄心脚4に内側か
ら順次低圧巻線3、分路巻線2、直列巻線1の順
に巻装されている。またU,u,Vはそれぞれ高
圧線路端子、中圧線路端子、中性点端子、a,b
は低圧線路端子である。
FIG. 1 is a typical wiring diagram of a split-type single-phase three-winding autotransformer, and FIG. 2 is a diagram showing its contents. 1 and 2, 1 is a series winding;
2 is a shunt winding, and 3 is a low voltage winding, which are wound around the core leg 4 in this order from the inside: low voltage winding 3, shunt winding 2, and series winding 1. Also, U, u, and V are high voltage line terminal, medium voltage line terminal, neutral point terminal, a, b, respectively.
is a low voltage line terminal.

一般に、低圧の三次巻線容量は高・中圧巻線容
量の30%位が選ばれている。このため低圧巻線の
自己容量ベースでのインピーダンスは小さく、短
絡電流が過大となるため、これに耐えるように低
圧巻線の電流密度を下げるかあるいは限流リアク
トルを直列に接続したりして対処している。
Generally, the capacity of the low-voltage tertiary winding is selected to be about 30% of the capacity of the high- and medium-voltage windings. For this reason, the impedance of the low-voltage winding based on its self-capacity is small, and the short-circuit current becomes excessive. To withstand this, the current density of the low-voltage winding must be lowered or a current limiting reactor must be connected in series. are doing.

ところで、第2図に示す分割型単相三巻線単巻
変圧器の構成で、輸送制限上の問題が生ずる場合
には、この単相器をさらに分割する必要がある。
従来、単相器を分割する場合には、同一の単相器
2台に分割していた。第3図がその構成の一例で
一方のタンク51内には直列巻線11、分路巻線
21、低圧巻線31と鉄心41が収納され、ま
た、他方のタンク52内には直列巻線12、分路
巻線22、低圧巻線32と鉄心42が収納されて
いるが、お互の巻線は油中ダクトを通して図示の
ように並列接続されている。しかし、このような
分割構造では低圧巻線のインピーダンスは分割し
ない場合に比べて大きくならず、依然として低圧
巻線のインピーダンスが小さいという欠点があつ
た。
By the way, if the configuration of the split type single-phase three-winding autotransformer shown in FIG. 2 causes transportation restriction problems, it is necessary to further split the single-phase transformer.
Conventionally, when dividing a single-phase device, it was divided into two identical single-phase devices. FIG. 3 shows an example of the configuration. In one tank 51, a series winding 11, a shunt winding 21, a low voltage winding 31, and an iron core 41 are housed, and in the other tank 52, a series winding is housed. 12, a shunt winding 22, a low voltage winding 32, and an iron core 42 are housed, and the windings are connected in parallel through an oil duct as shown. However, in such a divided structure, the impedance of the low-voltage winding is not as large as that in a case where the low-voltage winding is not divided, and the impedance of the low-voltage winding is still small.

考案の目的 本考案は、上記の欠点を除去するもので、その
目的は低圧巻線のインピーダンスを大きくすると
ともに小型・軽量化できる分割型単相単巻変圧器
を提供することである。
Purpose of the invention The present invention aims to eliminate the above-mentioned drawbacks, and its purpose is to provide a split-type single-phase autotransformer that can increase the impedance of the low-voltage winding and also be smaller and lighter.

考案の構成 本考案は、上記の目的を達成するために、一方
のタンク内に、鉄心とこの鉄心に内側から順次巻
装された低圧巻線、分路巻線及び直列巻線を収納
し、他方のタンク内に、鉄心とこの鉄心の内側か
ら順次巻装された低圧巻線、直列巻線及び分路巻
線を収納し、前記各直列巻線と前記各分路巻線は
直列に接続し、前記各低圧巻線は並列に接続する
ようにした単巻変圧器であつて、低圧巻線、直列
巻線、分路巻線の各巻線は対応する鉄心の1個の
主脚に巻装する。また、低圧巻線、直列巻線、分
路巻線の各巻線をそれぞれ並列に分割した複数個
の巻線単位で構成して対応する鉄心の複数脚に巻
装してもよい。さらに、一方の鉄心の複数脚に複
数個の並列に分割した巻線単位を巻装し、他方の
鉄心の主脚に対応する巻線を巻装してもよい。
Structure of the invention In order to achieve the above object, the present invention stores an iron core and a low voltage winding, a shunt winding, and a series winding sequentially wound around the iron core from the inside in one tank, In the other tank, an iron core and a low voltage winding, a series winding, and a shunt winding wound sequentially from the inside of the iron core are stored, and each of the series windings and each of the shunt windings are connected in series. However, each of the low voltage windings is an autotransformer connected in parallel, and each winding of the low voltage winding, series winding, and shunt winding is wound around one main leg of the corresponding iron core. to wear Alternatively, each of the low-voltage winding, series winding, and shunt winding may be divided into a plurality of parallel winding units and wound around a plurality of legs of the corresponding iron core. Furthermore, a plurality of parallel divided winding units may be wound around a plurality of legs of one iron core, and corresponding windings may be wound around the main legs of the other iron core.

考案の実施例 本考案の実施例を図面を参照して説明する。第
4図は本考案の一実施例の分割型単相単巻変圧器
の巻線配置図である。同図に示すように、一方の
タンク51内には、鉄心41とこの鉄心41に内
側から順次巻装された低圧巻線31、分路巻線2
1及び直列巻線11が収納されている。また他方
のタンク52内には、鉄心42とこの鉄心42に
内側から順次巻装された低圧巻線32、直列巻線
12及び分路巻線22が収納されている。そし
て、上記直列巻線11,12同士及び上記分路巻
線21,22同士はそれぞれ油中ダクトを通して
直列接続され、更にこれら直列接続された直列巻
線11,12に対し直列接続された分路巻線2
1,22を直列に接続し、この接続点を中圧線路
端子uとし、この中圧線路端子uと反対側の直列
巻線端を高圧線路端子Uとし、同じく分路巻線端
を中性点端子Vとしている。一方各低圧巻線3
1,32は並列接続されている。
Embodiment of the invention An embodiment of the invention will be described with reference to the drawings. FIG. 4 is a winding arrangement diagram of a split type single-phase single-turn transformer according to an embodiment of the present invention. As shown in the figure, one tank 51 contains an iron core 41, a low voltage winding 31 wound around the iron core 41 in order from the inside, and a shunt winding 2.
1 and a series winding 11 are housed therein. The other tank 52 houses an iron core 42 and a low-voltage winding 32, a series winding 12, and a shunt winding 22 that are wound around the iron core 42 in sequence from the inside. The series windings 11 and 12 and the shunt windings 21 and 22 are connected in series through an oil submerged duct, and further a shunt is connected in series to these series connected series windings 11 and 12. Winding 2
1 and 22 are connected in series, this connection point is the medium voltage line terminal U, the series winding end opposite to this medium voltage line terminal U is the high voltage line terminal U, and the shunt winding end is also the neutral voltage line terminal U. Point terminal V is used. On the other hand, each low voltage winding 3
1 and 32 are connected in parallel.

次に、上記のように構成された単相単巻変圧器
の作用を説明する。周知のように変圧器のインピ
ーダンスを決める大きな要因は、当該巻線間の主
間隙の大きさである。第2図の代表的な単相単巻
変圧器の%インピーダンスの一例を高圧−中圧巻
線間容量ベースで高圧−中圧巻線間10%、高圧−
低圧巻線間30%、中圧−低圧巻線間15%とする
と、これを第3図のように単に二等分割した構成
の場合には、各巻線間の%インピーダンスは分割
する前と各巻線の容量ベースで同じ値である。こ
こで、%インピーダンスを各巻線に分割すると高
圧巻線12.5%、中圧巻線−2.5%、低圧巻線17.5%
となる。したがつて、低圧巻線で短絡が起つた場
合の短絡電流を決定する%インピーダンスは高
圧・中圧巻線の電源容量を無限大とすると、17.5
+(−2.5×12.5)/(−2.5+12.5)=14.4%とな
る。
Next, the operation of the single-phase autotransformer configured as described above will be explained. As is well known, a major factor determining the impedance of a transformer is the size of the main gap between the windings. An example of the % impedance of a typical single-phase single-winding transformer shown in Figure 2 is based on the capacitance between the high voltage and medium voltage windings.
Assuming 30% between the low voltage windings and 15% between the medium and low voltage windings, if this is simply divided into two halves as shown in Figure 3, the % impedance between each winding will be the same as before dividing and for each winding. The value is the same based on the line capacity. Here, when dividing the % impedance into each winding, the high voltage winding is 12.5%, the medium voltage winding is -2.5%, and the low voltage winding is 17.5%.
becomes. Therefore, the % impedance that determines the short-circuit current when a short circuit occurs in the low-voltage winding is 17.5, assuming that the power capacity of the high-voltage and medium-voltage windings is infinite.
+(-2.5×12.5)/(-2.5+12.5)=14.4%.

これに対し、第4図の本考案による分割型単相
単巻変圧器においては、直列巻線、分路巻線およ
び低圧巻線の各巻線容量を1対1で分割すると、
タンク51内に収納している各巻線間の%インピ
ーダンスは各巻線の容量ベースで概略高圧−中圧
巻線間10%、高圧−低圧巻線間30%、中圧−低圧
巻線間15%となる。また、タンク52内に収納さ
れている各巻線間の%インピーダンスは高圧−中
圧巻線間10%、高圧−低圧巻線間30%、中圧−低
圧巻線間45%となる。ここで、高圧−中圧巻線間
の%インピーダンスを求めると、(10x10)/
(10+10)=5%となる。しかし、高圧−中圧巻線
間の%インピーダンスを分割前と同一の10%とす
るためには、これを2倍としなければならない。
すなわち、高圧−中圧巻線間の%インピーダンス
は、 (10x10)/(10+10)×2=10%となる。中
圧−低圧巻線間の%インピーダンスおよび中圧−
低圧巻線間の%インピーダンスも同様にして求め
ると、それぞれ(30x30/(30+30)×2=30%
および (15x45)/(15+45)×2=22.5%となる。こ
れを第3図の場合と同様に各巻線のインピーダン
スに分割すると、高圧巻線8.8%、中圧巻線1.3
%、低圧巻線21.3%となる。したがつて、低圧巻
線で短絡が起きた場合の短絡電流を決定する%イ
ンピーダンスは第3図の場合と同様に高圧・中圧
巻線側の電源容量を無限大とすると、21.3+(8.8
×1.3)/(8.8+1.3)=22.4%となる。
On the other hand, in the split single-phase single-winding transformer according to the present invention shown in FIG. 4, if the winding capacities of the series winding, shunt winding, and low-voltage winding are divided one to one,
The % impedance between each winding stored in the tank 51 is approximately 10% between high voltage and medium voltage windings, 30% between high voltage and low voltage windings, and 15% between medium voltage and low voltage windings based on the capacity of each winding. Become. Further, the percent impedance between the windings housed in the tank 52 is 10% between the high voltage and medium voltage windings, 30% between the high voltage and low voltage windings, and 45% between the medium and low voltage windings. Here, when calculating the % impedance between the high voltage and medium voltage windings, it is (10x10)/
(10+10)=5%. However, in order to make the % impedance between the high-voltage and medium-voltage windings the same 10% as before division, this must be doubled.
In other words, the % impedance between the high voltage and medium voltage windings is (10x10)/(10+10)x2 = 10%. % impedance between medium voltage and low voltage windings and medium voltage
Similarly, the % impedance between the low voltage windings is calculated as (30x30/(30+30)x2=30%)
And (15x45)/(15+45)×2=22.5%. Dividing this into the impedance of each winding as in the case of Figure 3, the high voltage winding is 8.8% and the medium voltage winding is 1.3%.
%, and the low voltage winding is 21.3%. Therefore, the % impedance that determines the short-circuit current when a short circuit occurs in the low-voltage winding is 21.3 + (8.8
×1.3)/(8.8+1.3)=22.4%.

すなわち、第4図に示す本考案の単相単巻変圧
器の巻線構成の方が第3図に示す単相単巻変圧器
の各巻線を単純に二等分割するのに比べて低圧巻
線のインピーダンスを約1.5倍にすることができ
る。そして、短絡機械力は短絡電流の二乗に比例
するので、短絡機械力は1/(1.5)2=0.44とな
り、低圧巻線を短絡に耐えるために電流密度を下
げる必要や、限流リアクトルを直列に接続する必
要がなくなり、変圧器を小型かつ軽量化すること
ができる。
In other words, the winding configuration of the single-phase autotransformer of the present invention shown in FIG. 4 has a lower voltage winding than the single-phase autotransformer shown in FIG. The impedance of the line can be increased approximately 1.5 times. Since the short-circuit mechanical force is proportional to the square of the short-circuit current, the short-circuit mechanical force is 1/(1.5) 2 = 0.44, so it is necessary to lower the current density in order to withstand short circuits in low-voltage windings, and to connect current limiting reactors in series. This eliminates the need to connect to the transformer, making the transformer smaller and lighter.

以上の説明からでも明らかなように、本考案
は、上記の実施例に限定されるものではなく実用
新案登録請求の範囲に記載された範囲内で変更で
きることは勿論である。例えば、分割型単相変圧
器の各タンク内に収納された各鉄心の複数脚に各
巻線を巻装し、これら各々の各巻線を並列接続し
てもよいし、また、分割型単相単巻変圧器の各タ
ンク内に収納された各鉄心の一方を1個の主脚と
し、他方の鉄心を複数脚として各巻線を巻装して
実施することができる。
As is clear from the above description, the present invention is not limited to the above-described embodiments, but can of course be modified within the scope of the claims for utility model registration. For example, each winding may be wound around multiple legs of each core housed in each tank of a split type single-phase transformer, and each of these windings may be connected in parallel. One of the cores housed in each tank of the winding transformer can be used as one main leg, and the other core can be used as a plurality of legs and each winding can be wound around the core.

第5図はこの場合の一実施例で、分割型単相単
巻変圧器の第1の鉄心の2個の主脚41A,41
Bにそれぞれ直列巻線単位11A,11B、分路
巻線単位21A,21B及び低圧巻線単位31
A,31Bを外側から順次巻装してタンク51内
に収納し、また、分割型単相単巻変圧器の第2の
鉄心の2個の主脚42A,42Bにそれぞれ分路
巻線単位22A,22B、直列巻線単位12A,
12B及び低圧巻線単位32A,32Bを外側か
ら順次巻装してタンク52内に収納してこれら各
巻線単位を並列接続し、これら並列接続された各
巻線単位のうち直列巻線単位11A,11Bと1
2A,12B及び分路巻線単位21A,21Bと
22A,22Bを直列接続し、更にこれら直列接
続された直列巻線11,12に対し直列接続され
た分路巻線21,22を直列に接続し、また低圧
巻線単位31A,31Bと32A,32Bを並列
接続したものである。
FIG. 5 shows an example of this case, in which two main legs 41A, 41 of the first core of a split type single-phase autotransformer are connected.
Series winding units 11A and 11B, shunt winding units 21A and 21B, and low voltage winding unit 31 in B, respectively.
A, 31B are sequentially wound from the outside and stored in the tank 51, and a shunt winding unit 22A is wound around the two main legs 42A, 42B of the second core of the split type single-phase autotransformer. , 22B, series winding unit 12A,
12B and low-voltage winding units 32A, 32B are sequentially wound from the outside and stored in the tank 52, and these winding units are connected in parallel, and among the winding units connected in parallel, the series winding units 11A, 11B are and 1
2A, 12B and shunt winding units 21A, 21B and 22A, 22B are connected in series, and further, shunt windings 21, 22 connected in series are connected in series to these series connected series windings 11, 12. Furthermore, low voltage winding units 31A, 31B and 32A, 32B are connected in parallel.

考案の効果 本考案によれば、低圧巻線のインピーダンスを
大きくすることができるので、低圧巻線を短絡電
流に耐えるようにその電流密度を下げる必要も、
また、限流リアクトルを設ける必要もない。した
がつて、小型・軽量化して輸送制限の拡大をはか
ることのできる分割型単相単巻変圧器を得ること
ができる。
Effects of the invention According to the invention, the impedance of the low-voltage winding can be increased, so there is no need to lower the current density of the low-voltage winding so that it can withstand short-circuit current.
Further, there is no need to provide a current limiting reactor. Therefore, it is possible to obtain a split type single-phase autotransformer that can be made smaller and lighter, and can be used to expand transportation restrictions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の単相単巻変圧器の結線図、第
2図、第3図はいずれも従来の単相単巻変圧器の
巻線配置図、第4図は本考案の一実施例を示す単
相単巻変圧器の巻線配置図、第5図は本考案の他
の実施例を示す単相単巻変圧器の巻線配置図であ
る。 11,12……直列巻線、11A,11B,1
2A,12B……直列巻線単位、21,22……
分路巻線、21A,21B,22A,22B……
分路巻線単位、31,32……低圧巻線、31
A,31B,32A,32B……低圧巻線単位、
41,42……鉄心、41A,41B,42A,
42B……鉄心の主脚、51,52……タンク。
Fig. 1 is a wiring diagram of a conventional single-phase autotransformer, Figs. 2 and 3 are winding layout diagrams of a conventional single-phase autotransformer, and Fig. 4 is an implementation of the present invention. FIG. 5 is a winding layout diagram of a single-phase auto-transformer showing another embodiment of the present invention. 11, 12...Series winding, 11A, 11B, 1
2A, 12B...Series winding unit, 21, 22...
Shunt winding, 21A, 21B, 22A, 22B...
Shunt winding unit, 31, 32...Low voltage winding, 31
A, 31B, 32A, 32B...Low voltage winding unit,
41, 42... Iron core, 41A, 41B, 42A,
42B... Main landing gear with iron core, 51, 52... Tank.

Claims (1)

【実用新案登録請求の範囲】 (1) 一方のタンク内に、鉄心とこの鉄心に内側か
ら順次巻装された低圧巻線、分路巻線及び直列
巻線を収納し、他方のタンク内に、鉄心とこの
鉄心に内側から順次巻装された低圧巻線、直列
巻線及び分路巻線を収納し、前記各直列巻線同
士及び前記各分路巻線同士は夫々直列に接続
し、この直列接続された直列巻線に対し直列接
続された分路巻線を直列に接続し、前記各低圧
巻線は並列に接続したことを特徴とする単巻変
圧器。 (2) 低圧巻線、直列巻線、分路巻線の各巻線を対
応する鉄心の1個の主脚に巻装したことを特徴
とする実用新案登録請求の範囲第1項記載の単
巻変圧器。 (3) 低圧巻線、直列巻線、分路巻線の各巻線をそ
れぞれ並列に分割した複数個の巻線単位で構成
して対応する鉄心の複数脚に巻装したことを特
徴とする実用新案登録請求の範囲第1項記載の
単巻変圧器。 (4) 一方の鉄心の複数脚に複数個に並列に分割し
た巻線単位を巻装し、他方の鉄心の1個の主脚
に対応する巻線を巻装したことを特徴とする実
用新案登録請求の範囲第1項記載の単巻変圧
器。
[Claims for Utility Model Registration] (1) An iron core and a low-voltage winding, a shunt winding, and a series winding wound sequentially around the iron core from the inside are stored in one tank, and , an iron core and a low-voltage winding, a series winding, and a shunt winding wound sequentially around the iron core from the inside are housed, and each of the series windings and each of the shunt windings are connected in series, respectively; An autotransformer characterized in that a series-connected shunt winding is connected in series with the series-connected series winding, and each of the low-voltage windings is connected in parallel. (2) A single winding according to claim 1 of the utility model registration claim, characterized in that each winding of a low voltage winding, a series winding, and a shunt winding is wound around one main leg of a corresponding iron core. transformer. (3) A practical device characterized in that each of the low-voltage winding, series winding, and shunt winding is divided into multiple winding units in parallel and wound around multiple legs of the corresponding iron core. An autotransformer according to claim 1 of the patent registration claim. (4) A utility model characterized in that a plurality of winding units divided in parallel are wound around a plurality of legs of one iron core, and a corresponding winding is wound around one main leg of the other iron core. An autotransformer according to claim 1.
JP3259982U 1982-03-10 1982-03-10 autotransformer Granted JPS58135923U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3259982U JPS58135923U (en) 1982-03-10 1982-03-10 autotransformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3259982U JPS58135923U (en) 1982-03-10 1982-03-10 autotransformer

Publications (2)

Publication Number Publication Date
JPS58135923U JPS58135923U (en) 1983-09-13
JPH0241855Y2 true JPH0241855Y2 (en) 1990-11-08

Family

ID=30044194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3259982U Granted JPS58135923U (en) 1982-03-10 1982-03-10 autotransformer

Country Status (1)

Country Link
JP (1) JPS58135923U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630304B2 (en) * 1987-09-05 1994-04-20 富士電機株式会社 Transformer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648115A (en) * 1979-09-27 1981-05-01 Toshiba Corp Single winding transformer

Also Published As

Publication number Publication date
JPS58135923U (en) 1983-09-13

Similar Documents

Publication Publication Date Title
JPH0241855Y2 (en)
US2228093A (en) Polyphase current limiting reactor
CN111540593A (en) Single-oil-tank extra-high voltage autotransformer suitable for extra-high voltage alternating current transformer substation
US3717831A (en) Transformer having series-multiple windings
JPS5846047B2 (en) On-load tap switching autotransformer
JPS60116116A (en) On-load tap changing autotransformer
JPS5837682B2 (en) autotransformer
JPS6037707A (en) Three-phase autotransformer
JPS6252931B2 (en)
JPS5877214A (en) single phase auto transformer
JPH09293620A (en) 3-winding transformer
JPS598053B2 (en) single phase three winding transformer
JPS60106111A (en) single phase three winding transformer
JPS6157688B2 (en)
JPS6240415Y2 (en)
JPH0320891B2 (en)
JPS6214083B2 (en)
JPH0143444B2 (en)
JPH07220954A (en) Three-phase load tap switching transformer
JPS593844B2 (en) single phase transformer
JPS63252408A (en) Transformer with tap
JPS6028370B2 (en) transformer
JPH06318525A (en) Single phase auto transformer
JPS58225623A (en) three phase auto transformer
JPS6273616A (en) Separation type three-phase transformer