JPH0587154B2 - - Google Patents

Info

Publication number
JPH0587154B2
JPH0587154B2 JP62097973A JP9797387A JPH0587154B2 JP H0587154 B2 JPH0587154 B2 JP H0587154B2 JP 62097973 A JP62097973 A JP 62097973A JP 9797387 A JP9797387 A JP 9797387A JP H0587154 B2 JPH0587154 B2 JP H0587154B2
Authority
JP
Japan
Prior art keywords
superconducting material
superconducting
oxide superconducting
oxide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62097973A
Other languages
Japanese (ja)
Other versions
JPS63262877A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62097973A priority Critical patent/JPS63262877A/en
Publication of JPS63262877A publication Critical patent/JPS63262877A/en
Publication of JPH0587154B2 publication Critical patent/JPH0587154B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は、酸化物系超電導(超伝導とも表す)
材料を用いた固体電子デイバイスに関する。
[Detailed Description of the Invention] "Field of Application of the Invention" The present invention relates to oxide-based superconductors (also referred to as superconductors)
Related to solid-state electronic devices using materials.

本発明は、入力端子と出力端子とを有する横接
合型ジヨセフソン素子およびこれに制御用電極を
用いた4端子(3端子を含む)素子に関する。本
発明は、かかる素子に増幅機能、スイツチ機能を
有せしめるとともに、入力信号を制御用入力に印
加することにより出力信号を出力より検出せしめ
んとするものである。
The present invention relates to a horizontal junction Josephson device having an input terminal and an output terminal, and a four-terminal (including three-terminal) device using a control electrode therein. The present invention provides such an element with an amplifying function and a switching function, and also detects an output signal from the output by applying an input signal to a control input.

「従来の技術」 従来、超電導材料、例えばNb−Ge系(例とし
てはNb3Ge)等の金属材料を用いて固体電子デ
イバイスを作る試みがなされてきた。
"Prior Art" Conventionally, attempts have been made to fabricate solid-state electronic devices using superconducting materials, such as metal materials such as Nb-Ge (Nb 3 Ge, for example).

その代表が第1図に示すジヨセフソン素子であ
る。このジヨセフソン素子は、超電導現象とトン
ネル電流現象とを組み合わせ、スイツチングを行
わんとするもので、2端子回路よりなつている。
A typical example is the Josephson device shown in FIG. This Josephson element attempts to perform switching by combining superconductivity and tunnel current phenomena, and consists of a two-terminal circuit.

このジヨセフソン接合型の素子は第1図に示す
如く、第1の超電導性材料21の上面にトンネル
電流を流し得る厚さで絶縁膜23を形成し、さら
にその上に第2の超電導性材料24を積層するも
のであつた。そしてトンネル電流を上下方向に流
さんとするものである。
As shown in FIG. 1, this Josephson junction type element has an insulating film 23 formed on the top surface of a first superconducting material 21 with a thickness that allows tunneling current to flow, and a second superconducting material 24 on top of the insulating film 23. It was a layered structure. The tunnel current is then caused to flow in the vertical direction.

「従来の問題点」 しかし、かかる基板表面に密接した絶縁膜を用
いて、ジヨセフソン素子の構成をする場合、基板
表面またはその近傍においては酸化物超電導性材
料を用いる限り、酸素が欠乏してしまう傾向があ
つた。そしてこの表面またはその近傍で超電導性
すらなくなつてしまう場合があつた。本発明はか
かる欠点を除去するためにされたものである。
``Conventional Problems'' However, when constructing a Josephson device using an insulating film in close contact with the substrate surface, as long as an oxide superconducting material is used at or near the substrate surface, oxygen is depleted. There was a trend. In some cases, even superconductivity was lost at or near this surface. The present invention has been made to eliminate such drawbacks.

さらに本発明はかかる表面の酸素濃度敏感性の
欠点を除去するにある。
Furthermore, the present invention seeks to eliminate the disadvantage of surface oxygen concentration sensitivity.

さらに、従来のジヨセフソン接合型素子は2端
子素子であるため、信号の増幅機能を有さず、系
全体において入力端より出力端に至るまでに信号
が若干減衰して、いわゆる利得(ゲイン)を1以
上とすることができないという大きな欠点を有す
る。
Furthermore, because the conventional Josephson junction type device is a two-terminal device, it does not have a signal amplification function, and the signal is slightly attenuated from the input end to the output end in the entire system, resulting in a so-called gain. It has a major drawback that it cannot be set to 1 or more.

本発明はかかる欠点を除去し、表面に用いない
構成を有せしめるジヨセフソン素子を作らんとす
るものである。さらに加えて、超高周波動作を4
端子回路素子、即ち入力信号を加える制御用電極
および出力信号を導出する電極とに有せしめんと
するものである。
The present invention aims to eliminate such drawbacks and to create a Josephson element having a structure that is not used on the surface. In addition, we have added ultra-high frequency operation to 4
A terminal circuit element, that is, a control electrode for applying an input signal and an electrode for deriving an output signal, is intended to be provided.

「問題を解決すべき手段」 本発明はかかる問題を解決するため、非超電導
性の絶縁性表面を有する基板上に超電導性材料を
薄膜状に選択的に設け、その一部領域(中央部ま
たは設計上必要な領域)に、超電導材料を横切つ
て動作をさせるべき所望の温度で有限抵抗を有す
る第1の酸化物超電導性材料を設ける。そしてそ
の超電導材料一方および他方には抵抗が零になる
第2の酸化物超電導性材料を設けている。そして
この一対の第2の超電導性材料間にはトンネル電
流を流し得る構成を有せしめている。
"Means to Solve the Problem" In order to solve the problem, the present invention selectively provides a superconducting material in the form of a thin film on a substrate having a non-superconducting insulating surface. A first oxide superconducting material having a finite resistance at the desired temperature at which operation is to be performed across the superconducting material is provided in a region required by the design. A second oxide superconducting material whose resistance becomes zero is provided on one side and the other of the superconducting materials. The structure is such that a tunnel current can flow between the pair of second superconducting materials.

この有限抵抗を有する材料は、超電導性材料に
不純物を添加し、この不純物により超電導性を破
壊せしめたものである。さらにこの第1の超電導
性材料(出発状態が超電導性材料であり、不純物
の添加により絶縁性等の物性を有せしめるため、
以下においても第1の超電導性材料という)の上
面または下面には、ここを流れる電流を制御する
制御用電極が設けられている。この制御用電極と
超電導材料との間に、電流の授受を禁止すべき被
膜、特に絶縁膜が設けられている。
This material with finite resistance is obtained by adding impurities to a superconducting material, and causing the superconductivity to be destroyed by the impurities. Furthermore, since this first superconducting material (the starting state is a superconducting material and it has physical properties such as insulation by adding impurities,
A control electrode for controlling the current flowing therethrough is provided on the upper or lower surface (hereinafter also referred to as the first superconducting material). A film, particularly an insulating film, which should prohibit the transfer and reception of current is provided between the control electrode and the superconducting material.

本発明は、有限抵抗を有する第1の酸化物超電
導性材料として、抵抗零の第2の酸化物超電導性
材料と同一成分を用い、ここにイオン注入法等に
より不純物を添加したものである。
In the present invention, the same components as the second oxide superconducting material having zero resistance are used as the first oxide superconducting material having finite resistance, and impurities are added thereto by ion implantation or the like.

この不純物は、酸化物超電導性材料を構成する
元素、例えばY(イツトリウム)、銅(Cu)、バリ
ウム(Ba)、酸素(O)であつてもよい。かかる
不純物は超電導を呈する化学量論比を狂わせる程
度に多量に添加する必要がある。具体的には5×
1019〜5×1022cm-3のオーダである。
This impurity may be an element constituting the oxide superconducting material, such as Y (yttrium), copper (Cu), barium (Ba), or oxygen (O). Such impurities must be added in a large amount to disturb the stoichiometric ratio that exhibits superconductivity. Specifically 5×
It is on the order of 10 19 to 5×10 22 cm -3 .

また、他の不純物として鉄(Fe)、ニツケル
(Ni)、コバルト(Co)、珪素(Si)、ゲルマニウ
ム(Ge)、ホウ素(B)、アルミニウム(Al)、ガ
リウム(Ga)、リン(P)、チタン(Ti)、タンタ
ル(Ta)より選ばれた1種類または複数種類が
ある。かかる場合、その不純物の濃度は5×1018
〜6×1022cm-3とした。
Other impurities include iron (Fe), nickel (Ni), cobalt (Co), silicon (Si), germanium (Ge), boron (B), aluminum (Al), gallium (Ga), and phosphorus (P). , titanium (Ti), and tantalum (Ta). In such a case, the concentration of the impurity is 5×10 18
〜6×10 22 cm −3 .

本発明の超電導素子においては、第1の酸化物
超電導性材料とするため、第2の酸化物超電導性
材料に不純物をイオン注入法により第2の超電導
性材料を横切つて(上下および図面の前後方向の
すべてに対し)添加する。そしてその厚さ(図面
の左右方向)を可能なかぎり薄くし、ジヨセフソ
ン接合効果を有すべくせしめた。
In the superconducting element of the present invention, in order to make the first oxide superconducting material, impurities are implanted into the second oxide superconducting material by ion implantation across the second superconducting material (top and bottom and as shown in the drawings). (in all directions). The thickness (in the horizontal direction of the drawing) was made as thin as possible to provide the Josephson bonding effect.

本発明は、一対の出力用の酸化物超電導性材料
間に連結した電極の間に、十分大きい電気抵抗、
好ましくは第1の超電導材料の電気抵抗よりも10
倍以上の電気抵抗を有する被膜をその上面、下面
または両面に設けたものである。
The present invention provides a sufficiently large electric resistance between electrodes connected between a pair of output oxide superconducting materials.
Preferably the electrical resistance of the first superconducting material is 10
A coating having an electrical resistance more than double that is provided on the upper surface, lower surface, or both surfaces.

本発明においては、この制御用電極と超電導被
膜との間に、酸化物超電導性材料の電気抵抗より
十分大きい電気抵抗を有する被膜、好ましくは絶
縁膜を設け、入力端子である制御用電極から電圧
を印加させ、その下側の酸化物超電導性材料に電
圧を印加する。この材料は、完全に超電導を有す
る状態とまつたく超電導を有さない状態の中間状
態(一部が超電導性を有し、一部が非超電導性の
状態、即ちTcオンセツトとTcoとの間の温度領
域の状態)また半導体または絶縁体特性を有する
ため、自らのポテンシヤルを入力の制御用電極に
加えられた電圧に従つて変化、制御させることが
できる。
In the present invention, a coating, preferably an insulating film, having an electrical resistance sufficiently higher than the electrical resistance of the oxide superconducting material is provided between the control electrode and the superconducting coating, and a voltage from the control electrode, which is an input terminal, is provided. is applied, and a voltage is applied to the oxide superconducting material underneath. This material has an intermediate state between completely superconducting and completely non-superconducting (partly superconducting and partially non-superconducting, i.e. between Tc onset and Tco). Also, since it has semiconductor or insulator properties, its own potential can be changed and controlled according to the voltage applied to the input control electrode.

本発明に用いられる制御用電極と材料との中間
に介在する被膜の絶縁性は、もし入力信号を与え
る時の電流をも機能上において無視させ得るなら
ば除去してしまつても、またその間に介在させる
被膜の抵抗を10倍以下としたものでも可である。
The insulating properties of the film interposed between the control electrode and the material used in the present invention can be removed if the current when applying an input signal can also be ignored in terms of function. It is also possible to use an intervening film whose resistance is 10 times or less.

第2図B,Cは制御用電極を設けたものであ
る。
FIGS. 2B and 2C show control electrodes provided.

第2図A,B,Cは本発明の固体素子の縦断面
図を示す。
2A, B, and C show longitudinal cross-sectional views of the solid-state device of the present invention.

本発明では第2の酸化物超電導性材料を全体に
形成し、所望の形状にフオトエツチングする。こ
の後この第1の酸化物超電導性材料を作るため、
この領域のみに選択的に不純物を添加した。
In the present invention, a second oxide superconducting material is formed over the entire structure and photoetched into the desired shape. After this, to make this first oxide superconducting material,
Impurities were selectively added only to this region.

この不純物の添加の巾(図面での左右方向)は
10〜1000Å好ましくは50Åと、チヤネルの長さを
フオトリソグラフイ技術を用いて可能な限り短く
した。イオン注入による不純物は5×1018〜3×
1022cm-3とし、この深さ方向においてこの膜を横
切つて注入する。さらにこれら全体を400〜1000
℃、0.5〜50時間、例えば600℃で3時間酸素中で
アニールを行い、この不純物を酸化せしめるとと
もに、結晶構造を整えた。
The width of this impurity addition (in the horizontal direction in the drawing) is
The length of the channel was made as short as possible using photolithographic techniques, from 10 to 1000 Å, preferably 50 Å. Impurity by ion implantation is 5×10 18 ~3×
10 22 cm -3 and implant across the membrane in this depth direction. Furthermore, all of these 400 to 1000
C. for 0.5 to 50 hours, for example, 600.degree. C. for 3 hours in oxygen to oxidize the impurities and adjust the crystal structure.

第2図Aにおいて、非超電導性を有する絶縁表
面を有する基体1上の第1の酸化物超電導性材料
4および第2の酸化物超電導性材料3および5よ
りなる材料2を構成せしめる。その出力用の一対
の電極8,9(図面では省略)を図面における左
右の端部に設ければよい。
In FIG. 2A, a material 2 consisting of a first oxide superconducting material 4 and a second oxide superconducting material 3 and 5 is constructed on a substrate 1 having an insulating surface with non-superconducting properties. A pair of output electrodes 8 and 9 (not shown in the drawing) may be provided at the left and right ends in the drawing.

かくしてジヨセフソン素子を構成せしめ第3図
の特性を得た。
In this way, a Josephson device was constructed and the characteristics shown in FIG. 3 were obtained.

第2図Bは制御用電極10が第1の酸化物超電
導性材料4の上側に設けられ、第1図Bでは下側
に設けられている。第2図Cでは被膜は酸化物超
電導性材料4の上下両面に設けられ、さらに制御
用電極がそれぞれ10,10′として設けられて
いる。
In FIG. 2B, the control electrode 10 is provided on the upper side of the first oxide superconducting material 4, and in FIG. 1B, it is provided on the lower side. In FIG. 2C, coatings are provided on both the upper and lower surfaces of the oxide superconducting material 4, and control electrodes 10 and 10' are provided, respectively.

「作用」 かかる構造とすることにより、入力信号と出力
信号とを独立関数として制御でき、かつこの素子
をスイツチング用素子、増幅機能を有する素子と
して用いることができる。
"Operation" With such a structure, the input signal and the output signal can be controlled as independent functions, and this element can be used as a switching element or an element having an amplification function.

本発明は、同一基板上に複数個の固体素子を作
ることができ、かかる素子を設計論理に基づき連
結することにより、超電導集積回路を作らんとし
た時、その相互配線を抵抗零で作ることができ
る。
The present invention makes it possible to create a plurality of solid-state devices on the same substrate, and when trying to create a superconducting integrated circuit by connecting such devices based on design logic, the mutual wiring can be created with zero resistance. I can do it.

以下に図面に従つて実施例を説明する。 Examples will be described below with reference to the drawings.

「実施例 1」 この実施例は第1図Aの構造を示す。“Example 1” This embodiment shows the structure of FIG. 1A.

基板としてYSZ(イツトリユーム・スタビライ
ズド・ジルコン)を用いた。これはその上にスク
リーン印刷法、スパツタ法、MBE(モレキユラ・
ビーム・エピタキシヤル)法、CVD(気相反応)
法等を用いて超電導材料を形成させる。この超電
導材料の1例として、(A1-xBx)yCuzOw,x=
0〜1,y=2.0〜4.0好ましくは2.5〜3.5,z=
1〜4好ましく1.5〜3.5,W=4〜10好ましくは
6〜8を有する。Aは、Y(イツトリウム)、Gd
(ガドリニウム)、Yb(イツテルビウム)、Eu(ユ
ーロピウム)、Tb(テルビウム)、Dy(ジスプロシ
ウム)、Ho(ホルミウム)、Er(エルビウム)、Tm
(ツリウム)、Lu(ルテチウム)、Sc(スカンジウ
ム)またはその他の元素周期表a族の1つまた
は複数種類より選ばれる。
YSZ (yttrium stabilized zircon) was used as the substrate. This can be applied using the screen printing method, sputtering method, MBE (Molecular
Beam epitaxial) method, CVD (vapor phase reaction)
A superconducting material is formed using a method or the like. As an example of this superconducting material, (A 1-x Bx)yCuzOw, x=
0-1, y=2.0-4.0 preferably 2.5-3.5, z=
1 to 4, preferably 1.5 to 3.5, W=4 to 10, preferably 6 to 8. A is Y (yttrium), Gd
(gadolinium), Yb (yzterbium), Eu (europium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm
(thulium), Lu (lutetium), Sc (scandium), or one or more of the other elements of group a of the periodic table.

BはRa(ラジウム)、Ba(バリウム)、Sr(スト
ロンチウム)、Ca(カルシウム)、Mg(マグネシウ
ム)、Be(ベリリウム)の元素周期表a族より
選ばれる。特にその具体例として(YBa2)Cu3
O68を用いた。またAとして元素周期表におけ
る前記した元素以外のランタニド元素またはアク
チニド元素を用い得る。
B is selected from group a of the periodic table of elements: Ra (radium), Ba (barium), Sr (strontium), Ca (calcium), Mg (magnesium), and Be (beryllium). In particular, as a specific example (YBa 2 )Cu 3
O6-8 was used. Further, as A, a lanthanide element or an actinide element other than the above-mentioned elements in the periodic table of elements can be used.

この形成と同時またはその後に、600〜1200℃
の温度で熱アニールを5〜20時間処理して作製し
た。かくして第2の酸化物超電導性材料として第
3図特性3,5を得ることができた。
Simultaneously with or after this formation, 600-1200℃
It was fabricated by thermal annealing at a temperature of 5 to 20 hours. In this way, characteristics 3 and 5 in Figure 3 could be obtained as the second oxide superconducting material.

次に公知のフオトリソグラフイを用いる。即ち
第1図Aにおいて領域5,6上にフオトレジスト
を設け、このレジストのない領域4のみに選択的
に、イオン注入法により不純物が添加されるよう
にした。不純物であるアルミニウム、珪素または
鉄を5×1015〜3×1021cm-3、例えば5×1019cm-
の濃度に添加した。この後フオトレジストを除
去し、さらにこれら全体にアルミニウムを50〜
500Å、例えば100Åの厚さに真空蒸着または光
CVD法により形成した。この後これら全体を酸
化性雰囲気で約400〜1000℃例えば700℃の温度に
て全面アルミニウムを酸化し、酸化アルミニウム
絶縁膜11を構成せしめるとともに、イオン注入
法により添加された不純物を酸化し、絶縁物に変
成した。
Next, known photolithography is used. That is, in FIG. 1A, a photoresist is provided on regions 5 and 6, and impurities are selectively added only to region 4 where there is no resist by ion implantation. Impurities such as aluminum, silicon or iron are added in an amount of 5×10 15 to 3×10 21 cm −3 , for example 5×10 19 cm
It was added to a concentration of 3 . After this, the photoresist is removed, and then aluminum is applied to the entire area at a temperature of 50~
Vacuum evaporation or light deposition to a thickness of 500Å, e.g. 100Å
Formed by CVD method. Thereafter, the entire surface of the aluminum is oxidized in an oxidizing atmosphere at a temperature of about 400 to 1000°C, for example 700°C, to form the aluminum oxide insulating film 11, and impurities added by ion implantation are oxidized to insulate the aluminum. transformed into a thing.

この不純物の添加は、第2の酸化物超電導性材
料を構成させる元素を用い、x,y,z,wの値
を変化させ、同じ処理を行つて第1の酸化物超電
導性材料とすることは有効である。
The addition of this impurity involves using the elements constituting the second oxide superconducting material, changing the values of x, y, z, and w, and performing the same treatment to obtain the first oxide superconducting material. is valid.

次に制御用電極10を他の第2の酸化物超電導
性材料と同じ酸化物超電導性材料により同様の方
法で作製した。出力用の電極はセラミツク薄膜に
密接し、オーム接触がなされるべくした。
Next, the control electrode 10 was fabricated using the same oxide superconducting material as the other second oxide superconducting material using the same method. The output electrode was placed in close contact with the ceramic thin film to make ohmic contact.

「効果」 本発明はこれまで2端子素子であつた超電導素
子を4端子素子としたことにある。この制御用電
極下に、この電極によりポテンシヤルの変化する
TcオンセツトとTcoとの中間の状態を広い温度
範囲で有する第1の酸化物超電導性材料を設け、
さらにその電極・リードを構成させるため、かか
る温度領域では抵抗が零または零に十分近い第2
の酸化物超電導性材料で相互配線したものであ
る。かくして、制御用電極の電圧に従つて出力電
流を増幅し、かつ制御させることが可能となつ
た。
"Effects" The present invention consists in changing the superconducting element, which has hitherto been a two-terminal element, to a four-terminal element. Under this control electrode, the potential changes with this electrode.
Providing a first oxide superconducting material having a state intermediate between Tc onset and Tco over a wide temperature range,
Furthermore, in order to configure the electrode/lead, the resistance is zero or sufficiently close to zero in such a temperature range.
The interconnects are made of oxide superconducting material. In this way, it has become possible to amplify and control the output current according to the voltage of the control electrode.

このため、この超電導固体素子を同一基板に多
数個設け、集積化させることが可能となつた。
Therefore, it has become possible to provide a large number of these superconducting solid-state devices on the same substrate and integrate them.

本発明においては制御用電極を1ケ示したが、
これを2ケまたはそれ以上を直列または並列に設
けてもよい。
Although one control electrode is shown in the present invention,
Two or more of these may be provided in series or in parallel.

本発明において、超電導材料としてセラミツク
材料を用いた。しかし本発明の技術思想より明ら
かな如く、TcとTcoとの間の温度範囲が広い材
料好ましくは10°K以上ある材料であれば、酸化
物セラミツクスである必要はなく、任意に選ぶこ
とができることはいうまでもない。
In the present invention, a ceramic material was used as the superconducting material. However, as is clear from the technical concept of the present invention, any material having a wide temperature range between Tc and Tco, preferably 10°K or more, does not need to be an oxide ceramic and can be selected arbitrarily. Needless to say.

本発明において、酸化物超電導性材料という表
題を用いた。しかしこれは超電導材料が酸化物で
あることによる。その結晶構造は多結晶であつて
も、また単結晶であつてもよいことは、本発明の
技術思想において明らかである。特に単結晶構造
の場合には、超電導材料を用いるに際し、基板上
にエピタキシアル成長をさせればよい。
In the present invention, the title oxide superconducting material is used. However, this is due to the fact that the superconducting material is an oxide. It is clear from the technical concept of the present invention that the crystal structure may be polycrystalline or single crystalline. In particular, in the case of a single crystal structure, when using a superconducting material, epitaxial growth may be performed on the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超電導固体素子の縦断面図を示
す。第2図は本発明の超電導固体素子の縦断面図
を示す。第3図は本発明で作られた超電導固体素
子の特性を示す。
FIG. 1 shows a longitudinal cross-sectional view of a conventional superconducting solid-state device. FIG. 2 shows a longitudinal cross-sectional view of the superconducting solid-state device of the present invention. FIG. 3 shows the characteristics of the superconducting solid-state device made according to the present invention.

Claims (1)

【特許請求の範囲】 1 非超電導性表面を有する基体上に、不純物が
添加され所望の温度領域で完全な超電導を有する
状態と全く超電導を有さない状態との中間状態を
有する第1の酸化物超電導性材料と、該材料の一
方および他方に接して設けられた前記所望の温度
領域で完全な超電導を有する第2の酸化物超電導
性材料とを有し、前記第1の酸化物超電導材料
は、トンネル電流を流し得る厚さを有することを
特徴とする超電導素子 2 特許請求の範囲第1項において、第1の酸化
物超電導性材料の上面、下面または両面に密接し
て、または前記面上の前記第1の酸化物超電導性
材料より十分大きい電気抵抗を有する被膜に密接
して制御用電極が設けられたことを特徴とする超
電導素子。 3 特許請求の範囲第1項において、不純物は酸
素、銅または元素周期表a族およびa族より
選ばれた1種類または複数種類よりなることを特
徴とする超電導素子。 4 特許請求の範囲第1項において、不純物は鉄
(Fe)、ニツケル(Ni)、コバルト(Co)、珪素
(Si)、ゲルマニウム(Ge)、ホウ素(B)、アル
ミニウム(Al)、ガリユーム(Ga)、リン(P)、
チタン(Ti)、タンタル(Ta)より選ばれたこ
とを特徴とする超電導素子。
[Claims] 1. A first oxidation process on a substrate having a non-superconducting surface, which has an intermediate state between a state of complete superconductivity and a state of no superconductivity in a desired temperature range by adding impurities. and a second oxide superconducting material having complete superconductivity in the desired temperature range, which is provided in contact with one and the other of the materials, and the first oxide superconducting material superconducting element 2, characterized in that it has a thickness that allows tunneling current to flow. A superconducting element characterized in that a control electrode is provided in close contact with a coating having a sufficiently higher electrical resistance than the first oxide superconducting material. 3. A superconducting element according to claim 1, wherein the impurity is oxygen, copper, or one or more types selected from groups a and a of the periodic table of elements. 4 In claim 1, impurities include iron (Fe), nickel (Ni), cobalt (Co), silicon (Si), germanium (Ge), boron (B), aluminum (Al), and gallium (Ga). ), Lin (P),
A superconducting element characterized by being selected from titanium (Ti) and tantalum (Ta).
JP62097973A 1987-04-20 1987-04-20 Superconducting element Granted JPS63262877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62097973A JPS63262877A (en) 1987-04-20 1987-04-20 Superconducting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62097973A JPS63262877A (en) 1987-04-20 1987-04-20 Superconducting element

Publications (2)

Publication Number Publication Date
JPS63262877A JPS63262877A (en) 1988-10-31
JPH0587154B2 true JPH0587154B2 (en) 1993-12-15

Family

ID=14206613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62097973A Granted JPS63262877A (en) 1987-04-20 1987-04-20 Superconducting element

Country Status (1)

Country Link
JP (1) JPS63262877A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8845485B2 (en) 2011-04-04 2014-09-30 Fallbrook Intellectual Property Company Llc Auxiliary power unit having a continuously variable transmission
US8852050B2 (en) 2008-08-26 2014-10-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8870711B2 (en) 2008-10-14 2014-10-28 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8888643B2 (en) 2010-11-10 2014-11-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8900085B2 (en) 2007-07-05 2014-12-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8920285B2 (en) 2004-10-05 2014-12-30 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8996263B2 (en) 2007-11-16 2015-03-31 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US9017207B2 (en) 2006-06-26 2015-04-28 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9022889B2 (en) 2005-10-28 2015-05-05 Fallbrook Intellectual Property Company Llc Electromotive drives
US9046158B2 (en) 2003-02-28 2015-06-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9074674B2 (en) 2008-06-23 2015-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9086145B2 (en) 2006-11-08 2015-07-21 Fallbrook Intellectual Property Company Llc Clamping force generator
US9121464B2 (en) 2005-12-09 2015-09-01 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9182018B2 (en) 2008-02-29 2015-11-10 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US9239099B2 (en) 2007-02-16 2016-01-19 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9249880B2 (en) 2007-12-21 2016-02-02 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9273760B2 (en) 2007-04-24 2016-03-01 Fallbrook Intellectual Property Company Llc Electric traction drives
US9279482B2 (en) 2009-04-16 2016-03-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9328807B2 (en) 2007-02-01 2016-05-03 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9341246B2 (en) 2005-11-22 2016-05-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9360089B2 (en) 2010-03-03 2016-06-07 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9365203B2 (en) 2008-08-05 2016-06-14 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9371894B2 (en) 2007-02-12 2016-06-21 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068681A (en) * 1983-09-26 1985-04-19 Toshiba Corp Superconductive transistor
JPS61206279A (en) * 1985-03-11 1986-09-12 Hitachi Ltd Superconductive element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068681A (en) * 1983-09-26 1985-04-19 Toshiba Corp Superconductive transistor
JPS61206279A (en) * 1985-03-11 1986-09-12 Hitachi Ltd Superconductive element

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9046158B2 (en) 2003-02-28 2015-06-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8920285B2 (en) 2004-10-05 2014-12-30 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9506562B2 (en) 2005-10-28 2016-11-29 Fallbrook Intellectual Property Company Llc Electromotive drives
US9022889B2 (en) 2005-10-28 2015-05-05 Fallbrook Intellectual Property Company Llc Electromotive drives
US9341246B2 (en) 2005-11-22 2016-05-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9121464B2 (en) 2005-12-09 2015-09-01 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9017207B2 (en) 2006-06-26 2015-04-28 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9086145B2 (en) 2006-11-08 2015-07-21 Fallbrook Intellectual Property Company Llc Clamping force generator
US9328807B2 (en) 2007-02-01 2016-05-03 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9371894B2 (en) 2007-02-12 2016-06-21 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US9239099B2 (en) 2007-02-16 2016-01-19 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9273760B2 (en) 2007-04-24 2016-03-01 Fallbrook Intellectual Property Company Llc Electric traction drives
US9574643B2 (en) 2007-04-24 2017-02-21 Fallbrook Intellectual Property Company Llc Electric traction drives
US8900085B2 (en) 2007-07-05 2014-12-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8996263B2 (en) 2007-11-16 2015-03-31 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US9249880B2 (en) 2007-12-21 2016-02-02 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9182018B2 (en) 2008-02-29 2015-11-10 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US9074674B2 (en) 2008-06-23 2015-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9528561B2 (en) 2008-06-23 2016-12-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9365203B2 (en) 2008-08-05 2016-06-14 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US8852050B2 (en) 2008-08-26 2014-10-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8870711B2 (en) 2008-10-14 2014-10-28 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9574642B2 (en) 2008-10-14 2017-02-21 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9279482B2 (en) 2009-04-16 2016-03-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9360089B2 (en) 2010-03-03 2016-06-07 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9291251B2 (en) 2010-11-10 2016-03-22 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8888643B2 (en) 2010-11-10 2014-11-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8845485B2 (en) 2011-04-04 2014-09-30 Fallbrook Intellectual Property Company Llc Auxiliary power unit having a continuously variable transmission

Also Published As

Publication number Publication date
JPS63262877A (en) 1988-10-31

Similar Documents

Publication Publication Date Title
JPH0587154B2 (en)
JPH0634418B2 (en) Method for manufacturing superconducting element
US5877124A (en) Superconducting ceramic pattern and its manufacturing method
US5401716A (en) Method for manufacturing superconducting patterns
JPH0577349B2 (en)
JPH0577312B2 (en)
JPH0272685A (en) Method for forming weakly coupled superconductor part
JP2651480B2 (en) Superconducting element
JPH0634419B2 (en) Superconducting device fabrication method
JPH0638522B2 (en) Superconducting element
JP2670554B2 (en) Method for producing oxide superconducting material
JP3186035B2 (en) Laminated thin film for field effect element and field effect transistor using the laminated thin film
JPS63258083A (en) Manufacture of superconductive material
JPH0577316B2 (en)
JPH0634413B2 (en) Superconducting device
JP2691065B2 (en) Superconducting element and fabrication method
JP2660245B2 (en) Operation method of superconducting element
JP2597745B2 (en) Superconducting element and fabrication method
CN1020830C (en) Method of manufacturing superconducting patterns
JPH0793461B2 (en) Method for manufacturing field effect superconducting transistor device
JPH0812934B2 (en) Oxide superconducting device
JPS63250882A (en) Insulating method for superconducting material
JP2641971B2 (en) Superconducting element and fabrication method
JP4519964B2 (en) Manufacturing method of superconducting element
JP2732513B2 (en) Oxide superconducting three-terminal element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees