JPH0586936B2 - - Google Patents

Info

Publication number
JPH0586936B2
JPH0586936B2 JP61183353A JP18335386A JPH0586936B2 JP H0586936 B2 JPH0586936 B2 JP H0586936B2 JP 61183353 A JP61183353 A JP 61183353A JP 18335386 A JP18335386 A JP 18335386A JP H0586936 B2 JPH0586936 B2 JP H0586936B2
Authority
JP
Japan
Prior art keywords
pentafluorobenzaldehyde
pentafluorobenzonitrile
reaction
raney
acetal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61183353A
Other languages
Japanese (ja)
Other versions
JPS6339832A (en
Inventor
Yoshuki Fukumoto
Hidetaka Yatani
Toshio Hayashi
Isamu Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP61183353A priority Critical patent/JPS6339832A/en
Publication of JPS6339832A publication Critical patent/JPS6339832A/en
Publication of JPH0586936B2 publication Critical patent/JPH0586936B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ペンタフルオロベンズアルデヒドジ
アルキルアセタールの製造方法に関する。詳しく
述べると本発明はペンタフルオロベンゾニトリル
から高収率でペンタフルオロベンズアルデヒドジ
アルキルアセタールを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing pentafluorobenzaldehyde dialkyl acetal. More specifically, the present invention relates to a method for producing pentafluorobenzaldehyde dialkyl acetal from pentafluorobenzonitrile in high yield.

ペンタフルオロベンズアルデヒドジアルキルア
セタールは、医・農薬原料として有用なペンタフ
ルオロベンズアルデヒドに容易に分解できる有用
な化合物であり、かつこのペンタフルオロベンズ
アルデヒドにくらべ格段に安定で低刺激性の化合
物であり、工業的取扱いが容易な化合物である。
Pentafluorobenzaldehyde dialkyl acetal is a useful compound that can be easily decomposed into pentafluorobenzaldehyde, which is useful as a raw material for medicine and agrochemicals.It is also a much more stable and less irritating compound than pentafluorobenzaldehyde, making it difficult to handle industrially. is an easy compound.

〔従来の技術〕[Conventional technology]

置換ベンズアルデヒドジアルキルアセタールの
製造方法として、置換ベンゾニトリルを酸性条件
下ラネーニツケル触媒により接触還元し、加水分
解を行つて置換ベンズアルデヒドを単離した後、
オルトギ酸アルキルのようなアセタール化試剤で
アセタールを得る方法が開示されている(特開昭
57−67532号公報)。この方法をペンタフルオロベ
ンゾニトリルに適用した場合、中間体として、化
学的に不安定で空気により容易に酸化されかつ粘
膜への刺激の大きい取り扱いに注意を要するペン
タフルオロベンズアルデヒドを経由することや、
特殊な試剤でアセタール化することから考えて、
工業的に有利な方法とはいえない。
As a method for producing a substituted benzaldehyde dialkyl acetal, a substituted benzonitrile is catalytically reduced with a Raney-nickel catalyst under acidic conditions, and the substituted benzaldehyde is isolated by hydrolysis.
Methods for obtaining acetals with acetalizing agents such as alkyl orthoformates have been disclosed (Japanese Patent Publication No.
57-67532). When this method is applied to pentafluorobenzonitrile, it is necessary to use pentafluorobenzaldehyde as an intermediate, which is chemically unstable, easily oxidized by air, and requires careful handling as it is highly irritating to mucous membranes.
Considering that it is acetalized using a special reagent,
This cannot be said to be an industrially advantageous method.

また、置換ベンゾニトリルを酸性条件下、ラネ
ーニツケル触媒で接触水素化し、置換ベンズアル
デヒドを製造する方法(特開昭58−144341号公
報、特開昭58−146527号公報)が開示されている
が、これらの明細書には芳香環上の置換基の数は
2を超えないことが好ましいとされ、3以上に置
換基を有するベンゾニトリルについてはなんら記
載がない。
Furthermore, methods for producing substituted benzaldehydes by catalytically hydrogenating substituted benzonitriles with a Raney-nickel catalyst under acidic conditions have been disclosed (Japanese Unexamined Patent Publications No. 144341/1982 and No. 146527 of 1983). In the specification, it is said that it is preferable that the number of substituents on the aromatic ring does not exceed 2, and there is no mention of benzonitrile having 3 or more substituents.

これに対して、無置換ベンゾニトリルを硫酸と
エタノールの存在下に、常温常圧でラネーニツケ
ル触媒により接触水素化し、直接ベンズアルデヒ
ドジエチルアセタールを得たという文献〔テイナ
ツプ(P.Tinapp)、ヒエミツシエベリヒテ
(Chem.Ber.)第102巻、2770頁(1969年)〕があ
るが、反応条件の具体的記載はなく、また報告さ
れている収率が低い上に副生成物が多いので工業
的な実施には問題がある。
On the other hand, there is a literature that states that benzaldehyde diethyl acetal was directly obtained by catalytic hydrogenation of unsubstituted benzonitrile in the presence of sulfuric acid and ethanol at room temperature and pressure using a Raney-nickel catalyst [P.Tinapp, Hiemitsche Bericht. (Chem.Ber.) Vol. 102, p. 2770 (1969)], but there is no specific description of the reaction conditions, and the reported yield is low and there are many by-products, so it is not suitable for industrial use. There are problems with implementation.

〔発明が解決しようとする問題点及び解決するための手段〕[Problems to be solved by the invention and means for solving them]

本発明者らは、ペンタフルオロベンゾニトリル
から、取り扱い上困難なペンタフルオロベンズア
ルデヒドを単離することなく、直接ペンタフルオ
ロベンズアルデヒドジアルキルアセタールを得る
方法を鋭意研究した結果、硫酸と炭素数1〜4の
低級アルコールの存在下に、ラネーニツケル触媒
を用いて0〜20℃、好ましくは0〜15℃の範囲の
温度で接触水素化し、ひき続いて40〜100℃の範
囲の温度に加熱することにより、ワンポツトでペ
ンタフルオロベンズアルデヒドジアルキルアセタ
ールが好収率で得られることを見出し、本発明を
完成するに至つた。ここでワンポツト合成とは、
原料を反応容器に仕込んだ後は、中間体を容器外
に単離することなく、その容器内で目的物を合成
することを意味する。
The present inventors have conducted extensive research into a method for directly obtaining pentafluorobenzaldehyde dialkyl acetal from pentafluorobenzonitrile without isolating pentafluorobenzaldehyde, which is difficult to handle. in one pot by catalytic hydrogenation in the presence of an alcohol using a Raney Nickel catalyst at a temperature in the range 0-20°C, preferably 0-15°C, followed by heating to a temperature in the range 40-100°C. It was discovered that pentafluorobenzaldehyde dialkyl acetal can be obtained in good yield, and the present invention was completed. What is one-pot synthesis?
This means that after the raw materials are charged into the reaction vessel, the desired product is synthesized within the vessel without isolating the intermediates outside the vessel.

本発明の接触水素化は0〜20℃、好ましくは0
〜15℃の範囲の温度で行なわれる。20℃を越え温
度では副反応が生じやすく、また0℃に満たない
温度では反応に長時間を要し好ましくない。ま
た、水素圧については、分子状水素ガスが共存す
ればよく、多くの場合分圧が300mmHg以上で反応
は満足に進行するがさらに加圧しても何らさしつ
かえない。
The catalytic hydrogenation of the present invention is carried out at 0-20°C, preferably at 0°C.
It is carried out at temperatures ranging from ~15°C. Temperatures exceeding 20°C tend to cause side reactions, while temperatures below 0°C require a long time for reaction, which is undesirable. Regarding the hydrogen pressure, it is sufficient that molecular hydrogen gas coexists; in most cases, the reaction proceeds satisfactorily at a partial pressure of 300 mmHg or more, but there is no harm in increasing the pressure further.

本発明で使用されるラネーニツケル触媒は、常
法に従つて展開したものをそのまま低級アルコー
ルを用いて置換、脱水し反応に供してもよいし、
脱水前に鉛塩、銅塩などの水溶液と接触させ、表
面処理を行つてもよい。触媒の使用量は特に制限
はないが、反応速度と収率の点からペンタフルオ
ロベンゾニトリルに対し1〜50重量%が好まし
い。
The Raney-nickel catalyst used in the present invention may be developed according to a conventional method, substituted with a lower alcohol, dehydrated, and subjected to the reaction.
Before dehydration, surface treatment may be performed by contacting with an aqueous solution of lead salt, copper salt, or the like. The amount of catalyst used is not particularly limited, but from the viewpoint of reaction rate and yield, it is preferably 1 to 50% by weight based on pentafluorobenzonitrile.

本発明で使用される硫酸は純度が95%以上、好
ましくは98%以上である。その使用量はペンタフ
ルオロベンゾニトリルに対し0.5倍モル以上必要
であり、好ましくは1.0〜3.0倍モルである。
The sulfuric acid used in the present invention has a purity of 95% or more, preferably 98% or more. The amount to be used is 0.5 times or more mole or more, preferably 1.0 to 3.0 times mole, relative to pentafluorobenzonitrile.

本発明で使用されるアルコールは、反応溶媒す
なわち反応体でかつ希釈剤であり、さらに硫酸と
相溶し硫酸存在下で安定であることが必要であ
る。例えば、メタノール、エタノール、プロパノ
ール等の炭素数1〜4の低級脂肪族アルコールが
挙げられる。アルコールの使用量は、ペンタフル
オロベンゾニトリルに対し5倍モル以上あればよ
いが好ましくは5〜60倍モルであり、5倍モルよ
り少ない場合はラネーニツケル触媒の活性低下が
著しく、60倍モルより多い場合は装置効率の点で
不利となる。
The alcohol used in the present invention is a reaction solvent, that is, a reactant and a diluent, and furthermore, it needs to be compatible with sulfuric acid and stable in the presence of sulfuric acid. Examples include lower aliphatic alcohols having 1 to 4 carbon atoms such as methanol, ethanol, and propanol. The amount of alcohol to be used should be at least 5 times the mole of pentafluorobenzonitrile, but preferably 5 to 60 times the mole; if it is less than 5 times the mole, the activity of the Raney-nickel catalyst will be significantly reduced, and the amount will be more than 60 times the mole. In this case, it is disadvantageous in terms of equipment efficiency.

本発明において接触水素化後に加熱する必要が
あるが、その場合ラネーニツケルが存在していて
もいなくてもペンタフルオロベンズアルデヒドジ
アルキルアセタールの生成には全く影響がない。
また、水素雰囲気を窒素ガスなど不活性気体雰囲
気に置換して加熱してもさしつかえない。
In the present invention, it is necessary to heat after catalytic hydrogenation, but in that case, the presence or absence of Raney nickel has no effect on the formation of pentafluorobenzaldehyde dialkyl acetal.
Further, the hydrogen atmosphere may be replaced with an inert gas atmosphere such as nitrogen gas and heated.

接触水素化後の加熱は、反応速度及び収率の点
から40〜100℃、好ましくは45〜90℃の範囲の温
度に加熱することが必要である。ついで反応液か
ら溶媒量のアルコールを抽出させ目的とする生成
物アセタールをえることができる。
Heating after catalytic hydrogenation is required to a temperature in the range of 40 to 100°C, preferably 45 to 90°C from the viewpoint of reaction rate and yield. Then, the desired product acetal can be obtained by extracting a solvent amount of alcohol from the reaction solution.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、不安定で粘膜への
刺激が強いペンタフルオロベンズアルデヒドを経
由せず、高収率でしかも簡単なワンポイント合成
でペンタフルオロベンゾニトリルからペンタフル
オロベンズアルデヒドジアルキルアセタールを得
ることができる。
As described above, according to the present invention, it is possible to obtain pentafluorobenzaldehyde dialkyl acetal from pentafluorobenzonitrile through simple one-point synthesis with high yield, without going through pentafluorobenzaldehyde, which is unstable and highly irritating to mucous membranes. I can do it.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明をさらに具体的に
説明するが、本発明はこれら実施例に限定される
ものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例 1 磁気回転子、水素供給装置を備えた100mlの反
応容器に、反応溶媒のメタノールで十分置換、脱
水した展開ラネーニツケル0.30g、次いでペンタ
フルオロベンゾニトリル6.95gと98%濃硫酸7.28g
とメタノール45mlの混合溶液を加え、水素雰囲気
下に常圧、10℃で撹拌し接触水素化反応を行う
と、6時間後ペンタフルオロベンゾニトリルはす
べて反応した。さらにそのまま60℃まで加熱し、
3時間60℃に保つた後、H1及びF19−NMRによ
りこの反応液を分析するとペンタフルオロベンズ
アルデヒドジメチルアセタールが7.43g(収率85.3
%)生成していた。
Example 1 In a 100 ml reaction vessel equipped with a magnetic rotor and a hydrogen supply device, 0.30 g of developed Raney nickel which had been sufficiently substituted and dehydrated with methanol as a reaction solvent, followed by 6.95 g of pentafluorobenzonitrile and 7.28 g of 98% concentrated sulfuric acid.
A mixed solution of 45 ml of methanol and 45 ml of methanol was added, and the mixture was stirred at 10° C. under normal pressure in a hydrogen atmosphere to carry out a catalytic hydrogenation reaction. After 6 hours, all of the pentafluorobenzonitrile had reacted. Then heat it up to 60℃,
After keeping at 60°C for 3 hours, this reaction solution was analyzed by H 1 and F 19 -NMR, and 7.43 g of pentafluorobenzaldehyde dimethyl acetal was found (yield: 85.3
%) was generated.

実施例 2 実施例1と同様な装置および方法で展開ラネー
ニツケルによるペンタフルオロベンゾニトリルの
接触水素化反応を行つた。次いで60℃で3時間加
熱した後30mlのメタノールを留去し、その後室温
にまで冷却するとペンタフルオロベンズアルデヒ
ドジメチルアセタールからなる油層が7.36g(収率
83.2%)得られた。この油層は、H1及びF19
NMR分析により純度が98%以上であることが確
認された。
Example 2 Catalytic hydrogenation reaction of pentafluorobenzonitrile using expanded Raney nitrile was carried out using the same apparatus and method as in Example 1. Next, after heating at 60°C for 3 hours, 30ml of methanol was distilled off, and then cooled to room temperature, leaving 7.36g of an oil layer consisting of pentafluorobenzaldehyde dimethyl acetal (yield:
83.2%) obtained. This oil layer contains H 1 and F 19 -
NMR analysis confirmed that the purity was 98% or higher.

実施例 3 展開ラネーニツケル0.63gを10mlの水に懸濁さ
せ、そこへ10%硫酸銅水溶液0.89gを滴下ししば
らく撹拌した後、デカンテーシヨンで水を除きさ
らにメタノールで十分置換、脱水した。この銅処
理を行つたラネーニツケル触媒を用いて実施例1
と同様の操作を行うと、ペンタフルオロベンズア
ルデヒドジメチルアセタールが7.81g(収率89.7
%)生成していた。
Example 3 0.63 g of developed Raney nickel was suspended in 10 ml of water, and 0.89 g of a 10% aqueous copper sulfate solution was added dropwise thereto. After stirring for a while, the water was removed by decantation, and the suspension was thoroughly replaced with methanol and dehydrated. Example 1 Using this copper-treated Raney nickel catalyst
By performing the same operation as above, 7.81 g of pentafluorobenzaldehyde dimethyl acetal (yield 89.7
%) was generated.

実施例 4 メタノールのかわりにエタノールを用いて実施
例1と同様の接触水素化反応を行つたところ、
6.5時間後にペンタフルオロベンゾニトリルはす
べて反応した。そのまま昇温し、75℃で3時間加
熱した後反応液を分析すると、ペンタフルオロベ
ンズアルデヒドジエチルアセタールが7.81g(収率
80.3%)生成していた。
Example 4 A catalytic hydrogenation reaction similar to that in Example 1 was carried out using ethanol instead of methanol.
After 6.5 hours all the pentafluorobenzonitrile had reacted. After raising the temperature and heating at 75°C for 3 hours, the reaction solution was analyzed and found that 7.81g of pentafluorobenzaldehyde diethyl acetal was found (yield:
80.3%).

Claims (1)

【特許請求の範囲】[Claims] 1 ペンタフルオロベンゾニトリルを、水素ガ
ス、硫酸および炭素数1〜4のアルコールの共存
下にラネーニツケル触媒を用いて、0〜20℃の範
囲の温度で接触水素化し、ついで40〜100℃に昇
温して加熱することを特徴とする、ペンタフルオ
ロベンゾニトリルよりペンタフルオロベンズアル
デヒドジアルキルアセタールを製造する方法。
1 Pentafluorobenzonitrile is catalytically hydrogenated at a temperature in the range of 0 to 20°C using a Raney-nickel catalyst in the coexistence of hydrogen gas, sulfuric acid, and an alcohol having 1 to 4 carbon atoms, and then the temperature is raised to 40 to 100°C. A method for producing pentafluorobenzaldehyde dialkyl acetal from pentafluorobenzonitrile, the method comprising heating the pentafluorobenzaldehyde dialkyl acetal.
JP61183353A 1986-08-06 1986-08-06 Production of pentafluorobenzaldehyde dialkyl acetal Granted JPS6339832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61183353A JPS6339832A (en) 1986-08-06 1986-08-06 Production of pentafluorobenzaldehyde dialkyl acetal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61183353A JPS6339832A (en) 1986-08-06 1986-08-06 Production of pentafluorobenzaldehyde dialkyl acetal

Publications (2)

Publication Number Publication Date
JPS6339832A JPS6339832A (en) 1988-02-20
JPH0586936B2 true JPH0586936B2 (en) 1993-12-14

Family

ID=16134257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61183353A Granted JPS6339832A (en) 1986-08-06 1986-08-06 Production of pentafluorobenzaldehyde dialkyl acetal

Country Status (1)

Country Link
JP (1) JPS6339832A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4317400A (en) 1999-05-07 2000-11-21 Showa Denko Kabushiki Kaisha Process for producing tetrafluoro benzenemethanols
JP2007031429A (en) * 2005-06-22 2007-02-08 Showa Denko Kk Method for producing tetrafluorobenzenecarbaldehyde alkylacetal

Also Published As

Publication number Publication date
JPS6339832A (en) 1988-02-20

Similar Documents

Publication Publication Date Title
HU198437B (en) Process for producing mono- or bis-carbonyl-compounds
KR20180117658A (en) Method for preparing terpene alcohol mixture
US4072660A (en) Process for the manufacture of resorcinols
JPH01146840A (en) Production of ehther carboxylic acid
US20040106818A1 (en) Process for the preparation of cyclohexanol derivatives
EP0919531B1 (en) Process for the oxidation of aromatic compounds to hydroxyaromatic compounds
US6020517A (en) Process for production of benzonitrile and benzyl alcohol
JPH0586936B2 (en)
US5124489A (en) Process for preparing phenethanol ethers by the reduction of corresponding phenylglyoxal acetals
JPH08500368A (en) How to convert acetal to ether
JP4066679B2 (en) Process for producing aralkyl ketones and catalyst thereof
JPS62185032A (en) Production of 1-(1-hydroxyethyl)-alkylcyclohexane
EP0204975B1 (en) Process for preparing substituted tetralones
JPH07103095B2 (en) Method for producing vitamin A aldehyde
JPH062702B2 (en) Method for producing methyl isobutyl ketone
JP4586568B2 (en) Method for producing tetralones
JP5807286B2 (en) Aldol condensation
US4082802A (en) Process for the preparation of aromatic secondary or tertiary amino compounds
JP2860676B2 (en) Method for producing 1-isoquinolines
JPS6225677B2 (en)
EP0412551A2 (en) Process for producing alpha, beta-unsaturated aldehyde
JPH0558618B2 (en)
KR20010022485A (en) Process for the preparation of 1-(3,4-dimethoxyphenyl)ethanol
JPH0597778A (en) Production of 2-aminoindane and its salts
JP2589564B2 (en) Preparation of styrene derivatives

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees