JPH0585868A - Sputtering film-bearing member and its production - Google Patents

Sputtering film-bearing member and its production

Info

Publication number
JPH0585868A
JPH0585868A JP14385991A JP14385991A JPH0585868A JP H0585868 A JPH0585868 A JP H0585868A JP 14385991 A JP14385991 A JP 14385991A JP 14385991 A JP14385991 A JP 14385991A JP H0585868 A JPH0585868 A JP H0585868A
Authority
JP
Japan
Prior art keywords
film
sputtering
substrate
sputtered film
sputtered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14385991A
Other languages
Japanese (ja)
Inventor
Toshio Ishii
敏夫 石井
Hiromi Kikuchi
広実 菊池
Tetsuya Hayashida
哲哉 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd filed Critical Hitachi Ltd
Priority to JP14385991A priority Critical patent/JPH0585868A/en
Publication of JPH0585868A publication Critical patent/JPH0585868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the title member improved in soldering affinity by formation of a sputtering film with a texture of granule-stacked structure on a solid ceramic member having a sputtering target and specific angle through bias sputtering technique. CONSTITUTION:A solid ceramic member (e.g. of rectangular parallelepiped) consisting of e.g. AlN sintered compact is set on e.g. a parallel flat plate-type autorotation/revolution-type sputtering device. Using Ar gas, at each specified substrate revolution and autorotation numbers and substrate temperature, a specified power's RF together with 2KW of DC sputtering power is applied on the space between the substrate and a chamber to make a successive film formation from the ground side of Ti, Ni and Au films on the upper surface and four sides of the substrate through bias sputtering technique. Thus, a ductile, continuous and high-density film is formed on the upper surface of the substrate and a high-granular density film of granular structure is formed on each of the four sides, resulting in favorable soldering affinity for the member, leading to soldering with high reliability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スパッタ膜を有する部
材およびその製造方法に関し、特に窒化アルミニウム焼
結体を初めとするセラミックスの表面上に形成されたス
パッタ膜のハンダ濡れ性を改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member having a sputtered film and a method for manufacturing the member, and more particularly to improving solder wettability of a sputtered film formed on the surface of ceramics such as an aluminum nitride sintered body. Is.

【0002】[0002]

【従来の技術】近年電子機器の小型化、高集積化が進む
中にあって、ICチップを始めとしてこれらの機器に搭
載する各種の半導体素子から発生する熱をいかに除去す
るかが極めて重要な課題となっており、部品設計、回路
設計、材料等の面から種々の提案が行われている。高集
積IC等の半導体用基板材料として、近時窒化アルミニ
ウム焼結体が使用されるようになってきた。そして、半
導体のパッケージ用基板として用いる場合、通常窒化ア
ルミニウム基板上にシリコンチップを載せ、その上面を
窒化アルミニウ等のセラミックスで密封状に覆い、シリ
コンチップに接続したリードフレームを窒化アルミニウ
ム基板とそれを覆うセラミックスとの接合間を通して外
部に引き出す。そして窒化アルミニウム基板とそれを覆
うセラミックスとの接合面は密着性を上げるためにそれ
ぞれメタライズ層を形成し、リードフレームの部分はさ
らにはんだ付けする。したがって、このメタライズ層は
ハンダ濡れ性に優れることが要求される。
2. Description of the Related Art With the recent miniaturization and high integration of electronic devices, how to remove heat generated from various semiconductor elements mounted on these devices including IC chips is extremely important. This has been a problem, and various proposals have been made in terms of component design, circuit design, materials, and the like. Recently, an aluminum nitride sintered body has been used as a substrate material for a semiconductor such as a highly integrated IC. When used as a substrate for a semiconductor package, a silicon chip is usually placed on an aluminum nitride substrate, its upper surface is hermetically covered with ceramics such as aluminum nitride, and a lead frame connected to the silicon chip is attached to the aluminum nitride substrate and the lead frame. Pull out to the outside through the joint with the covering ceramics. Then, a metallization layer is formed on each of the joining surfaces of the aluminum nitride substrate and the ceramics covering the aluminum nitride substrate in order to improve adhesion, and the lead frame portion is further soldered. Therefore, this metallized layer is required to have excellent solder wettability.

【0003】[0003]

【発明が解決しようとする課題】このメタライズ層形成
の手法としてスパッタ法が採用されている。しかし本発
明者らの検討によると、従来のスパッタ膜でははんだ濡
れ性に関し以下のような問題があった。すなわち、スパ
ッタリングターゲット(以下単にターゲットと言う)の
面と平行な面(以下「主面」という)に形成されるスパッ
タ膜ははんだ濡れ性に問題はないが、例えばスパッタリ
ングターゲットに対し垂直な面に形成されるスパッタ膜
は前記平行な面に比べはんだ濡れ性に劣ることが判明し
た。これは、前記主面と垂直な面のスパッタ膜になんら
かの差異があることによると推測された。スパッタ膜の
改質に関しては、例えば特開昭59-229480号等に見られ
るように基板上に良質な膜を均一性良く形成させるため
ターゲットの口径を大きくしたり、基体に自転、公転等
の複雑な運動を付与する、あるいは平板状のターゲット
を陰極電極もしくは高周波電極に対してある傾き角を持
たせて複数枚設置する等の工夫が提案されている。しか
し、いずれも平板状基体の主面に形成した膜の均一性を
検討しているものである。また、特開平2-138456号には
いわゆるステップカバレージ向上等の目的の為に特定の
バイアススパッタ法を適用しSiウエハー表面に粒状晶
と柱状晶の層状組織のスパッタ膜を形成する記述が開示
されている。しかし、このステップカバレージはミクロ
ンオーダーの段差について検討されているもので、ほぼ
主面の膜形成に関するものとみなし得る。また、はんだ
濡れ性に関しては一切不明である。主面以外の面へのス
パッタ方式としては小型コンデンサー等への成膜方法と
してバレル型スパッタ方式が実用化されている。これ
は、例えば1mmφ×3mml程度の基体の多数個をカゴの中
に入れ、カゴを回転させながらスパッタするものであ
る。本方式では基体同士が衝突しカケやクラックが発生
し易く、また、カゴ等余分な所に成膜されるためスパッ
タ効率の劣る欠点がある。上述のように、従来のスパッ
タリングではSiウェハー等の平面上の成膜が主に考え
られており、立体物へのスパッタリング例は少なく上述
のバレル式スパッタリングが見られる程度である。バレ
ル方式ではカケやクラックが発生し易く、スパッタ効率
が劣る問題点がある。そこで本発明は、主面以外の面に
もはんだ濡れ性の良いスパッタ膜が形成された部材を提
供することを目的とする。また本発明は、そのような部
材をカケやクラックを発生せずにしかも高効率に製造す
る方法を提供することを目的とする。
A sputtering method is adopted as a method for forming the metallized layer. However, according to the study by the present inventors, the conventional sputtered film has the following problems with respect to solder wettability. That is, the sputtered film formed on the surface parallel to the surface of the sputtering target (hereinafter simply referred to as the target) (hereinafter referred to as the “main surface”) has no problem in solder wettability, but for example, on the surface perpendicular to the sputtering target. It was found that the sputtered film formed was inferior in solder wettability to the parallel surface. It was speculated that this was due to some difference in the sputtered film on the surface perpendicular to the main surface. Regarding the modification of the sputtered film, for example, as shown in JP-A-59-229480, in order to form a good quality film on the substrate with good uniformity, the diameter of the target should be increased, or the substrate should be rotated or revolved. It has been proposed to give a complicated motion or to install a plurality of flat targets with a certain inclination angle with respect to the cathode electrode or the high frequency electrode. However, in both cases, the uniformity of the film formed on the main surface of the flat substrate is examined. Further, JP-A-2-138456 discloses a description of forming a sputtered film having a layered structure of granular crystals and columnar crystals on the surface of a Si wafer by applying a specific bias sputtering method for the purpose of improving the so-called step coverage. ing. However, this step coverage has been studied for steps on the order of microns, and can be considered to be about film formation on almost the main surface. Moreover, the solder wettability is unknown. As a sputtering method for surfaces other than the main surface, a barrel-type sputtering method has been put into practical use as a film forming method for small capacitors. In this method, for example, a large number of bases each having a size of about 1 mmφ × 3 mml are put in a basket, and sputtering is performed while rotating the basket. In this method, there is a drawback that the substrates are likely to collide with each other and cracks and cracks are easily generated, and the sputtering efficiency is poor because a film is formed in an extra place such as a basket. As described above, in the conventional sputtering, film formation on a flat surface such as a Si wafer is mainly considered, and there are few examples of sputtering on a three-dimensional object, and the above-mentioned barrel type sputtering is observed. The barrel method has a problem that cracks and cracks are likely to occur and the sputtering efficiency is poor. Therefore, an object of the present invention is to provide a member having a sputtered film having good solder wettability formed on the surface other than the main surface. Another object of the present invention is to provide a method for producing such a member with high efficiency without causing chipping or cracking.

【0004】[0004]

【課題を解決するための手段】本発明者は前記課題を解
決するに当たり、まずスパッタされる面に対する成膜方
向の影響を明かにした。図11に示すようにAlNセラ
ミックスの側面を平面部から30°、60°、90°の角度に
研磨し、研磨部に通常のD.C.スパッタを行った。Ar
圧は0.7Pa、基板公転数4.5rpm、自転数16.2rp
m、基板温度250℃とした。スパッタ電力はD.C.のみ2
kWを印加した。スパッタ膜厚は基板主面でTi4000オン
ク゛ストローム、Ni20000オンク゛ストローム、Au3500オンク゛ストローム
である。図12、図13及び図14にそれぞれ30°、60
°、90°に研磨した角側面のスパッタ膜表面のSEMに
よる写真を示す。角側面の研磨角度が30°、60°、90°
と大きくなるにつれてスパッタ膜の成長方向が写真上方
に傾き、各粒間に隙間が出来始めることがわかる。図1
5、図16及び図17にそれぞれ30°、60°、90°に研
磨した角側面のスパッタ膜断面のSEM写真を示す。角
度が大きくなるにつれて各スパッタ膜の粒間に隙間が出
来始め、膜の柱状組織化が促進されることがわかる。図
18は、AlNセラミックスの側面を平面部から30°、
60°、90°の角度に研磨した面に成膜したスパッタ膜の
はんだ濡れ性評価結果を示す。角度が大きくなるに従っ
てはんだの濡れ拡がりは小さく、はんだ濡れ性が劣って
くることが解る。なお、はんだ濡れ性の評価は後述の実
施例の方法に従っている。図19は、前記角度が90゜の
場合のスパッタ膜組織を模式的に示した図であり、図中
矢印はスパッタ方向をしめす。基体上面部のスパッタ膜
は柱状の密な組織となっているが、側面部は図中上側の
膜粒子が成長するにつれて隣あう下側の膜形成に対して
陰を作ることになり、この結果上下粒子間に成膜されが
たい領域ができる(シャドウ効果)。この結果、膜の凹凸
が激しくなり、第3層であるAu膜で第2層であるNi
膜の表面全体を覆うことができなくなる。このためNi
が空気中で酸化され、はんだ濡れ性が劣化したものと推
測される。従って、はんだ濡れ性を改善するためには主
面と垂直な面にも組織的に密な膜を形成することが必要
である。そこで本発明者はさらに検討を進めたところ、
バイアススパッタ法を用いれば主面と垂直な面にも組織
的に密な膜を形成することができ、はんだ濡れ性を改善
することができることを知見するにいたった。すなわち
本発明は、スパッタ膜が表面に形成された立体状部材で
あり、立体状部材の基体がセラミックスであり、かつス
パッタ膜組織が粒の堆積構造を持つことを特徴とするス
パッタ膜を有する部材、スパッタ膜が表面に形成された
立体状の部材であり、そのスパッタ膜組織が粒の堆積構
造を持ち、かつスパッタ膜上にはんだ層が形成されたこ
とを特徴とするスパッタ膜を有する部材、およびスパッ
タ膜が表面に形成された立体状部材であり、立体状部材
の基体がセラミックスであり、かつスパッタ膜組織が粒
の堆積構造を持ち、スパッタ膜上にはんだ層が形成され
たことを特徴とするスパッタ膜を有する部材、ならびに
スパッタターゲットのスパッタ面とのなす角度が60〜90
゜の面を有するセラミックス基体の当該面にスパッタ膜
を形成するに際し、バイアススパッタ法を採用したこと
を特徴とするスパッタ膜を有する部材の製造方法、およ
びスパッタターゲットのスパッタ面とのなす角度が60〜
90゜の面にバイアススパッタ法によりスパッタ膜形成
し、しかる後に当該スパッタ膜上にはんだ付け処理をす
ることを特徴とするスパッタ膜を有する部材の製造方法
である。
In solving the above-mentioned problems, the present inventor first clarified the influence of the film-forming direction on the surface to be sputtered. As shown in FIG. 11, the side surface of the AlN ceramic was polished from the flat surface at angles of 30 °, 60 °, and 90 °, and ordinary DC sputtering was performed on the polished portion. Ar
Pressure is 0.7 Pa, substrate revolution is 4.5 rpm, rotation is 16.2 rp
m, and the substrate temperature was 250 ° C. Sputtering power is DC only 2
kW was applied. The sputtered film thickness on the main surface of the substrate is Ti 4000 Å, Ni 20000 Å, and Au 3500 Å. 12, 30 and 60 in FIGS. 12, 13 and 14, respectively.
The SEM photograph of the surface of the sputtered film on the corner side surface polished to 90 ° is shown. The polishing angle of the corner side is 30 °, 60 °, 90 °
It can be seen that the growth direction of the sputtered film inclines upward in the photograph as it becomes larger, and gaps begin to form between the grains. Figure 1
5, FIG. 16 and FIG. 17 show SEM photographs of the cross section of the sputtered film on the square side surfaces polished to 30 °, 60 ° and 90 °, respectively. It can be seen that as the angle increases, gaps start to form between the grains of each sputtered film, and the columnar organization of the film is promoted. FIG. 18 shows the side surface of the AlN ceramics 30 ° from the flat surface.
The evaluation results of solder wettability of the sputtered film formed on the surface polished at 60 ° and 90 ° are shown below. It can be seen that as the angle increases, the solder wetting spread becomes smaller and the solder wettability becomes worse. The solder wettability is evaluated according to the method described in Examples below. FIG. 19 is a diagram schematically showing the structure of a sputtered film when the angle is 90 °, and the arrow in the figure indicates the sputter direction. The sputtered film on the upper surface of the substrate has a columnar dense structure, but the side surface forms a shadow to the film formation on the lower side adjacent to the upper side in the figure as the film grains grow. Areas that are difficult to be formed between upper and lower particles are formed (shadow effect). As a result, the unevenness of the film becomes severe, and the Au film, which is the third layer, is Ni, which is the second layer.
The entire surface of the membrane cannot be covered. Therefore, Ni
Is presumed to have been oxidized in the air and the solder wettability has deteriorated. Therefore, in order to improve the solder wettability, it is necessary to form a systematically dense film on the surface perpendicular to the main surface. Therefore, the present inventor further studied,
It has been found that the bias sputtering method can form a dense film systematically on the surface perpendicular to the main surface and improve the solder wettability. That is, the present invention is a three-dimensional member having a sputtered film formed on the surface thereof, the substrate of the three-dimensional member is ceramics, and the sputtered film structure has a grain deposition structure. A member having a sputtered film characterized in that the sputtered film is a three-dimensional member formed on the surface, the sputtered film structure has a grain deposition structure, and a solder layer is formed on the sputtered film, And the sputtered film is a three-dimensional member formed on the surface, the base of the three-dimensional member is ceramics, the sputtered film structure has a grain deposition structure, and a solder layer is formed on the sputtered film. The angle between the member having the sputtered film and the sputter surface of the sputter target is 60 to 90.
When a sputtered film is formed on the surface of a ceramic substrate having a surface of 90 °, a method of manufacturing a member having a sputtered film, characterized in that a bias sputtering method is adopted, and an angle formed by the sputtering target and the sputtered surface is 60 degrees. ~
This is a method for producing a member having a sputtered film, which is characterized in that a sputtered film is formed on a surface of 90 ° by a bias sputter method, and then the sputtered film is soldered.

【0005】[0005]

【作用】バイアスを付加しないスパッタでは前述のよう
に柱状に膜が成長しシャドウ効果を生じさせていたが、
バイアススパッタ法によると、逆スパッタを行いながら
膜が形成されるためその膜が粒子の堆積構造となりシャ
ドウ効果が生じない。したがって、膜表面がより平坦に
なり、膜の断面組織を観測すると密度が高く空隙の少な
い膜が得られる。このような膜は、例えば柱状組織に比
べて膜表面からの酸化が少なく、はんだ濡れ性が良く、
より信頼性が高い効果がある。
[Function] In the sputtering without applying the bias, the film grows in a columnar shape as described above to cause the shadow effect.
According to the bias sputtering method, since a film is formed while performing reverse sputtering, the film has a particle deposition structure and a shadow effect does not occur. Therefore, the film surface becomes flatter, and a film having a high density and few voids can be obtained by observing the cross-sectional structure of the film. Such a film, for example, has less oxidation from the film surface than the columnar structure, good solder wettability,
It has a more reliable effect.

【0006】[0006]

【実施例】以下、本発明を実施例に基づき詳しく説明す
る。 (実施例1)10mm角、厚さ2mmのAlNセラミックスに
図3に示すように、基体上面及び4側面にTi、Ni、
Au膜を下地側より順次成膜した。成膜は平行平板型の
自公転スパッタ装置を用い、バイアススパッタリングに
より行った。Ar圧は0.6Pa、基板公転数は9.5rp
m、自転は34.2rpm、基板温度はTiとNiの成膜時
は315℃、Auは250℃とした。スパッタ電力はD.C.電
力を2kWとし、同時に0.5kWのR.F.を基板とチャン
バー間に印加した。基板主面のTi、Niの膜厚をそれ
ぞれ5000オンク゛ストローム、15000オンク゛ストロームとし、Auは350
0オンク゛ストロームになるように成膜した。図1及び図2はこ
のようにして得た膜の基板側面部の断面と基板上面部と
をSEMにより観測したミクロ組織写真である。基板主
面は展延性の高い、連続で密度の高い膜が形成されてい
る。基板側面部の膜は4側面とも粒状組織を示し、粒の
間は連続で密度の高い膜が形成されている。図中1はT
i膜、2はNi膜、3はAu膜を示している。膜の特性
を見るため、膜のはんだ濡れ性を評価した。はんだは10
%Sn−90%Pbのはんだを用いた。1mm角のはんだ8
を図4に示すように、基板側面部の上に置き、20%H2
−80%N2の雰囲気下で380℃に10分保持することにより
はんだ付けを行った。はんだ濡れ性は図5に示すよう
に、はんだ付け後のはんだの広がり部の幅Lにより評価
した。表1は、評価結果をまとめたものであり基板側面
部ではんだ広がり幅は5〜10mmであり、図18の従来の
バイアスをかけない場合に比べ、はんだ濡れ性が改善さ
れていることが解る。AlNセラミックスはスパッタ
中、平板な基板ホルダーに1ケ、1ケ個別にセットされ
ており、互いに衝突することなく、カケやクラックは発
生はもちろんしない。また、膜はカゴ等にさえぎられる
ことなく直ちに、高効率に形成された。なお、表1の単
位はmmである。
EXAMPLES The present invention will be described in detail below based on examples. (Embodiment 1) As shown in FIG. 3, AlN ceramics of 10 mm square and 2 mm thick are provided with Ti, Ni, and
The Au film was sequentially formed from the base side. The film formation was performed by bias sputtering using a parallel plate type revolving sputtering device. Ar pressure is 0.6 Pa, substrate revolution is 9.5 rp
m, rotation was 34.2 rpm, substrate temperature was 315 ° C. when Ti and Ni were formed, and Au was 250 ° C. Sputtering power was DC power of 2 kW, and 0.5 kW of RF was simultaneously applied between the substrate and the chamber. The film thicknesses of Ti and Ni on the main surface of the substrate are 5000 Å and 15000 Å, respectively, and Au is 350
The film was formed so as to have 0 angstrom. 1 and 2 are microstructure photographs of the cross section of the side surface of the substrate and the upper surface of the substrate of the film thus obtained, observed by SEM. On the main surface of the substrate, a continuous, high-density film having high malleability is formed. The film on the side surface of the substrate shows a granular structure on all four side surfaces, and a continuous and high-density film is formed between the particles. 1 in the figure is T
i film, 2 is a Ni film, and 3 is an Au film. To see the characteristics of the film, the solder wettability of the film was evaluated. 10 solder
% Sn-90% Pb solder was used. 1mm square solder 8
The 4, placed on a substrate side portion, 20% H 2
Soldering was performed by holding at 380 ° C. for 10 minutes in an atmosphere of −80% N 2 . The solder wettability was evaluated by the width L of the spread portion of the solder after soldering, as shown in FIG. Table 1 is a summary of the evaluation results. The solder spread width on the side surface of the substrate is 5 to 10 mm, and it can be seen that the solder wettability is improved as compared to the conventional case where no bias is applied as shown in FIG. .. The AlN ceramics are individually set in a flat substrate holder during sputtering, one by one, and they do not collide with each other, and of course, cracks or cracks do not occur. In addition, the film was immediately formed with high efficiency without being blocked by a basket or the like. The unit of Table 1 is mm.

【表1】 (実施例2)基板とチャンバー間に印加するバイアス用
のR.F.出力を実施例1より低出力の0.2kWにした以
外は実施例1と同様の条件を用い、実施例1と同様の評
価を行った。図6は、このようにして得た膜の基板側面
部の断面をSEMにより観測したミクロ組織写真であ
る。実施例1と同様に、粒の間は連続で密度の高い膜が
形成されているが、実施例1に比べて若干、粒状組織化
が弱く、密度が下がることがわかる。これは、バイアス
のR.F.出力が低かったことによるものと推測され
る。 上記膜のはんだ濡れ性を実施例1と同方式で評価
した結果を表1にしめすが、3500Aのものが4〜8mmであ
り、はんだ濡れ性が実施例1に比べて若干劣るものの、
従来のバイアスをかけない場合に比べ良好なハンダ濡れ
性を示している。 (従来例)実施例1、2と同様に10mm角×2mm厚のAl
NセラミックスにTi、Ni、Au膜を成膜した。成膜
は実施例1、2と同じ装置を用い、D.C.でのみスパッ
タリングを行った。スパッタ電力はD.C.電力を2kW
とし、基板はチャンバーに電気的に接続し、アースし
た。Ar圧、基板回転数、基板温度、Ti、Ni、Au
膜厚等は実施例1、2と同条件である。図7及び図8は
このようにして得た膜の基板主面と基板側面部の断面を
SEMにより観測したミクロ組織写真である。基板主面
の膜は実施例1、2と同様に展延性の高い、連続で密度
の高い膜が形成されている。しかし、実施例1、2とは
異なり基板側面部の膜は柱状組織を示しており、柱状粒
子間には明確な空隙が見られる。なお、図中1はTi
膜、2はNi膜、3はAu膜を示している。上記膜のは
んだ濡れ性を実施例1、2と同方式で評価した結果を表
1に示すが、ハンダ広がり幅が3〜7mmとはんだの濡れ性
が劣ることがわかる。図9及び図10は各々バイアス電
力を各々0、0.5kWとしてAlNセラミックスの基板側
面部の表面SEM写真である。バイアスをかけずに成膜
したスパッタ膜では、結晶粒同士の間に隙間が見られる
が、バイアススパッタで成膜したスパッタ膜では隙間が
小さく膜組織が密になっているのがわかる。なお、多数
の結晶粒子の集合単位同士の間にみられる隙間は、Al
Nセラミックスの結晶粒界に相当する部分と解され、バ
イアスをかけない場合のほうが、この結晶粒界に起因す
る隙間も小さいことが解る。 (実施例3)10mmφ、厚さ2mmのSi34セラミックス
の上面及び側面全周にTi、Ni、Au膜を下地側より
順次成膜した。Tiの成膜はD.C.スパッタリングによ
り、スパッタ電力2kWで行った。NiとAu膜はバイ
アスD.C.スパッタリングにより、D.C.電力2kWを
ターゲットに印加し行った。Ar圧は0.8Paを用い、
基板の公転数は4rpm、自転は14.4rpm、スパッタ
時の基板温度はTi、Ni、Auとも250℃にした。基
板主面のTi、Ni、Auの膜厚は4000、20000、3500オ
ンク゛ストロームにした。実施例1、2と同様に基板主面の膜
は展延性の高い、連続で密度の高い膜が形成されるとと
もに、基板側面部も粒状組織を持ち、粒間が連続で密度
の高い膜が形成された。上記膜のはんだ濡れ性を実施例
1と同方式で評価した結果、はんだは円周部の2/3まで
はんだが広がり、良好なはんだ濡れ性を示した。以上本
発明の実施例等を説明したが、本発明に用いるスパッタ
装置は平行平板型の自公転スパッタ装置に限られるもの
ではなく、例えば公転型スパッタ装置、カルセール型ス
パッタ装置、基板を静止するスパッタ装置等、他の形式
のスパッタ装置でも有効である。また、膜の構成はT
i、Ni、Auに限るものではなく、Cr-Ni-Au、
Ti-Cu-Au、Cr-Cu-Au、Ti-Pt-Au等他
の構成でも良く、また3層構造以外でも有効である。
[Table 1] (Example 2) The same conditions as in Example 1 were used except that the RF output for bias applied between the substrate and the chamber was set to 0.2 kW, which is lower than in Example 1. An evaluation was made. FIG. 6 is a microstructure photograph of the cross section of the side surface of the substrate of the film thus obtained, observed by SEM. Similar to Example 1, a continuous and high-density film is formed between the grains, but it can be seen that the grain structure is slightly weaker than that of Example 1, and the density is lowered. This is the bias R. F. It is presumed that the output was low. The results of evaluation of the solder wettability of the above-mentioned film by the same method as in Example 1 are shown in Table 1. The solder wettability of 3500A is 4 to 8 mm, and although the solder wettability is slightly inferior to that of Example 1,
It shows good solder wettability as compared with the conventional case where no bias is applied. (Conventional example) 10 mm square × 2 mm thick Al as in Examples 1 and 2
Ti, Ni, and Au films were formed on N ceramics. For film formation, the same apparatus as in Examples 1 and 2 was used, and sputtering was performed only in DC. Sputter power is 2kW for DC power
The substrate was electrically connected to the chamber and grounded. Ar pressure, substrate rotation speed, substrate temperature, Ti, Ni, Au
The film thickness and the like are the same as those in Examples 1 and 2. FIG. 7 and FIG. 8 are microstructure photographs of the cross section of the substrate main surface and the substrate side surface of the film thus obtained, observed by SEM. As with the first and second embodiments, the film on the main surface of the substrate is formed as a continuous and high-density film having high malleability. However, unlike Examples 1 and 2, the film on the side surface of the substrate has a columnar structure, and clear voids are seen between the columnar particles. In the figure, 1 is Ti
The film, 2 is a Ni film, and 3 is an Au film. The solder wettability of the film is evaluated in the same manner as in Examples 1 and 2, and the results are shown in Table 1. It is understood that the solder spreadability is 3 to 7 mm and the solder wettability is poor. FIGS. 9 and 10 are SEM photographs of the surface of the side surface of the AlN ceramic substrate with bias powers of 0 and 0.5 kW, respectively. It can be seen that in the sputtered film formed without applying a bias, gaps are seen between the crystal grains, but in the sputtered film formed by bias sputtering, the gaps are small and the film structure is dense. It should be noted that the gaps between the aggregate units of a large number of crystal grains are Al
It is understood that this is a portion corresponding to a crystal grain boundary of N ceramics, and the gap caused by this crystal grain boundary is smaller when no bias is applied. (Example 3) Ti, Ni, and Au films were sequentially formed on the upper surface and the entire side surface of Si 3 N 4 ceramics having a diameter of 10 mm and a thickness of 2 mm from the base side. The Ti film was formed by DC sputtering with a sputtering power of 2 kW. The Ni and Au films were subjected to bias DC sputtering by applying DC power of 2 kW to the target. Ar pressure is 0.8 Pa,
The number of revolutions of the substrate was 4 rpm, the rotation was 14.4 rpm, and the substrate temperature during sputtering was 250 ° C. for all of Ti, Ni, and Au. The film thicknesses of Ti, Ni and Au on the main surface of the substrate were 4000, 20000 and 3500 angstroms. As in Examples 1 and 2, the film on the main surface of the substrate is a film having a high spreadability, which is continuous and has a high density. The side surface of the substrate also has a grain structure, and a film having continuous inter-grain and high density. Been formed. The solder wettability of the above film was evaluated in the same manner as in Example 1, and as a result, the solder spreads to 2/3 of the circumferential portion and shows good solder wettability. Although the embodiments and the like of the present invention have been described above, the sputtering apparatus used in the present invention is not limited to the parallel plate type revolving / revolving sputtering apparatus. It is also effective for other types of sputtering equipment such as equipment. Also, the structure of the film is T
Not limited to i, Ni and Au, Cr-Ni-Au,
Other configurations such as Ti-Cu-Au, Cr-Cu-Au, and Ti-Pt-Au may be used, and other than the three-layer structure is also effective.

【0007】[0007]

【発明の効果】本発明によれば、カケやクラックを発生
することなく、立体物上に、高効率に、膜の密度が高く
はんだ濡れ性の良い膜を得ることができる。
According to the present invention, it is possible to obtain a film having a high film density and a high solder wettability on a three-dimensional object with high efficiency and without causing cracks or cracks.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得た基板側面部の膜の断面を示すS
EMによる金属ミクロ組織写真である(30000倍)。
FIG. 1 is an S showing a cross section of a film on a side surface of a substrate obtained in Example 1.
It is a metal microstructure photograph by EM (30000 times).

【図2】実施例1で得た基板主面の膜の断面を示すSE
Mによる金属ミクロ組織写真である(30000倍)。
FIG. 2 SE showing a cross section of the film on the main surface of the substrate obtained in Example 1
It is a metal microstructure photograph by M (30000 times).

【図3】実施例1に用いた基体形状を示す。FIG. 3 shows the shape of the substrate used in Example 1.

【図4】実施例及び比較例で用いたはんだ濡れ性の評価
方法を示す図である。
FIG. 4 is a diagram showing a solder wettability evaluation method used in Examples and Comparative Examples.

【図5】実施例及び比較例で用いたはんだ濡れ性の評価
方法を示す図である。
FIG. 5 is a diagram showing a solder wettability evaluation method used in Examples and Comparative Examples.

【図6】実施例2で得た基板側面部の膜の断面を示すS
EMによる金属ミクロ組織写真である(30000倍)。
FIG. 6 is an S showing a cross section of the film on the side surface of the substrate obtained in Example 2;
It is a metal microstructure photograph by EM (30000 times).

【図7】比較例1で得た基板主面を示すSEMによる金
属ミクロ組織写真である(30000倍)。
FIG. 7 is a metal microstructure photograph by SEM showing the main surface of the substrate obtained in Comparative Example 1 (30000 times).

【図8】比較例1で得た基板側面部の膜の断面を示すS
EMによる金属ミクロ組織写真である(30000倍)。
8 is an S showing a cross section of the film on the side surface of the substrate obtained in Comparative Example 1. FIG.
It is a metal microstructure photograph by EM (30000 times).

【図9】従来のバイアスをかけないスパッタ法で作成し
た側面部膜の表面をSEMにより観察した金属ミクロ組
織写真である(10000倍)。
FIG. 9 is a micrograph of a metal microstructure obtained by observing the surface of a side surface film formed by a conventional bias-free sputtering method with an SEM (10000 times).

【図10】バイアスをかけたスパッタ法で作成した側面
部膜の表面をSEMにより観察した金属ミクロ組織写真
である(10000倍)。
FIG. 10 is a metal microstructure photograph of the surface of a side surface film formed by a biased sputtering method observed by SEM (10000 times).

【図11】成膜される面の角度とその膜の性状との関係
を調査するために使用した基体の形状を示す図である。
FIG. 11 is a diagram showing the shape of a substrate used for investigating the relationship between the angle of a film-formed surface and the property of the film.

【図12】通常のD.C.スパッタによる側面のスパッタ
膜表面をSEMにより観察した金属ミクロ組織写真であ
る(10000倍)。
FIG. 12 is a photograph of a metal microstructure of a side surface of a sputtered film formed by ordinary DC sputtering, observed by SEM (10000 times).

【図13】通常のD.C.スパッタによる側面のスパッタ
膜表面をSEMにより観察した金属ミクロ組織写真であ
る(10000倍)。
FIG. 13 is a photograph of a metal microstructure of a side surface of a sputtered film formed by normal DC sputtering, observed by SEM (10000 times).

【図14】通常のD.C.スパッタによる側面のスパッタ
膜表面のSEMにより観察した金属ミクロ組織写である
(10000倍)。
FIG. 14 is a metal microstructure image of a side surface of a sputtered film formed by normal DC sputtering, observed by SEM.
(10000 times).

【図15】通常のD.C.スパッタによるスパッタ膜断面
をSEMにより観察した金属ミクロ組織写真である(200
00倍)。
FIG. 15 is a micrograph of a metal microstructure obtained by observing a cross section of a sputtered film by ordinary DC sputtering with an SEM (200
00 times).

【図16】通常のD.C.スパッタによるスパッタ膜断面
をSEMにより観察した金属ミクロ組織写真である(300
00倍)。
16 is a photograph of a metal microstructure obtained by observing a cross section of a sputtered film formed by normal DC sputtering with an SEM (300
00 times).

【図17】通常のD.C.スパッタによるスパッタ膜断面
をSEMにより観察した金属ミクロ組織写真である(300
00倍)。
FIG. 17 is a micrograph of a metal microstructure obtained by observing a cross section of a sputtered film by ordinary DC sputtering with an SEM (300
00 times).

【図18】はんだ濡れ性の評価結果を示すグラフであ
る。
FIG. 18 is a graph showing evaluation results of solder wettability.

【図19】バイアススパッタで成膜した膜の組織を模式
的に示した図である。
FIG. 19 is a diagram schematically showing the structure of a film formed by bias sputtering.

【符号の説明】[Explanation of symbols]

1 Ti膜 2 Ni膜 3 Au膜 10 基体 11 主面 12 側面 13 はんだプリフォーム 14 はんだ広がり部 1 Ti Film 2 Ni Film 3 Au Film 10 Base 11 Main Surface 12 Side 13 Solder Preform 14 Solder Spread

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林田 哲哉 東京都青梅市今井2326番地株式会社日立製 作所デバイス開発センタ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuya Hayashida 2326 Imai, Ome-shi, Tokyo Hitachi, Ltd. Device Development Center

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 スパッタ膜が表面に形成された立体状部
材であり、立体状部材の基体がセラミックスであり、か
つスパッタ膜組織が粒の堆積構造を持つことを特徴とす
るスパッタ膜を有する部材。
1. A member having a sputtered film, characterized in that the sputtered film is a three-dimensional member formed on the surface, the base of the three-dimensional member is ceramics, and the sputtered film structure has a grain deposition structure. ..
【請求項2】 セラミックスが窒化アルミニウム焼結体
である請求項1記載のスパッタ膜を有する部材。
2. A member having a sputtered film according to claim 1, wherein the ceramic is an aluminum nitride sintered body.
【請求項3】 スパッタ膜が表面に形成された立体状の
部材であり、そのスパッタ膜組織が粒の堆積構造を持
ち、かつスパッタ膜上にはんだ層が形成されたことを特
徴とするスパッタ膜を有する部材。
3. A sputtered film, which is a three-dimensional member having a sputtered film formed on its surface, wherein the sputtered film has a grain deposition structure and a solder layer is formed on the sputtered film. A member having.
【請求項4】 スパッタ膜が表面に形成された立体状部
材であり、立体状部材の基体がセラミックスであり、か
つスパッタ膜組織が粒の堆積構造を持ち、スパッタ膜上
にはんだ層が形成されたことを特徴とするスパッタ膜を
有する部材。
4. A three-dimensional member having a sputtered film formed on its surface, a substrate of the three-dimensional member is ceramics, a sputtered film structure has a grain deposition structure, and a solder layer is formed on the sputtered film. A member having a sputtered film.
【請求項5】 セラミックスが窒化アルミニウム焼結体
である請求項4記載のスパッタ膜を有する部材。
5. The member having a sputtered film according to claim 4, wherein the ceramic is an aluminum nitride sintered body.
【請求項6】 スパッタターゲットのスパッタ面とのな
す角度が60〜90゜の面を有するセラミックス基体の当該
面にスパッタ膜を形成するに際し、バイアススパッタ法
を採用したことを特徴とするスパッタ膜を有する部材の
製造方法。
6. A sputtering film characterized by employing a bias sputtering method when forming a sputtering film on a surface of a ceramic substrate having an angle of 60 to 90 ° with a sputtering surface of a sputtering target. A method of manufacturing a member having.
【請求項7】 スパッタターゲットのスパッタ面とのな
す角度が60〜90゜の面にバイアススパッタ法によりスパ
ッタを膜形成し、しかる後に当該スパッタ膜上にはんだ
付け処理をすることを特徴とするスパッタ膜を有する部
材の製造方法。
7. A sputtering method, characterized in that a film is formed by sputtering with a bias sputtering method on a surface having an angle of 60 to 90 ° with a sputtering surface of a sputtering target, and then soldering is performed on the sputtering film. A method for manufacturing a member having a film.
【請求項8】 スパッタ膜を形成する基体が窒化アルミ
ニウム焼結体である請求項7記載のスパッタ膜を有する
部材の製造方法。
8. The method for producing a member having a sputtered film according to claim 7, wherein the substrate on which the sputtered film is formed is an aluminum nitride sintered body.
JP14385991A 1991-05-20 1991-05-20 Sputtering film-bearing member and its production Pending JPH0585868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14385991A JPH0585868A (en) 1991-05-20 1991-05-20 Sputtering film-bearing member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14385991A JPH0585868A (en) 1991-05-20 1991-05-20 Sputtering film-bearing member and its production

Publications (1)

Publication Number Publication Date
JPH0585868A true JPH0585868A (en) 1993-04-06

Family

ID=15348637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14385991A Pending JPH0585868A (en) 1991-05-20 1991-05-20 Sputtering film-bearing member and its production

Country Status (1)

Country Link
JP (1) JPH0585868A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239220A (en) * 2005-03-04 2006-09-14 Olympus Corp Production method of endoscope
JP2008198705A (en) * 2007-02-09 2008-08-28 Showa Denko Kk Method for manufacturing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239220A (en) * 2005-03-04 2006-09-14 Olympus Corp Production method of endoscope
JP4664705B2 (en) * 2005-03-04 2011-04-06 オリンパス株式会社 Endoscope manufacturing method
JP2008198705A (en) * 2007-02-09 2008-08-28 Showa Denko Kk Method for manufacturing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp

Similar Documents

Publication Publication Date Title
EP0875924A2 (en) Improved tantalum-containing barrier layers for copper
JP2011155271A (en) Stratified structure with ferroelectric layer and process for producing the same
CN1190007C (en) Surface acoustic wave filter
JPH02167890A (en) Nickel film and sputtering forming same film
JPH0585868A (en) Sputtering film-bearing member and its production
JP3391184B2 (en) Silicon wafer and method for manufacturing the same
JP2009141230A (en) Method of manufacturing semiconductor device and sputtering apparatus for manufacturing semiconductor device
JP2664744B2 (en) Aluminum nitride thin film circuit board
US5250327A (en) Composite substrate and process for producing the same
US5985754A (en) Method of forming a void-free contact plug
JPS6184037A (en) Aluminium nitride base ceramics substrate
JP4795529B2 (en) Ceramic substrate, thin film circuit substrate, and method for manufacturing ceramic substrate
JP3454331B2 (en) Circuit board and method of manufacturing the same
JP2000323434A (en) Sputtering target, wiring film, and electronic part
JP2002201072A (en) AlN SINTERED COMPACT AND AlN CIRCUIT SUBSTRATE USING IT
JPH10226572A (en) Bismuth-containing laminar perovskite sintered compact, its production and its use
JPS6130042A (en) Semiconductor element loading substrate
JP3015491B2 (en) AlN substrate
JPH02271634A (en) Formation of multi-layer wiring
JPH04307958A (en) Manufacture of semiconductor integrated circuit device
JPS62247064A (en) Growing method for metallic film
JPH08186114A (en) Wiring thin film and manufacture thereof
JP3116484B2 (en) Piezoelectric ceramic thin plate element
Ojha et al. Fabrication of smooth SAC305 thin film via magnetron sputtering
JP2782797B2 (en) Method for manufacturing semiconductor device