JPH0585826A - Sintered ceramics - Google Patents

Sintered ceramics

Info

Publication number
JPH0585826A
JPH0585826A JP3246069A JP24606991A JPH0585826A JP H0585826 A JPH0585826 A JP H0585826A JP 3246069 A JP3246069 A JP 3246069A JP 24606991 A JP24606991 A JP 24606991A JP H0585826 A JPH0585826 A JP H0585826A
Authority
JP
Japan
Prior art keywords
tin
cutting
aln
tool
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3246069A
Other languages
Japanese (ja)
Inventor
Yorimasa Takeda
頼正 竹田
Hideo Tsunoda
英雄 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3246069A priority Critical patent/JPH0585826A/en
Publication of JPH0585826A publication Critical patent/JPH0585826A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the chipping resistance of a ceramic tool composed mainly of TiN in the high-speed cutting or intermittent cutting of a hard material by forming a binary phase texture consisting of TiN and a Y-type Si-Al-O-N binder. CONSTITUTION:The raw material powder for the subject ceramic is produced by mixing 40-80vol.% of TiN used as a main component with Al3O3 to improve the sinterability and further AlN and SiC fine powder or whisker to prevent the lowering of chipping resistance caused by the unreacted Al2O3 remaining after sintering. When the raw material powder is sintered, reaction of the AlN, SiC and Al2O3in the binder takes place to form a Y-type Si-Al-O-N having high heat-conductivity. In the above process, the SiC, AlN and Al2O3 are compounded in such a manner as to form a binary texture consisting of TiN and Y-type Si-AlO-N. The heat-conductivity is improved by this process to suppress the generation of thermal stress. The tool made of the sintered ceramic has remarkably improved chipping resistance in the high-speed cutting and intermittent cutting of a hard material such as bearing steel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工具用セラミックス焼
結体に関し、特に例えば軸受け鋼等の高硬度材料の高速
度切削加工用および断続切削加工用の工具として最適な
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic sintered body for tools, and is particularly suitable as a tool for high speed cutting and interrupted cutting of high hardness materials such as bearing steel.

【0002】[0002]

【従来の技術】従来において、被削材の硬度が、ロック
ウェル硬さ(HRC)で、60以上の高硬度材料の加工
は、切削加工が困難であるため、主としてダイヤモンド
砥粒等による研削加工を行っている。しかしながら該研
削加工では、加工速度が遅いために、行程短縮が思うよ
うにならない。
2. Description of the Related Art Conventionally, a work material having a Rockwell hardness (HRC) of 60 or more and a hard material of 60 or more is difficult to cut. It is carried out. However, in the grinding process, since the processing speed is slow, the process cannot be shortened.

【0003】この問題を解決する高硬度材料を切削加工
する工具として、WC−C0 を主成分とする超硬合金工
具,TiC−TiN−Ni−M0系のサーメット工具,
Al23 を主成分とするセラミックス工具,CBNは粒
子を高温高圧で焼結したCBN焼結工具が種々開発され
ている。これら高硬度材料の切削加工用工具としては、
工具摩耗量が小さいことおよび、切削後の被削材の加工
面粗さが良好なこと等の性能が必要とされ、特にCBN
焼結工具の重要性が増して来ている。
As a tool for cutting a high hardness material to solve this problem, a cemented carbide tool containing WC-C 0 as a main component, a TiC-TiN-Ni-M 0 series cermet tool,
For CBN, which is a ceramics tool containing Al 2 O 3 as a main component, various CBN sintering tools in which particles are sintered at high temperature and high pressure have been developed. As a tool for cutting these high hardness materials,
Performance such as small tool wear and good work surface roughness of the work material after cutting is required, especially CBN
The importance of sintering tools is increasing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上述した
工具のうち、超硬合金工具やサーメット工具では金属バ
インダが加工時の発熱により塑性変形を起こすため、摩
耗が短時間で進行し、高硬度材料用工具としては適用で
きない。一方、Al23 を主体とするセラミックス工具
は、硬さの点では優れているが、超硬合金やサーメット
と比較して欠損しやすいこと、およびチッピング(微小
領域での剥離亀裂現象)を起こし易いことから、加工面
が粗くなり、仕上げ加工を主とする高硬度材料の切削へ
の適用は難かしい。尚、CBN焼結工具は、高硬度材料
の切削加工用の要求性能には合致しているものの、CB
Nを焼結するためには1600℃以上の高温および5万
気圧以上の高圧が必要で、且つ製造設備も特殊なものと
なるため、製造コストが非常に高いものとなる。
However, among the above-mentioned tools, in the cemented carbide tools and cermet tools, the metal binder causes plastic deformation due to heat generation during processing, so that wear progresses in a short time and Not applicable as a tool. On the other hand, the Al 2 O 3 -based ceramics tool is superior in hardness, but is more susceptible to chipping as compared with cemented carbide and cermet, and chipping (peeling crack phenomenon in a minute area) Since it is liable to occur, the machined surface becomes rough and it is difficult to apply it to cutting of high hardness material mainly for finishing. Although the CBN sintered tool meets the required performance for cutting of high hardness materials,
To sinter N, a high temperature of 1600 ° C. or higher and a high pressure of 50,000 atmospheres or higher are required, and the manufacturing equipment is also special, so the manufacturing cost becomes very high.

【0005】そこで近年、TiN(窒化チタン)を主体
としたセラミックス工具が提案されている。これは、主
成分として40〜80体積%のTiNを有するもので、
被削材の表面粗さの向上に顕著な向上が見られる。ここ
でTiNを40〜80体積%に限定したのは、40%以
下では細いチッピングにより表面粗さが低下するためで
あり、80%以上では、焼結は可能だが緻密化が不十分
で欠損し易くなるためである。
Therefore, in recent years, a ceramic tool mainly composed of TiN (titanium nitride) has been proposed. This has 40 to 80% by volume of TiN as a main component,
A remarkable improvement is seen in the improvement of the surface roughness of the work material. The reason why TiN is limited to 40 to 80% by volume is that the surface roughness is reduced by fine chipping at 40% or less, and at 80% or more, sintering is possible but densification is insufficient and defects occur. This is because it becomes easier.

【0006】これらのセラミックス工具のうち、ある種
のものはバインダに主としてAl2 3 を採用している。
一般にAl23 系セラミックス工具では、面粗さの低下
は、結晶粒の脱落によるものと考えられて、その原因と
してAl23 の熱伝導率の悪さが考えられる。材料の熱
伝導率が悪いと、被削材との界面で、発生した熱が伝わ
りにくく工具表面と内部との温度差が生じ、大きな熱応
力が発生する。この熱応力によって極端な場合には欠損
を生じ、欠損しない場合も結晶粒が脱落するチツピング
が生じる。そして、被削材の硬度がより高くなるか、ま
たは切削速度が上るにつれて、主として、Al23 がバ
インダとして使かわれた場合、上記理由により、熱応力
が大きくなり欠損し易くなる。
Some of these ceramic tools
Those mainly used as a binder2O 3Has been adopted.
Generally Al2O3Surface roughness of ceramics tools
Is thought to be due to the loss of crystal grains, and
Then Al2O3The poor thermal conductivity of is considered. Material heat
If the conductivity is poor, the heat generated will be transferred at the interface with the work material.
Temperature difference between the tool surface and the inside
Power is generated. Defects in extreme cases due to this thermal stress
Chipping that causes crystal grains to fall off even if there is no defect
Occurs. Then, whether the hardness of the work material becomes higher,
As the cutting speed increases,2O3But
When used as an inder, the thermal stress is
Becomes larger and is likely to be lost.

【0007】そこで、別種のものでは、熱伝達性に優れ
たAlNをバインダとして適用することにより、チッピ
ングの発生を低下させている。また被削材によっては、
断続切削が要求され、この場合には物理的または熱的な
大きな衝撃が掛かるが、SiCウィスカーの添加が有効
であることが、確認されている。しかしながら断続切削
への適用の場合、欠損防止のためには、さらに抗折力を
高める必要があった。
Therefore, in another type, the occurrence of chipping is reduced by applying AlN having excellent heat transfer property as a binder. Also, depending on the work material,
It has been confirmed that the addition of SiC whiskers is effective, though intermittent cutting is required and a large physical or thermal shock is applied in this case. However, in the case of application to intermittent cutting, it was necessary to further increase the transverse rupture strength in order to prevent chipping.

【0008】本発明は上記状況に鑑みなされたもので、
通常のセラミックス焼結法で製作可能でありながら、高
硬度材料の切削工具に適したセラミックス焼結体を提供
するものである。
The present invention has been made in view of the above circumstances,
It is intended to provide a ceramics sintered body suitable for a cutting tool made of a high hardness material, which can be manufactured by an ordinary ceramics sintering method.

【0009】[0009]

【課題を解決するための手段】そこで、本発明では以下
のような焼結体の構成とした。すなわち、TiNは、上
述した理由で40〜80%体積%とし、熱伝導率を高め
チッピングを防止するためAlNを添加する。そして、
本発明の要点は、微粒(ウィスカーでもよい)のSiC
を添加することにあり、この際の焼結性をよくするため
Al23 を添加する。焼結後、バインダのAlN、Si
C,Al23 は、反応し熱伝導性が良好なY型Si−A
l−O−N、を形成するが、この時Al23 が未反応で
残ると、耐欠損性が大巾に減少する。つまり、本発明の
セラミックス焼結体は、TiNを40〜80体積%と
し、焼結後TiNとY型Si−Al−O−Nの二相組織
となるように、SiC,AlN,Al23 を配合したも
のである。尚、小量のZrO2 ,Y2 3 は、小量の添
加であればSiCを添加したことによる難焼結性を改善
し、抗折力には悪影響を及ぼさない。また、不純物とし
てのSiM2 は、許容される。
Therefore, in the present invention, the following constitution of the sintered body is adopted. That is, TiN is made 40 to 80% by volume for the above-mentioned reason, and AlN is added to enhance the thermal conductivity and prevent chipping. And
The gist of the present invention is that fine-grained (whisker) SiC
In order to improve the sinterability at this time, Al 2 O 3 is added. After sintering, the binder AlN, Si
C, Al 2 O 3 reacts with Y-type Si-A having good thermal conductivity.
However, if Al 2 O 3 remains unreacted at this time, the fracture resistance is greatly reduced. That is, in the ceramic sintered body of the present invention, TiN is set to 40 to 80% by volume, and SiC, AlN, and Al 2 O are formed so as to have a two-phase structure of TiN and Y-type Si—Al—O—N after sintering. It is a mixture of 3 . If a small amount of ZrO 2 or Y 2 O 3 is added, a small amount of ZrO 2 or Y 2 O 3 improves the difficulty of sintering due to the addition of SiC and does not adversely affect the transverse rupture strength. Further, SiM 2 as an impurity is allowed.

【0010】[0010]

【作用】高硬度材料の切削用として適しているTiN系
セラミックスにおいて焼結性を改善するためAl23
添加するが、焼結後Al23 が残留すると耐欠損性が低
下する。このためAlN,SiCも添加し、TiNと熱
伝達率の良好なY型Si−Al−O−Nの二相組織に
し、熱伝導性の向上すなわち熱応力の発生低下を図り、
高速切削,断続切削時の耐欠損性を大巾に改善する。
In the TiN ceramics suitable for cutting high hardness materials, Al 2 O 3 is added to improve the sinterability, but if Al 2 O 3 remains after the sintering, the fracture resistance decreases. Therefore, AlN and SiC are also added to form a two-phase structure of TiN and Y-type Si-Al-O-N having a good heat transfer coefficient to improve the thermal conductivity, that is, to reduce the generation of thermal stress.
Greatly improves fracture resistance during high-speed cutting and intermittent cutting.

【0011】[0011]

【実施例】以下、本発明の好適な実施例について詳細に
説明する。本実施例では、主成分として、平均粒径が
1.5μmのTiN粉末および平均粒径が0.3μmの
AlN粉末平均,直径0.3μmで平均長さ2μmのS
iCウィスカー,平均粒径が0.3μmのAl23
末,平均粒径が0.3μmの3mol%Y2 3 部分安
定化ZrO2 粉末を下記の組成に配合し、更にエタノー
ルを加えて湿式配合し、その後乾燥して原料粉とした。
また、TiN粉末以外の体積%を下記のように変えた原
料粉を用いて比較例とした。そして、これらの原料粉を
所定の温度で真空中でホットプレス(圧力400kgf/cm
2)し、焼結した。 試料 原料組成(vol/%) 焼成温度 TiN AlN SiC ウィスカ Al2O3 ZrO2 実施例 60 20 10 7 3 1500 ℃ 比較例 60 12 4 23 1 1500 ℃
The preferred embodiments of the present invention will be described in detail below. In this embodiment, TiN powder having an average particle size of 1.5 μm, AlN powder having an average particle size of 0.3 μm, and S having an average diameter of 0.3 μm and an average length of 2 μm are used as main components.
iC whiskers, Al 2 O 3 powder having an average particle size of 0.3 μm, 3 mol% Y 2 O 3 partially stabilized ZrO 2 powder having an average particle size of 0.3 μm were added to the following composition, and ethanol was further added. Wet-blending was performed and then dried to obtain raw material powder.
In addition, a raw material powder in which the volume% other than TiN powder was changed as follows was used as a comparative example. Then, these raw material powders are hot-pressed in a vacuum at a predetermined temperature (pressure 400 kgf / cm
2 ) and sintered. Sample Raw material composition (vol /%) Firing temperature TiN AlN SiC whisker Al 2 O 3 ZrO 2 Example 60 20 10 7 3 1500 ℃ Comparative example 60 12 4 23 1 1500 ℃

【0012】実施例と比較例とのX線回析の結果を図1
と図2とにそれぞれ示す。これらの図から明らかなよう
に、実施例ではTiN,Y型Si−Al−O−Nと不純
物としてのSi2 Mより構成されているのに対して、比
較例ではこれらの化合物の他にさらに、Al23 が存在
していることが分かる。
FIG. 1 shows the results of X-ray diffraction of Examples and Comparative Examples.
And FIG. 2 respectively. As is clear from these figures, in the examples, TiN, Y-type Si—Al—O—N and Si 2 M as an impurity are used, whereas in the comparative example, in addition to these compounds, , Al 2 O 3 is present.

【0013】発明者等はその後、スローアウェイチップ
(ISO記号SNMN432(加工後寸法12.7mm
×12.7mm×4.76mm、コーナ半径0.8m
m))の形状に加工して工具とした。そして、得られた
工具を用い、以下の条件で連続切削試験を行ない、それ
ぞれの評価を行なった。 被削材 :SUJ2(HRC 62程度) 切削速度:100m/min および150m/min 切り込み:0.1mm/rev 送り :0.1/rev 切削速度100m/min では、実施例,比較例ともに、
良好な結果を示し、6000mの切削距離において、逃
げ面摩耗量は、0.3mm程度で、また仕上げ面粗さも
3μmと、現在高硬度切削工具として用いられているC
BN焼結工具と同等の特性を示した。
The inventor and the like then used the throw-away tip (ISO symbol SNMN432 (size after processing 12.7 mm).
× 12.7 mm × 4.76 mm, corner radius 0.8 m
m)) and processed into a tool. Then, using the obtained tool, a continuous cutting test was performed under the following conditions, and each evaluation was performed. Work Material: SUJ2 (HRC about 62) Cutting Speed: 100 m / min and 150 m / min Cutting Depth: 0.1 mm / rev Feed: 0.1 / rev Cutting Speed 100 m / min In both Example and Comparative Example,
A good result is shown. At a cutting distance of 6000 m, the flank wear amount is about 0.3 mm, and the finished surface roughness is 3 μm, which is C currently used as a high hardness cutting tool.
It showed the same characteristics as the BN sintering tool.

【0014】発明者等は次に、切削速度を上げて、15
0m/min で切削試験を実施した。その結果、比較例は
すぐに欠損して切削できなかったが、実施例は図3に示
す通り、2000mの切削距離まで欠損せず、仕上げ面
粗さも3μm以下と良好であり、高速での切削性が大巾
に改善されることが判明した。
Next, the inventors increased the cutting speed to 15
A cutting test was performed at 0 m / min. As a result, the comparative example was damaged immediately and could not be cut, but the example did not damage up to a cutting distance of 2000 m as shown in FIG. 3, and the finished surface roughness was good at 3 μm or less, and cutting at high speed. It turned out that the sex is greatly improved.

【0015】発明者等は、次に図4に示す試験片を用
い、以下の条件で断続切削試験を実施した。尚、本実施
例では試験片の直径を54mm,長さを128mmとし
た。 被削材 :SUJ2(HRC 62) 切削速度:100m/min 切り込み:0.1mm 送り :0.1mm 1パス :217m 断続回数:10204回 その結果、比較例は1パスで欠損したのに対して、実施
例は、7回目で欠損し、断続切削性も大巾に向上してい
ることが、判明した。そしてこの場合、仕上面粗さも3
μm程度で良好であった。この試験により、ZrO2
2 3 は、小量の添加であれば、SiCを添加したこ
とによる難焼結性を改善し、抗折力には悪影響を及ぼさ
ないこと、また不純物としてのSiM2 は許容されるこ
とが確認された。
The inventors next conducted an intermittent cutting test using the test piece shown in FIG. 4 under the following conditions. In this example, the test piece had a diameter of 54 mm and a length of 128 mm. Work material: SUJ2 (HRC 62) Cutting speed: 100 m / min Depth of cut: 0.1 mm Feed: 0.1 mm 1 pass: 217 m Intermittent frequency: 10204 times As a result, the comparative example was defective in 1 pass, In the example, it was found that the chipping occurred at the 7th time, and the interrupted machinability was greatly improved. In this case, the finished surface roughness is also 3
It was good at about μm. This test shows that ZrO 2 ,
If Y 2 O 3 is added in a small amount, it improves the sintering resistance due to the addition of SiC and does not adversely affect the transverse rupture strength, and SiM 2 as an impurity is allowed. Was confirmed.

【0016】尚、上記条件で現在高硬度材切削用に用い
られているAl23 セラミックス(含TiC)およびC
BN焼結工具について切削試験を実施した結果、Al2
3 セラミックスは、1回のパスで欠損したのに対して、
CBN焼結工具は11回でも欠損しなかった。
Under the above conditions, Al 2 O 3 ceramics (including TiC) and C, which are currently used for cutting high hardness materials, are used.
As a result of cutting test performed on the BN sintered tool, Al 2 O
While 3 ceramics were damaged in one pass,
The CBN sintering tool was not broken even after 11 times.

【0017】[0017]

【発明の効果】以上、実施例に基づき詳細に述べたよう
に、本発明のセラミックス焼結体を用いることにより、
高速切削性,断続切削性においてCBN焼結工具と略同
等の優れた高硬度鋼用のセラミックス工具を安価に製作
できるという効果を奏する。
As described above in detail based on the examples, by using the ceramic sintered body of the present invention,
It is possible to inexpensively manufacture a ceramic tool for high-hardness steel, which is excellent in high-speed machinability and intermittent machinability and is substantially equivalent to a CBN sintered tool.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るセラミックス焼結体の
X線回析の結果を示すグラフである。
FIG. 1 is a graph showing a result of X-ray diffraction of a ceramics sintered body according to an example of the present invention.

【図2】比較例のセラミックス焼結体のX線回析の結果
を示すグラフである。
FIG. 2 is a graph showing a result of X-ray diffraction of a ceramic sintered body of a comparative example.

【図3】本発明の一実施例に係るセラミックス焼結工具
の切削試験の結果を示すグラフである。
FIG. 3 is a graph showing a result of a cutting test of a ceramics sintered tool according to an example of the present invention.

【図4】本発明の一実施例に係るセラミックス工具の形
状を示す正面図および側面図である。
FIG. 4 is a front view and a side view showing the shape of a ceramics tool according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 40〜80体積%のTiNと、Y型Si
−Al−O−Nを主成分とするバインダとの二相組織を
形成してなることを特徴とするセラミックス焼結体。
1. TiN of 40 to 80% by volume and Y-type Si
A ceramics sintered body characterized by forming a two-phase structure with a binder containing —Al—O—N as a main component.
JP3246069A 1991-09-25 1991-09-25 Sintered ceramics Pending JPH0585826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3246069A JPH0585826A (en) 1991-09-25 1991-09-25 Sintered ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3246069A JPH0585826A (en) 1991-09-25 1991-09-25 Sintered ceramics

Publications (1)

Publication Number Publication Date
JPH0585826A true JPH0585826A (en) 1993-04-06

Family

ID=17143007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3246069A Pending JPH0585826A (en) 1991-09-25 1991-09-25 Sintered ceramics

Country Status (1)

Country Link
JP (1) JPH0585826A (en)

Similar Documents

Publication Publication Date Title
US4406668A (en) Nitride coated silicon nitride cutting tools
US4406667A (en) Nitride coated composite silicon nitride cutting tools
JPS6011288A (en) Surface coated sialon-base ceramic tool member
WO1989001925A1 (en) Alumina coated silicon carbide whisker-alumina composition
KR20170108457A (en) Composite sintered body for cutting tools and cutting tools using the same
EP2957368B1 (en) Cutting tool
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
EP0095131B1 (en) Coated silicon nitride cutting tools
JPH1036174A (en) Sintered ceramic material and sintering of the same material and high-speed machining of the same material
JPS644988B2 (en)
JP4070417B2 (en) Silicon nitride member, method for manufacturing the same, and cutting tool
JPH0585826A (en) Sintered ceramics
EP0133289B1 (en) Wear-resistant member and manufacturing method thereof
JP2977308B2 (en) Ceramic sintered body for machining
JP2596094B2 (en) Surface-coated ceramic cutting tool with excellent wear resistance
JP2735919B2 (en) Sintered body for tool and manufacturing method thereof
JP2604155B2 (en) Ceramic tool with coating layer
JP2005212048A (en) Ceramics and cutting tool using the same
JPS6259568A (en) Ceramic material excellent in precise processability
JP2006187831A (en) Cutting insert and cutting tool
JPH0663804A (en) Throw-away tip for cutting made of silicon-nitride-based coated ceramics
JPH08112705A (en) Cutting tool made of silicon nitride substance sintered body and its manufacture
JP3544632B2 (en) Coated cemented carbide
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JP2570354B2 (en) Surface coated ceramic members for cutting tools

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991214