JPH058528B2 - - Google Patents

Info

Publication number
JPH058528B2
JPH058528B2 JP61041322A JP4132286A JPH058528B2 JP H058528 B2 JPH058528 B2 JP H058528B2 JP 61041322 A JP61041322 A JP 61041322A JP 4132286 A JP4132286 A JP 4132286A JP H058528 B2 JPH058528 B2 JP H058528B2
Authority
JP
Japan
Prior art keywords
epoxy resin
base material
curing agent
solution
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61041322A
Other languages
Japanese (ja)
Other versions
JPS62290011A (en
Inventor
Mitsuaki Tanaka
Koyo Matsukawa
Taizo Uno
Makoto Nakahira
Chikakazu Inaba
Masayoshi Yamakido
Hidemi Ito
Yoichiro Makimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP61041322A priority Critical patent/JPS62290011A/en
Publication of JPS62290011A publication Critical patent/JPS62290011A/en
Publication of JPH058528B2 publication Critical patent/JPH058528B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Chemically Coating (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、電子部品材料(プリント配線基板、
電極材料等)、帯電防止衣料、或は面発熱体等に
好適に用いられる新規なエポキシ樹脂系低電気抵
抗材料とその製造方法に関する。 (従来の技術) エポキシ樹脂は、合成樹脂の軽量・安価である
特性に加え機械的強度が大きく、接着力も大であ
ることから各種成形物や接着剤として広く用いら
れ、最近では電子部品材料等にもその用途が広ま
りつつあることは周知の通りである。ところでエ
ポキシ樹脂やその他の合成樹脂は一般に絶縁体で
あることから、電子部品関係の用途、特に電極材
料やプリント配線基板等に用いる場合には、これ
ら樹脂成形物の表面を導電性の金属膜や導電性塗
料で被覆したりすることが必要とされる。亦、合
成樹脂は帯電性に富み、空気中の塵埃を吸引し易
い為、上記電子部品関係に限らず衣料等の分野に
おいてもこれに導電性を付与したりすることがな
される。 (発明が解決しようとする問題点) 上記の如き導電性被膜を形成する方法としては
無電解メツキ法、真空蒸着法、スパツタリング
法、イオンプレーテイング法及び塗装法等がある
が、これらの方法はいずれも複雑な工程及び高価
な装置を必要とし、製造コストが高くなり合成樹
脂の安価な特性が相殺され、しかも、得られた被
膜の密着性が弱く初期の性能が長く維持されな
い、と云つた欠点があつた。特に最も多用されて
いる無電解メツキ法の場合を例に採ると、樹脂成
形品の表面を混酸で処理する表面粗化工程、表面
の感度を上げるため粗化面にスズイオンを吸着さ
せるセンシタイジング工程、粗化面を活性化させ
る為スズイオンを白金に置換させるアクチベーテ
イング工程、白金の触媒作用を利用して目的の金
属を析出させる無電解メツキ工程等を必要としそ
の要する労力・時間及び資材等は極めて多大であ
つた。 亦、導電性塗料にて導電性被膜を形成する場合
(特に電磁シールドを施したハウジング等に用い
られている)、密着性に難がある為、剥離に伴う
短絡などの問題点があつた。 更に、プラスチツクスの基板内にニクロム線を
封蔵したり、導電性カーボンブラツクを混練して
面発熱体(例えば、温熱床材、電気毛布等)とす
ることも行われているが、使用材料や製品形状が
自ずと限定される。亦、酸化錫被膜により面状発
熱体を得る方法もあるが、基板材料に800℃以上
もの熱処理を要する等によつて基板材料が必然的
に制限されると云う難点があつた。 本発明は、上記に鑑みなされたもので、エポキ
シ樹脂表面に化学結合により硫化銅の被膜を密着
的に形成し、上記のようなもの及び他の新たな用
途展開を可能とする新規なエポキシ樹脂系低電気
抵抗材料並びにその有効な製造方法を提供せんと
するものである。 (問題点を解決する為の手段) 上記目的を達成する為の本発明の構成は、特定
発明が、アミン系、ポリアミン系、ポリアミド系
若しくはポリチオール系を含有する硬化剤により
硬化されたエポキシ樹脂から成る基材又は絶縁性
材料にアミン系、ポリアミン系、ポリアミド系若
しくはポリチオール系を含有する硬化剤により硬
化されたエポキシ樹脂にて被覆して成る基材の表
面に、硫化銅の被膜を析出被着せしめて成ること
を要旨とするエポキシ樹脂系低電気抵抗材料にあ
り、また発明が、アミン系、ポリアミン系、ポリ
アミド系若しくはポリチオール系を含有する硬化
剤により硬化されたエポキシ樹脂から成る基材又
は絶縁性材料にアミン系、ポリアミン系、ポリア
ミド系若しくはポリチオール系を含有する硬化剤
により硬化されたエポキシ樹脂にて被覆して成る
基材を、銅イオン含有溶液及び硫黄を含む還元性
化合物溶液の混合液に浸漬し、この混合液の還元
反応により上記基板表面に硫化銅を析出させるよ
うにしたことを特徴とするエポキシ樹脂系低電気
抵抗材料の製造方法にある。 便宜上本発明の第2の要旨である製造方法につ
いて先ず詳述する。本発明方法で用いられる基材
は、上記の如くアミン系、ポリアミン系、ポリア
ミド系又はポリチオール系を含有した硬化剤によ
り硬化したエポキシ樹脂そのものから成るもの、
及び絶縁性材料を、上記の硬化剤により硬化した
エポキシ樹脂にて被覆して成るものであるが、前
者はエポキシ樹脂の各種成形品(例えば、箱形、
板状或は粉粒状成形品等)、後者はガラス、プラ
スチツクス、セラミツクス、木材、繊維等の絶縁
性材料及びそれらの粉粒状物の表面をエポキシ樹
脂にてコーテイングしたものであり、用途に応じ
適宜選択される。 これら基材は銅イオン含有溶液及び硫黄を含む
還元性化合物溶液の混合液に浸漬されるが、この
銅イオン含有溶液は、硫酸銅溶液、硝酸銅溶液、
酢酸銅溶液及び塩化銅溶液等の如き塩類溶液より
選ばれたいずれか一種若しくは数種より調製さ
れ、その濃度は0.01mol/〜夫々の飽和濃度
(例えば、塩化銅の飽和濃度を採れば、0.01〜
4.9mol/)以下が適当であり、特に0.05〜
1.5mol/が好適な範囲であるが、必ずしもこ
の範囲に限定されるものではない。更に、そのPH
は7以下の酸性領域が適当であり、特に2〜5に
調整されることが望ましい。亦、銅イオン含有溶
液と共に用いられる還元性化合物溶液は、硫黄を
含むチオ硫酸ナトリウム、亜硫酸ナトリウム及び
硫化水素等の如き化合物より選ばれた1種若しく
は数種から成り、この還元性化合物溶液の濃度は
0.05〜1.5mol/が好ましいが、これに限定され
るものではなく、またその添加量は上記銅イオン
含有溶液と略化学当量とされることが望ましいが
これに限定されるものでないことは云うまでもな
い。 上記混合溶液に対する基材の浸漬は、銅イオン
含有溶液に基材を浸漬させた後還元性化合物溶液
を加えるか、還元性化合物溶液に基材を浸漬させ
た後銅イオン含有溶液を加えるか、或は両溶液を
予め混合させた後基材を浸漬させるかいずれでも
良く、要は両溶液の還元反応時に上記基材が浸漬
されておれば良い。 斯くして銅イオン含有溶液及び還元性溶液を含
み且つ上記基材を浸漬した反応容器を60〜90℃の
温浴上で10分乃至3時間程度撹拌或は振とうさせ
ながら加熱すると、基材のエポキシ樹脂表面に主
として硫化第一銅(硫化第二銅を混合析出する場
合も若干あるが、以下ではこれらを総称して硫化
銅とする)が析出しその被膜が形成される。この
時、各種界面活性剤、プロピレンカーボネート、
エチレングリコール等の添加剤を適量加えれば、
エポキシ樹脂表面に均一で且つ光沢に富んだ硫化
銅の被膜を形成させることが出来る。 (作用) 上記の如く、銅イオン含有溶液と還元性化合物
溶液とを混合した還元反応によると、これらを
夫々硫酸銅溶液及びチオ硫酸ナトリウム溶液とし
た場合、主として次式の如き反応が起こり、 2CuSO4+2Na2S2O3+2H2O =Cu2S+S+2Na2SO4+2H2SO4 硫化銅(Cu2S)が析出して基材のエポキシ樹脂
表面に被着する。このとき、析出過程の硫化銅は
上記アミン系などを含有する硬化剤により硬化さ
れたエポキシ樹脂硬化体表面の官能基と化学的結
合状態でその表面に被膜として定着される。斯か
る事実は、上記の処理品を光電子分光法
(ESCA)により分析した結果、エポキシ樹脂の
官能基に伴うピークが消え、代つて銅、硫黄の存
在が現出する事実が確認されたことにより明らか
である。 亦、上記の如き添加剤を加えておくこと、エポ
キシ樹脂表面のぬれ性が良くなり、硫化銅被膜が
均一に形成されると共に硫化銅の析出粒子が均一
微細となり透明性及び光沢性に優れた被膜が形成
される。 得られら処理品の表面抵抗値は、101〜104Ω、
多くの場合102Ωである。従つて、電子部品材料
や発熱体等のようなものに適した場合、その要求
性能を充分に充足させることが出来るものであ
る。 (実施例) 以下に実施例により本発明を更に詳述する。 実施例 1 (1) 基材の調整; ガラス板上に、ビスフエノールA型エポキシ
樹脂(エポキシ当量190)及び硬化剤(第1表
に示す)を当量ずつ混合してなるエポキシ樹脂
を塗布し、80±5℃で5時間硬化させてエポキ
シ樹脂の被膜を形成させた。 (2) 反応溶液の調製; 1mol/の硝酸銅溶液10ml、1mol/のチ
オ硫酸ナトリウム溶液10mlを準備した。 (3) 反応条件; 上記基材を反応容器に入れ、且つ上記反応溶
液を加えて、65℃の温浴上で3時間振とうし、
その後上記基材を取り出し水洗して乾燥した。 (4) 表面抵抗値の測定; 測定器…タケダ理研(株)製、DIGITAL
MULTIMETER TR−6843 電極…銅板 測定法…電極間に処理試料をはさみ、電極間距
離を2cm一定とし、測定器に導線により両極
を接続し、抵抗値を測定した。 結果を第1表に示す。
(Industrial Application Field) The present invention relates to electronic component materials (printed wiring boards,
The present invention relates to a novel epoxy resin-based low electrical resistance material suitable for use in electrode materials, antistatic clothing, surface heating elements, etc., and a method for producing the same. (Prior art) Epoxy resin is widely used as a material for various molded products and adhesives because it has high mechanical strength and adhesive strength in addition to being lightweight and inexpensive as a synthetic resin, and has recently been used as a material for electronic parts. As is well known, its use is becoming widespread. By the way, since epoxy resins and other synthetic resins are generally insulators, when used for electronic component-related applications, especially electrode materials and printed wiring boards, the surfaces of these resin moldings are coated with conductive metal films or other materials. Coating with conductive paint is required. Furthermore, since synthetic resins are highly chargeable and easily attract dust in the air, they are often used to impart conductivity not only to electronic components but also to clothing and other fields. (Problems to be Solved by the Invention) There are electroless plating methods, vacuum evaporation methods, sputtering methods, ion plating methods, painting methods, etc. as methods for forming the above-mentioned conductive film. All of these methods require complicated processes and expensive equipment, which increases manufacturing costs and offsets the inexpensive properties of synthetic resins.Furthermore, the resulting coatings have poor adhesion and do not maintain their initial performance for a long time. There were flaws. Taking the most frequently used electroless plating method as an example, there is a surface roughening process in which the surface of a resin molded product is treated with a mixed acid, and a sensitizing process in which tin ions are adsorbed on the roughened surface to increase the sensitivity of the surface. The process requires an activating process in which tin ions are replaced with platinum to activate the roughened surface, an electroless plating process in which the target metal is deposited using the catalytic action of platinum, and the labor, time and materials required. etc. were extremely large. Furthermore, when forming a conductive film using conductive paint (particularly used in electromagnetic shielded housings, etc.), adhesion is poor, resulting in problems such as short circuits due to peeling. Furthermore, nichrome wires are encapsulated in plastic substrates, and conductive carbon black is kneaded to make planar heating elements (for example, heating floor materials, electric blankets, etc.), but the materials used are This naturally limits the product shape. There is also a method of obtaining a planar heating element using a tin oxide film, but this method has the disadvantage that the substrate material is inevitably limited by the need for heat treatment of 800° C. or higher. The present invention has been made in view of the above, and is a novel epoxy resin that forms a copper sulfide coating tightly on the surface of the epoxy resin through chemical bonding, thereby making it possible to develop the above-mentioned and other new applications. The object of the present invention is to provide a low electrical resistance material and an effective manufacturing method thereof. (Means for Solving the Problems) The configuration of the present invention to achieve the above object is that the specific invention is made from an epoxy resin cured with a curing agent containing an amine type, a polyamine type, a polyamide type, or a polythiol type. Copper sulfide film is deposited on the surface of a base material made of a base material or an insulating material coated with an epoxy resin cured with an amine-based, polyamine-based, polyamide-based, or polythiol-based curing agent. The present invention relates to an epoxy resin-based low electrical resistance material comprising at least a base material or an insulating material made of an epoxy resin cured with a curing agent containing an amine-based, polyamine-based, polyamide-based, or polythiol-based curing agent. A mixed solution of a copper ion-containing solution and a reducing compound solution containing sulfur is applied to a base material made of an epoxy resin cured with an amine-based, polyamine-based, polyamide-based, or polythiol-based curing agent. A method for producing an epoxy resin-based low electrical resistance material, characterized in that copper sulfide is deposited on the surface of the substrate by a reduction reaction of the mixed solution. For convenience, the manufacturing method, which is the second aspect of the present invention, will be described in detail first. The base material used in the method of the present invention is made of an epoxy resin itself cured with a curing agent containing an amine type, polyamine type, polyamide type, or polythiol type as described above;
and an insulating material are coated with epoxy resin cured with the above-mentioned curing agent.
The latter is made of insulating materials such as glass, plastics, ceramics, wood, fibers, etc., and the surfaces of these powders and granules are coated with epoxy resin, depending on the application. Selected appropriately. These substrates are immersed in a mixed solution of a copper ion-containing solution and a reducing compound solution containing sulfur.
It is prepared from one or more selected from salt solutions such as copper acetate solution and copper chloride solution, and the concentration thereof is 0.01 mol/~ the respective saturated concentration (for example, if the saturated concentration of copper chloride is taken, 0.01 ~
4.9mol/) or less is suitable, especially 0.05~
A suitable range is 1.5 mol/, but it is not necessarily limited to this range. Furthermore, its PH
An acidic range of 7 or less is appropriate, and it is particularly desirable to adjust it to 2-5. In addition, the reducing compound solution used together with the copper ion-containing solution is composed of one or more compounds selected from sulfur-containing compounds such as sodium thiosulfate, sodium sulfite, and hydrogen sulfide, and the concentration of this reducing compound solution is teeth
0.05 to 1.5 mol/ is preferable, but not limited to this, and it is desirable that the amount added is approximately chemical equivalent to the above-mentioned copper ion-containing solution, but it goes without saying that it is not limited to this. Nor. The substrate may be immersed in the above mixed solution by immersing the substrate in the copper ion-containing solution and then adding the reducing compound solution, or by immersing the substrate in the reducing compound solution and then adding the copper ion-containing solution. Alternatively, both solutions may be mixed in advance and then the substrate may be immersed in the mixture.In short, it is sufficient that the substrate is immersed during the reduction reaction of both solutions. When the reaction vessel containing the copper ion-containing solution and the reducing solution and in which the substrate is immersed is heated in a hot bath at 60 to 90°C for about 10 minutes to 3 hours while stirring or shaking, the substrate is heated. On the surface of the epoxy resin, mainly cuprous sulfide (in some cases, cupric sulfide is mixed and precipitated, but hereinafter these will be collectively referred to as copper sulfide) is precipitated to form a coating. At this time, various surfactants, propylene carbonate,
If you add an appropriate amount of additives such as ethylene glycol,
A uniform and glossy copper sulfide film can be formed on the surface of the epoxy resin. (Function) As mentioned above, according to the reduction reaction of mixing a copper ion-containing solution and a reducing compound solution, when these are respectively used as a copper sulfate solution and a sodium thiosulfate solution, the following reaction mainly occurs, and 2CuSO 4 +2Na 2 S 2 O 3 + 2H 2 O = Cu 2 S + S + 2Na 2 SO 4 + 2H 2 SO 4Copper sulfide (Cu 2 S) precipitates and adheres to the epoxy resin surface of the base material. At this time, the copper sulfide in the precipitation process is fixed as a film on the surface of the cured epoxy resin in a chemical bond state with the functional groups on the surface of the cured epoxy resin cured by the curing agent containing the above-mentioned amine type or the like. This fact is based on the fact that when the above-mentioned treated product was analyzed by photoelectron spectroscopy (ESCA), it was confirmed that the peak associated with the functional group of the epoxy resin disappeared and the presence of copper and sulfur appeared instead. it is obvious. In addition, by adding the additives mentioned above, the wettability of the epoxy resin surface improves, a copper sulfide coating is formed uniformly, and the precipitated copper sulfide particles become uniform and fine, resulting in excellent transparency and gloss. A film is formed. The surface resistance value of the obtained processed product is 10 1 to 10 4 Ω,
Often 10 2 Ω. Therefore, when it is suitable for electronic component materials, heating elements, etc., the required performance can be fully satisfied. (Example) The present invention will be explained in further detail with reference to Examples below. Example 1 (1) Preparation of base material; Apply an epoxy resin prepared by mixing bisphenol A type epoxy resin (epoxy equivalent: 190) and a curing agent (shown in Table 1) in equivalent amounts on a glass plate, It was cured at 80±5° C. for 5 hours to form an epoxy resin film. (2) Preparation of reaction solution: 10 ml of a 1 mol/mol copper nitrate solution and 10 ml of a 1 mol/sodium thiosulfate solution were prepared. (3) Reaction conditions: Place the above substrate into a reaction container, add the above reaction solution, and shake on a 65°C hot bath for 3 hours.
Thereafter, the base material was taken out, washed with water, and dried. (4) Measurement of surface resistance value; Measuring device…manufactured by Takeda Riken Co., Ltd., DIGITAL
MULTIMETER TR-6843 Electrode...Copper plate Measuring method...The treated sample was sandwiched between the electrodes, the distance between the electrodes was kept constant at 2 cm, and both electrodes were connected to a measuring device with a conductive wire to measure the resistance value. The results are shown in Table 1.

【表】 実施例 2 (1) 基材の調整; ガラス板上に、ビスフエノールA型エポキシ
樹脂(エポキシ当量190)及び硬化剤(第2表
に示す)を当量ずつ混合してなるエポキシ樹脂
を塗布し、80℃で10分、次いて120℃で15分硬
化させてエポキシ樹脂の被膜を形成させた。 (2) 反応溶液の調製;実施例1と同様 (3) 反応条件;実施例1と同様 (4) 表面抵抗値の測定;実施例1と同様に測定し
た。その結果を第2表に示す。
[Table] Example 2 (1) Preparation of base material: An epoxy resin prepared by mixing bisphenol A type epoxy resin (epoxy equivalent: 190) and a curing agent (shown in Table 2) in equivalent amounts was placed on a glass plate. It was applied and cured at 80°C for 10 minutes and then at 120°C for 15 minutes to form an epoxy resin film. (2) Preparation of reaction solution: Same as Example 1. (3) Reaction conditions: Same as Example 1. (4) Measurement of surface resistance: Measured as in Example 1. The results are shown in Table 2.

【表】 実施例 3 反応時間を短くした場合の表面抵抗値を測定し
た。 ガラス板上に、ビスフエノールA型エポキシ樹
脂(エポキシ当量190)及び硬化剤(第3表に示
す)を当量ずつ混合してなるエポキシ樹脂を塗布
し、80±5℃で5時間硬化させてエポキシ樹脂の
被膜を形成させた。 (2) 反応溶液の調製; PH2に調整した0.2mol/の硫酸銅溶液10
mlと0.2mol/のチオ硫酸ナトリウム溶液を
準備した。 (3) 反応条件; 実施例1と同様に反応容器に入れ、65℃の温
浴上で15分間振とうし、取り出し水洗乾燥し
た。 (4) 表面抵抗値の測定; 実施例1と同様にして表面抵抗値を測定し、
その結果を第3表に示す。
[Table] Example 3 Surface resistance values were measured when the reaction time was shortened. An epoxy resin prepared by mixing bisphenol A type epoxy resin (epoxy equivalent: 190) and a curing agent (shown in Table 3) in equivalent amounts is applied onto a glass plate, and cured at 80±5°C for 5 hours to form an epoxy resin. A resin film was formed. (2) Preparation of reaction solution; 0.2mol/copper sulfate solution adjusted to PH2 10
ml and 0.2 mol/ml of sodium thiosulfate solution were prepared. (3) Reaction conditions: The mixture was placed in a reaction vessel in the same manner as in Example 1, shaken on a 65°C hot bath for 15 minutes, taken out, washed with water and dried. (4) Measurement of surface resistance value; Measure the surface resistance value in the same manner as in Example 1,
The results are shown in Table 3.

【表】 上記実施例1、2及び3の第1表、第2表及び
第3表から、エポキシ樹脂の硬化剤の種類、硬化
条件及び反応条件が変化しても表面抵抗値はいず
れも101〜104Ωのオーダーに収まることが理解さ
れる。 実施例 4 添加剤による硫化銅被膜の外観の違いを調べ
た。 (1) 基材の調整; ガラス板上に、ビスフエノールA型エポキシ
樹脂(エポキシ当量190)及び硬化剤(ポリア
ミド系樹脂)を当量ずつ混合してなるエポキシ
樹脂を塗布し、80℃で10分、次いで120℃で15
分硬化させてエポキシ樹脂の被膜を形成させ
た。 (2) 反応溶液の調製; プロピレンカーボネート及びエチレングリコ
ールを第4表の如き割合で含む0.2mol/の
硫酸銅溶液10mlと0.2mol/のチオ硫酸ナト
リウム溶液10mlとを準備した。 (3) 反応;実施例3と同様。 (4) 表面抵抗値の測定及び外観の観察; 上記同様に表面抵抗値を測定すると共に外観
を目視にて比較した。その結果を第4表に示
す。
[Table] From Tables 1, 2, and 3 of Examples 1, 2, and 3 above, the surface resistance value remains 10 even if the type of curing agent, curing conditions, and reaction conditions of the epoxy resin change. It is understood that it is on the order of 1 to 10 4 Ω. Example 4 Differences in appearance of copper sulfide coatings depending on additives were investigated. (1) Preparation of the base material; Apply an epoxy resin made by mixing equivalent amounts of bisphenol A type epoxy resin (epoxy equivalent: 190) and curing agent (polyamide resin) onto a glass plate, and heat at 80°C for 10 minutes. , then 15 at 120℃
This was cured for a few minutes to form an epoxy resin film. (2) Preparation of reaction solution; 10 ml of a 0.2 mol/mol copper sulfate solution and 10 ml of a 0.2 mol/sodium thiosulfate solution containing propylene carbonate and ethylene glycol in the proportions shown in Table 4 were prepared. (3) Reaction: Same as Example 3. (4) Measurement of surface resistance value and observation of appearance; In the same manner as above, the surface resistance value was measured and the appearance was visually compared. The results are shown in Table 4.

【表】 但し、*1は硫酸銅溶液に対する割合を示す。
また、A及びBは夫々プロプレンカーボネート及
びエチレングリコールを示す。更に硫化銅被膜の
外観の欄の優・良・可はブランク(添加剤無添
加)に対する目視による相対評価を示す。 第4表の結果から、添加剤により硫化銅被膜の
外観が向上することが理解される。 実施例 5 実施例3における処理品を任意選択し、硫化銅
被膜の密着性を調べた。 (1) 評価法; 10×10mm碁盤目クロスカツテイング法。 (2) 結果;結果を第5表に示す。
[Table] However, *1 indicates the ratio to the copper sulfate solution.
Further, A and B represent propene carbonate and ethylene glycol, respectively. Further, in the column for the appearance of the copper sulfide coating, Excellent, Good, and Fair indicate relative evaluations by visual observation with respect to a blank (no additives added). From the results in Table 4, it is understood that the additive improves the appearance of the copper sulfide coating. Example 5 The treated products in Example 3 were arbitrarily selected and the adhesion of the copper sulfide coating was examined. (1) Evaluation method: 10×10mm grid cross cutting method. (2) Results: The results are shown in Table 5.

【表】 第5表から硫化銅被膜のエポキシ樹脂表面に対
する密着性が良好であることが理解される。亦、
前述した如くESCAの解析結果からこの硫化銅被
膜はエポキシ樹脂と化学的に結合しているから極
めて安定したものである。 尚、上記実施例以外でも、例えばガラス板に代
えポリカーポネート樹脂板の表面にエポキシ樹脂
をコーテイングしたもの或はエポキシ樹脂の単独
板についても同様の処理をしたが、上記と略同様
の結果が得られた。 (発明の効果) 叙上の如く、本発明の低電気抵抗材料は硫化銅
の密着性の高い安定した被膜により低レベルの表
面抵抗値が維持され、エポキシ樹脂の優れた、特
に種々の材料に対して良好な接着特性と相俟つて
種々の材料選択による所望の製品形状を可能なら
しめた様々な価値ある用途が約束されるものであ
る。亦、その製造方法は、銅イオン含有溶液及び
硫黄を含む還元性化合物溶液の反応液にエポキシ
樹脂系の基材を浸漬するだけであるから、極めて
簡易であり、従来の無電解メツキ法その他導電化
処理法に比べ製造コスト、要する労力が著減さ
れ、設備費用等も割安となる…などの著効を奏す
るものでその産業的有用性は極めて大である。
[Table] It is understood from Table 5 that the adhesion of the copper sulfide coating to the epoxy resin surface is good. also,
As mentioned above, the ESCA analysis results show that this copper sulfide coating is extremely stable because it is chemically bonded to the epoxy resin. In addition to the above-mentioned examples, for example, a polycarbonate resin plate coated with epoxy resin on the surface instead of a glass plate, or a single epoxy resin plate was also treated in the same manner, but almost the same results as above were obtained. Obtained. (Effects of the Invention) As described above, the low electrical resistance material of the present invention maintains a low level of surface resistance due to the highly adhesive and stable coating of copper sulfide, and is suitable for use with various materials, especially those with excellent epoxy resins. On the other hand, combined with good adhesive properties, it promises a variety of valuable applications, making it possible to create desired product shapes through a variety of material selections. Moreover, the manufacturing method is extremely simple, as it simply involves immersing an epoxy resin base material in a reaction solution of a copper ion-containing solution and a reducing compound solution containing sulfur. Compared to the chemical treatment method, the manufacturing cost and required labor are significantly reduced, and equipment costs are also lower.

Claims (1)

【特許請求の範囲】 1 アミン系、ポリアミン系、ポリアミド系若し
くはポリチオール系を含有する硬化剤により硬化
されたエポキシ樹脂から成る基材又は絶縁性材料
にアミン系、ポリアミン系、ポリアミド系若しく
はポリチオール系を含有する硬化剤により硬化さ
れたエポキシ樹脂が被覆されて成る基材の表面
に、硫化銅の被膜を析出被着して成るエポキシ樹
脂系低電気抵抗材料。 2 アミン系、ポリアミン系、ポリアミド系若し
くはポリチオール系を含有する硬化剤により硬化
されたエポキシ樹脂から成る基材又は絶縁性材料
にアミン系、ポリアミド系若しくはポリチオール
系を含有する硬化剤により硬化されたエポキシ樹
脂が被覆されて成る基材を、銅イオン含有溶液及
び硫黄を含む還元性化合物溶液に浸漬し、この混
合液の還元反応により上記基材表面に硫化銅を析
出させるようにしたことを特徴とするエポキシ樹
脂系低電気抵抗材料の製造方法。
[Claims] 1. An amine-based, polyamine-based, polyamide-based, or polythiol-based base material or insulating material made of an epoxy resin cured with an amine-based, polyamine-based, polyamide-based, or polythiol-based curing agent. An epoxy resin-based low electrical resistance material made by depositing and depositing a copper sulfide coating on the surface of a base material coated with an epoxy resin cured by a curing agent contained therein. 2 Epoxy cured with an amine-, polyamide-, or polythiol-containing curing agent on a base material or insulating material made of an epoxy resin cured with an amine-, polyamine-, polyamide-, or polythiol-containing curing agent A base material coated with resin is immersed in a solution containing copper ions and a reducing compound solution containing sulfur, and copper sulfide is deposited on the surface of the base material through a reduction reaction of the mixed solution. A method for producing an epoxy resin-based low electrical resistance material.
JP61041322A 1986-02-26 1986-02-26 Epoxy resin based low electric resistance material and manufacture thereof Granted JPS62290011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61041322A JPS62290011A (en) 1986-02-26 1986-02-26 Epoxy resin based low electric resistance material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61041322A JPS62290011A (en) 1986-02-26 1986-02-26 Epoxy resin based low electric resistance material and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS62290011A JPS62290011A (en) 1987-12-16
JPH058528B2 true JPH058528B2 (en) 1993-02-02

Family

ID=12605282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61041322A Granted JPS62290011A (en) 1986-02-26 1986-02-26 Epoxy resin based low electric resistance material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62290011A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4131815B2 (en) * 2002-12-16 2008-08-13 邦仁 河本 Metal film forming method and ceramic electronic component manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211704A (en) * 1984-04-06 1985-10-24 株式会社ブリヂストン Conductor and method of producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211704A (en) * 1984-04-06 1985-10-24 株式会社ブリヂストン Conductor and method of producing same

Also Published As

Publication number Publication date
JPS62290011A (en) 1987-12-16

Similar Documents

Publication Publication Date Title
US4716081A (en) Conductive compositions and conductive powders for use therein
US4652465A (en) Process for the production of a silver coated copper powder and conductive coating composition
JP3079094B2 (en) Conductive epoxy resin
US4781980A (en) Copper powder for use in conductive paste
JPS60254514A (en) Conductive particle and method of producing same
EP0417037A2 (en) Process for coating plastic articles
JPS612202A (en) Soldable electroconductive composition, method of producing same, method of treating substrate applied with said composition, method of coating metal and article applied with same composition
JPS6320270B2 (en)
JPH058528B2 (en)
JPS60181294A (en) Production of inorganic powder having metallic film on surface
JPH0818000B2 (en) Method for producing epoxy resin-based low electrical resistance material
JPS59182961A (en) Production of inorganic powder having metallic film
JPS62179566A (en) Electrically conductive resin composition
JPS61163975A (en) Electrically conductive paint composition
JPS59179650A (en) Heat-resistant, electrically conductive paste composition
JPS61257479A (en) Method for plating inorganic powder by electroless plating
JPH01201486A (en) Ag plated powder for electrically conductive paint having superior migration resistance
JP2567432B2 (en) Conductive resin composition
JPS58118830A (en) Preparation of molding for chemical plating
KR970005444B1 (en) Method for electro-plating wood
JPH01159908A (en) Thermosetting silver paste composition with excellent heat resistance
JPS61258875A (en) Electrically conductive paint
JPS6389577A (en) Electrically conductive paint
JPH03152803A (en) Solderable conductive paste
JPH0661891B2 (en) Manufacturing method of conductive polyimide molding